Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7375
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秀熙
dc.contributor.authorMing-Hsien Tsaien
dc.contributor.author蔡明憲zh_TW
dc.date.accessioned2021-05-19T17:42:26Z-
dc.date.available2022-03-05
dc.date.available2021-05-19T17:42:26Z-
dc.date.copyright2019-03-05
dc.date.issued2019
dc.date.submitted2019-02-13
dc.identifier.citation1. Hsu, C.C., et al., High prevalence and low awareness of CKD in Taiwan: a study on the relationship between serum creatinine and awareness from a nationally representative survey. Am J Kidney Dis, 2006. 48(5): p. 727-38.
2. Centers for Disease, C. and Prevention, Prevalence of chronic kidney disease and associated risk factors--United States, 1999-2004. MMWR Morb Mortal Wkly Rep, 2007. 56(8): p. 161-5.
3. Hwang, S.J., J.C. Tsai, and H.C. Chen, Epidemiology, impact and preventive care of chronic kidney disease in Taiwan. Nephrology (Carlton), 2010. 15 Suppl 2: p. 3-9.
4. Tin, A., et al., Patterns of Kidney Function Decline Associated with APOL1 Genotypes: Results from AASK. Clin J Am Soc Nephrol, 2016. 11(8): p. 1353-9.
5. Saran, R., et al., US Renal Data System 2016 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis, 2017. 69(3 Suppl 1): p. A7-A8.
6. National Kidney, F., K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis, 2002. 39(2 Suppl 1): p. S1-266.
7. Stevens, P.E., A. Levin, and M. Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group, Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med, 2013. 158(11): p. 825-30.
8. Kessler, M., et al., Impact of nephrology referral on early and midterm outcomes in ESRD: EPidemiologie de l'Insuffisance REnale chronique terminale en Lorraine (EPIREL): results of a 2-year, prospective, community-based study. Am J Kidney Dis, 2003. 42(3): p. 474-85.
9. Huisman, R.M., The deadly risk of late referral. Nephrol Dial Transplant, 2004. 19(9): p. 2175-80.
10. Israni, R.K., et al., Physician characteristics and knowledge of CKD management. Am J Kidney Dis, 2009. 54(2): p. 238-47.
11. Smart, N.A. and T.T. Titus, Outcomes of early versus late nephrology referral in chronic kidney disease: a systematic review. Am J Med, 2011. 124(11): p. 1073-80 e2.
12. Mason, J., et al., Educational interventions in kidney disease care: a systematic review of randomized trials. Am J Kidney Dis, 2008. 51(6): p. 933-51.
13. Chen, Y.R., et al., Effectiveness of multidisciplinary care for chronic kidney disease in Taiwan: a 3-year prospective cohort study. Nephrol Dial Transplant, 2013. 28(3): p. 671-82.
14. Hemmelgarn, B.R., et al., Association between multidisciplinary care and survival for elderly patients with chronic kidney disease. J Am Soc Nephrol, 2007. 18(3): p. 993-9.
15. Curtis, B.M., et al., The short- and long-term impact of multi-disciplinary clinics in addition to standard nephrology care on patient outcomes. Nephrol Dial Transplant, 2005. 20(1): p. 147-54.
16. Wen, C.P., et al., All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet, 2008. 371(9631): p. 2173-82.
17. Zhang, L., et al., Prevalence and factors associated with CKD: a population study from Beijing. Am J Kidney Dis, 2008. 51(3): p. 373-84.
18. Zhang, L., et al., Community-based screening for chronic kidney disease among populations older than 40 years in Beijing. Nephrol Dial Transplant, 2007. 22(4): p. 1093-9.
19. Coresh, J., et al., Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am J Kidney Dis, 2003. 41(1): p. 1-12.
20. Imai, E., et al., Prevalence of chronic kidney disease (CKD) in the Japanese general population predicted by the MDRD equation modified by a Japanese coefficient. Clin Exp Nephrol, 2007. 11(2): p. 156-63.
21. Hallan, S.I., et al., International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol, 2006. 17(8): p. 2275-84.
22. Kuo, H.W., et al., Epidemiological features of CKD in Taiwan. Am J Kidney Dis, 2007. 49(1): p. 46-55.
23. Chen, W., et al., Prevalence and risk factors associated with chronic kidney disease in an adult population from southern China. Nephrol Dial Transplant, 2009. 24(4): p. 1205-12.
24. Iseki, K., Chronic kidney disease in Japan. Intern Med, 2008. 47(8): p. 681-9.
25. Chadban, S.J., et al., Prevalence of kidney damage in Australian adults: The AusDiab kidney study. J Am Soc Nephrol, 2003. 14(7 Suppl 2): p. S131-8.
26. Baghestani, A.R., E. Hajizadeh, and S.R. Fatemi, Parametric model to analyse the survival of gastric cancer in the presence of interval censoring. Tumori, 2010. 96(3): p. 433-7.
27. Foley, R.N., et al., Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol, 2005. 16(2): p. 489-95.
28. Poggio, E.D., et al., Performance of the modification of diet in renal disease and Cockcroft-Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol, 2005. 16(2): p. 459-66.
29. Rule, A.D., et al., Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease. Ann Intern Med, 2004. 141(12): p. 929-37.
30. Levey, A.S., et al., A new equation to estimate glomerular filtration rate. Ann Intern Med, 2009. 150(9): p. 604-12.
31. Pugliese, G., et al., The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation provides a better definition of cardiovascular burden associated with CKD than the Modification of Diet in Renal Disease (MDRD) Study formula in subjects with type 2 diabetes. Atherosclerosis, 2011. 218(1): p. 194-9.
32. Yang, W.C., S.J. Hwang, and N. Taiwan Society of, Incidence, prevalence and mortality trends of dialysis end-stage renal disease in Taiwan from 1990 to 2001: the impact of national health insurance. Nephrol Dial Transplant, 2008. 23(12): p. 3977-82.
33. Hill, N.R., et al., Global Prevalence of Chronic Kidney Disease - A Systematic Review and Meta-Analysis. PLoS One, 2016. 11(7): p. e0158765.
34. Coresh, J., et al., Prevalence of chronic kidney disease in the United States. JAMA, 2007. 298(17): p. 2038-47.
35. Zhang, Q.L., et al., Epidemiology of chronic kidney disease: results from a population of older adults in Germany. Prev Med, 2009. 48(2): p. 122-7.
36. Gambaro, G., et al., Prevalence of CKD in northeastern Italy: results of the INCIPE study and comparison with NHANES. Clin J Am Soc Nephrol, 2010. 5(11): p. 1946-53.
37. Kim, S., et al., The prevalence of chronic kidney disease (CKD) and the associated factors to CKD in urban Korea: a population-based cross-sectional epidemiologic study. J Korean Med Sci, 2009. 24 Suppl: p. S11-21.
38. Chang, I.H., et al., Association between metabolic syndrome and chronic kidney disease in the Korean population. Nephrology (Carlton), 2009. 14(3): p. 321-6.
39. Teo, B.W., et al., The choice of estimating equations for glomerular filtration rate significantly affects the prevalence of chronic kidney disease in a multi-ethnic population during health screening. Nephrology (Carlton), 2009. 14(6): p. 588-96.
40. Shankar, A., et al., Association between body mass index and chronic kidney disease in men and women: population-based study of Malay adults in Singapore. Nephrol Dial Transplant, 2008. 23(6): p. 1910-8.
41. Chen, J., et al., Prevalence of decreased kidney function in Chinese adults aged 35 to 74 years. Kidney Int, 2005. 68(6): p. 2837-45.
42. Ong-Ajyooth, L., et al., Prevalence of chronic kidney disease in Thai adults: a national health survey. BMC Nephrol, 2009. 10: p. 35.
43. Perkovic, V., et al., High prevalence of chronic kidney disease in Thailand. Kidney Int, 2008. 73(4): p. 473-9.
44. Singh, N.P., et al., Prevalence of low glomerular filtration rate, proteinuria and associated risk factors in North India using Cockcroft-Gault and Modification of Diet in Renal Disease equation: an observational, cross-sectional study. BMC Nephrol, 2009. 10: p. 4.
45. Arora, P., et al., Prevalence estimates of chronic kidney disease in Canada: results of a nationally representative survey. CMAJ, 2013. 185(9): p. E417-23.
46. Najafi, I., et al., Prevalence of chronic kidney disease and its associated risk factors: the first report from Iran using both microalbuminuria and urine sediment. Arch Iran Med, 2012. 15(2): p. 70-5.
47. Cepoi, V., et al., The prevalence of chronic kidney disease in the general population in Romania: a study on 60,000 persons. Int Urol Nephrol, 2012. 44(1): p. 213-20.
48. Gansevoort, R.T., et al., Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet, 2013. 382(9889): p. 339-52.
49. Go, A.S., et al., Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med, 2004. 351(13): p. 1296-305.
50. Foster, M.C., et al., Cardiovascular risk factor burden, treatment, and control among adults with chronic kidney disease in the United States. Am Heart J, 2013. 166(1): p. 150-6.
51. Saran, R., et al., US Renal Data System 2017 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis, 2018. 71(3S1): p. A7.
52. Yang, H.Y., P.C. Chen, and J.D. Wang, Chinese herbs containing aristolochic acid associated with renal failure and urothelial carcinoma: a review from epidemiologic observations to causal inference. Biomed Res Int, 2014. 2014: p. 569325.
53. Leehey, D.J., et al., Progression of kidney disease in type 2 diabetes - beyond blood pressure control: an observational study. BMC Nephrol, 2005. 6: p. 8.
54. Zucchelli, P. and A. Zuccala, The kidney as a victim of essential hypertension. J Nephrol, 1997. 10(4): p. 203-6.
55. Jafar, T.H., et al., Proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney Int, 2001. 60(3): p. 1131-40.
56. Fried, L.F., T.J. Orchard, and B.L. Kasiske, Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int, 2001. 59(1): p. 260-9.
57. Rodenbach, K.E., et al., Hyperuricemia and Progression of CKD in Children and Adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort Study. Am J Kidney Dis, 2015. 66(6): p. 984-92.
58. Orth, S.R., E. Ritz, and R.W. Schrier, The renal risks of smoking. Kidney Int, 1997. 51(6): p. 1669-77.
59. Goetz, F.C., et al., Risk factors for kidney damage in the adult population of Wadena, Minnesota. A prospective study. Am J Epidemiol, 1997. 145(2): p. 91-102.
60. Pugh, J.A., et al., Excess incidence of treatment of end-stage renal disease in Mexican Americans. Am J Epidemiol, 1988. 127(1): p. 135-44.
61. McLaughlin, J.K., et al., Analgesic use and chronic renal failure: a critical review of the epidemiologic literature. Kidney Int, 1998. 54(3): p. 679-86.
62. Perneger, T.V., et al., Risk of end-stage renal disease associated with alcohol consumption. Am J Epidemiol, 1999. 150(12): p. 1275-81.
63. Perneger, T.V., P.K. Whelton, and M.J. Klag, Race and end-stage renal disease. Socioeconomic status and access to health care as mediating factors. Arch Intern Med, 1995. 155(11): p. 1201-8.
64. Lackland, D.T., et al., Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med, 2000. 160(10): p. 1472-6.
65. Prasad, G.V., Metabolic syndrome and chronic kidney disease: Current status and future directions. World J Nephrol, 2014. 3(4): p. 210-9.
66. Echouffo-Tcheugui, J.B. and A.P. Kengne, Risk models to predict chronic kidney disease and its progression: a systematic review. PLoS Med, 2012. 9(11): p. e1001344.
67. Taal, M.W. and B.M. Brenner, Predicting initiation and progression of chronic kidney disease: Developing renal risk scores. Kidney Int, 2006. 70(10): p. 1694-705.
68. Tangri, N., et al., A predictive model for progression of chronic kidney disease to kidney failure. JAMA, 2011. 305(15): p. 1553-9.
69. Johnson, E.S., et al., Predicting the risk of dialysis and transplant among patients with CKD: a retrospective cohort study. Am J Kidney Dis, 2008. 52(4): p. 653-60.
70. Tsai, W.C., et al., Risk Factors for Development and Progression of Chronic Kidney Disease: A Systematic Review and Exploratory Meta-Analysis. Medicine (Baltimore), 2016. 95(11): p. e3013.
71. Ryu, S., et al., Time-dependent association between metabolic syndrome and risk of CKD in Korean men without hypertension or diabetes. Am J Kidney Dis, 2009. 53(1): p. 59-69.
72. O'Seaghdha, C.M., et al., Lower urinary connective tissue growth factor levels and incident CKD stage 3 in the general population. Am J Kidney Dis, 2011. 57(6): p. 841-9.
73. Shankar, A., R. Klein, and B.E. Klein, The association among smoking, heavy drinking, and chronic kidney disease. Am J Epidemiol, 2006. 164(3): p. 263-71.
74. Bash, L.D., et al., Inflammation, hemostasis, and the risk of kidney function decline in the Atherosclerosis Risk in Communities (ARIC) Study. Am J Kidney Dis, 2009. 53(4): p. 596-605.
75. Chien, K.L., et al., A prediction model for the risk of incident chronic kidney disease. Am J Med, 2010. 123(9): p. 836-846 e2.
76. Shastri, S., et al., Cystatin C and albuminuria as risk factors for development of CKD stage 3: the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Kidney Dis, 2011. 57(6): p. 832-40.
77. Shankar, A., et al., Markers of inflammation predict the long-term risk of developing chronic kidney disease: a population-based cohort study. Kidney Int, 2011. 80(11): p. 1231-8.
78. Regalado, M., S. Yang, and D.E. Wesson, Cigarette smoking is associated with augmented progression of renal insufficiency in severe essential hypertension. Am J Kidney Dis, 2000. 35(4): p. 687-94.
79. Yoshida, T., et al., Risk factors for progression in patients with early-stage chronic kidney disease in the Japanese population. Intern Med, 2008. 47(21): p. 1859-64.
80. Gopinath, B., et al., A better diet quality is associated with a reduced likelihood of CKD in older adults. Nutr Metab Cardiovasc Dis, 2013. 23(10): p. 937-43.
81. Khatri, M., et al., The association between a Mediterranean-style diet and kidney function in the Northern Manhattan Study cohort. Clin J Am Soc Nephrol, 2014. 9(11): p. 1868-75.
82. Lin, J., et al., Relation of atherogenic lipoproteins with estimated glomerular filtration rate decline: a longitudinal study. BMC Nephrol, 2015. 16: p. 130.
83. Bowe, B., et al., Association between Monocyte Count and Risk of Incident CKD and Progression to ESRD. Clin J Am Soc Nephrol, 2017. 12(4): p. 603-613.
84. Park, H., et al., Chronic hepatitis C virus (HCV) increases the risk of chronic kidney disease (CKD) while effective HCV treatment decreases the incidence of CKD. Hepatology, 2017.
85. Si, J., et al., Chronic hepatitis B virus infection and risk of chronic kidney disease: a population-based prospective cohort study of 0.5 million Chinese adults. BMC Med, 2018. 16(1): p. 93.
86. Chonchol, M., et al., Fibroblast Growth Factor 23 and Kidney Disease Progression in Autosomal Dominant Polycystic Kidney Disease. Clin J Am Soc Nephrol, 2017. 12(9): p. 1461-1469.
87. Baek, S.D., et al., Does stage III chronic kidney disease always progress to end-stage renal disease? A ten-year follow-up study. Scand J Urol Nephrol, 2012. 46(3): p. 232-8.
88. Cheng, H.T., et al., Metabolic syndrome and insulin resistance as risk factors for development of chronic kidney disease and rapid decline in renal function in elderly. J Clin Endocrinol Metab, 2012. 97(4): p. 1268-76.
89. Ishizuka, T., et al., Relationship between kidney function decline and initial risk factors for the progression of diabetic kidney disease: a retrospective analysis of 91 Japanese patients with type 2 diabetes. Diabetol Int, 2016. 7(4): p. 432-439.
90. Locatelli, F., et al., Proteinuria and blood pressure as causal components of progression to end-stage renal failure. Northern Italian Cooperative Study Group. Nephrol Dial Transplant, 1996. 11(3): p. 461-7.
91. Hunsicker, L.G., et al., Predictors of the progression of renal disease in the Modification of Diet in Renal Disease Study. Kidney Int, 1997. 51(6): p. 1908-19.
92. Boaz, M., et al., Patterns of dietary intake and serum lipids interact with proteinuria as risk factors for progression of chronic renal failure. Ren Fail, 1998. 20(2): p. 383-90.
93. Evans, M., et al., The natural history of chronic renal failure: results from an unselected, population-based, inception cohort in Sweden. Am J Kidney Dis, 2005. 46(5): p. 863-70.
94. Levin, A., et al., Variability and risk factors for kidney disease progression and death following attainment of stage 4 CKD in a referred cohort. Am J Kidney Dis, 2008. 52(4): p. 661-71.
95. Hoefield, R.A., et al., Factors associated with kidney disease progression and mortality in a referred CKD population. Am J Kidney Dis, 2010. 56(6): p. 1072-81.
96. De Nicola, L., et al., Prognosis of CKD patients receiving outpatient nephrology care in Italy. Clin J Am Soc Nephrol, 2011. 6(10): p. 2421-8.
97. Khedr, A., E. Khedr, and A.A. House, Body mass index and the risk of progression of chronic kidney disease. J Ren Nutr, 2011. 21(6): p. 455-61.
98. Pereira, A.C., et al., Association between laboratory and clinical risk factors and progression of the predialytic chronic kidney disease. J Bras Nefrol, 2012. 34(1): p. 68-75.
99. Obi, Y., et al., Impact of age and overt proteinuria on outcomes of stage 3 to 5 chronic kidney disease in a referred cohort. Clin J Am Soc Nephrol, 2010. 5(9): p. 1558-65.
100. Agarwal, R., Blood pressure components and the risk for end-stage renal disease and death in chronic kidney disease. Clin J Am Soc Nephrol, 2009. 4(4): p. 830-7.
101. Kuo, H.W., et al., Analgesic use and the risk for progression of chronic kidney disease. Pharmacoepidemiol Drug Saf, 2010. 19(7): p. 745-51.
102. Sugiura, T. and A. Wada, Resistive index predicts renal prognosis in chronic kidney disease: results of a 4-year follow-up. Clin Exp Nephrol, 2011. 15(1): p. 114-20.
103. Wu, I.W., et al., p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol Dial Transplant, 2011. 26(3): p. 938-47.
104. Rahman, M., et al., Association between chronic kidney disease progression and cardiovascular disease: results from the CRIC Study. Am J Nephrol, 2014. 40(5): p. 399-407.
105. Yonemoto, S., et al., Red cell distribution width and renal outcome in patients with non-dialysis-dependent chronic kidney disease. PLoS One, 2018. 13(6): p. e0198825.
106. Tsai, C.W., et al., Longitudinal change in estimated GFR among CKD patients: A 10-year follow-up study of an integrated kidney disease care program in Taiwan. PLoS One, 2017. 12(4): p. e0173843.
107. Gooch, K., et al., NSAID use and progression of chronic kidney disease. Am J Med, 2007. 120(3): p. 280 e1-7.
108. Hemmelgarn, B.R., B.F. Culleton, and W.A. Ghali, Derivation and validation of a clinical index for prediction of rapid progression of kidney dysfunction. QJM, 2007. 100(2): p. 87-92.
109. Imai, E., et al., Slower decline of glomerular filtration rate in the Japanese general population: a longitudinal 10-year follow-up study. Hypertens Res, 2008. 31(3): p. 433-41.
110. Agarwal, R. and R.P. Light, Patterns and prognostic value of total and differential leukocyte count in chronic kidney disease. Clin J Am Soc Nephrol, 2011. 6(6): p. 1393-9.
111. Hallan, S.I., et al., Combining GFR and albuminuria to classify CKD improves prediction of ESRD. J Am Soc Nephrol, 2009. 20(5): p. 1069-77.
112. Ozsoy, R.C., et al., Dyslipidaemia as predictor of progressive renal failure and the impact of treatment with atorvastatin. Nephrol Dial Transplant, 2007. 22(6): p. 1578-86.
113. Ravani, P., et al., Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol, 2005. 16(8): p. 2449-55.
114. Bolignano, D., et al., Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol, 2009. 4(2): p. 337-44.
115. Yuste, C., et al., Factors related with the progression of chronic kidney disease. Nefrologia, 2013. 33(5): p. 685-91.
116. Ricardo, A.C., et al., The Association of Sleep Duration and Quality with CKD Progression. J Am Soc Nephrol, 2017. 28(12): p. 3708-3715.
117. Wu, C., et al., Association of high body mass index with development of interstitial fibrosis in patients with IgA nephropathy. BMC Nephrol, 2018. 19(1): p. 381.
118. Hunter, D.J. and K.S. Reddy, Noncommunicable diseases. N Engl J Med, 2013. 369(14): p. 1336-43.
119. Meira-Machado, L., et al., Multi-state models for the analysis of time-to-event data. Stat Methods Med Res, 2009. 18(2): p. 195-222.
120. Touraine, C., C. Helmer, and P. Joly, Predictions in an illness-death model. Stat Methods Med Res, 2016. 25(4): p. 1452-70.
121. Andersen, P.K., S.Z. Abildstrom, and S. Rosthoj, Competing risks as a multi-state model. Stat Methods Med Res, 2002. 11(2): p. 203-15.
122. Combescure, C., et al., Assessment of variations in control of asthma over time. Eur Respir J, 2003. 22(2): p. 298-304.
123. Alioum, A., et al., Effect of gender, age, transmission category, and antiretroviral therapy on the progression of human immunodeficiency virus infection using multistate Markov models. Groupe d'Epidemiologie Clinique du SIDA en Aquitaine. Epidemiology, 1998. 9(6): p. 605-12.
124. Day, N.E. and S.D. Walter, Simplified models of screening for chronic disease: estimation procedures from mass screening programmes. Biometrics, 1984. 40(1): p. 1-14.
125. Kuo, H.S., et al., A Markov chain model to assess the efficacy of screening for non-insulin dependent diabetes mellitus (NIDDM). Int J Epidemiol, 1999. 28(2): p. 233-40.
126. Hui-Min, W., Y. Ming-Fang, and T.H. Chen, SAS macro program for non-homogeneous Markov process in modeling multi-state disease progression. Comput Methods Programs Biomed, 2004. 75(2): p. 95-105.
127. Duffy, S.W., et al., Estimation of mean sojourn time in breast cancer screening using a Markov chain model of both entry to and exit from the preclinical detectable phase. Stat Med, 1995. 14(14): p. 1531-43.
128. Hung, H.F. and T.H. Chen, Probabilistic cost-effectiveness analysis of the long-term effect of universal hepatitis B vaccination: an experience from Taiwan with high hepatitis B virus infection and Hepatitis B e Antigen positive prevalence. Vaccine, 2009. 27(48): p. 6770-6.
129. Yang, K.C. and H.H. Chen, Probabilistic Cost-Effectiveness Analysis of Vaccination for Mild or Moderate Alzheimer's Disease. Curr Alzheimer Res, 2016. 13(7): p. 809-16.
130. Begun, A., et al., Identification of a multistate continuous-time nonhomogeneous Markov chain model for patients with decreased renal function. Med Decis Making, 2013. 33(2): p. 298-306.
131. Abner, E.L., R.J. Charnigo, and R.J. Kryscio, Markov chains and semi-Markov models in time-to-event analysis. J Biom Biostat, 2013. Suppl 1(e001): p. 19522.
132. Chen, X., J. Ding, and L. Sun, A semiparametric additive rate model for a modulated renewal process. Lifetime Data Anal, 2017.
133. Foucher, Y., et al., A semi-Markov model for multistate and interval-censored data with multiple terminal events. Application in renal transplantation. Stat Med, 2007. 26(30): p. 5381-93.
134. Chen, T.H., et al., Community-based multiple screening model: design, implementation, and analysis of 42,387 participants. Cancer, 2004. 100(8): p. 1734-43.
135. Chiu, Y.H., et al., Progression of pre-hypertension, stage 1 and 2 hypertension (JNC 7): a population-based study in Keelung, Taiwan (Keelung Community-based Integrated Screening No. 9). J Hypertens, 2006. 24(5): p. 821-8.
136. Levey, A.S., et al., A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med, 1999. 130(6): p. 461-70.
137. Agarwal, I., et al., Quantitation of proteinuria by spot urine sampling. Indian J Clin Biochem, 2004. 19(2): p. 45-7.
138. Levey, A.S., et al., Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int, 2005. 67(6): p. 2089-100.
139. Levey, A.S., et al., National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med, 2003. 139(2): p. 137-47.
140. Reaven, G.M., Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 1988. 37(12): p. 1595-607.
141. Eckel, R.H., S.M. Grundy, and P.Z. Zimmet, The metabolic syndrome. Lancet, 2005. 365(9468): p. 1415-28.
142. Expert Panel on Detection, E. and A. Treatment of High Blood Cholesterol in, Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA, 2001. 285(19): p. 2486-97.
143. Arenillas, J.F., M.A. Moro, and A. Davalos, The metabolic syndrome and stroke: potential treatment approaches. Stroke, 2007. 38(7): p. 2196-203.
144. Kassi, E., et al., Metabolic syndrome: definitions and controversies. BMC Med, 2011. 9: p. 48.
145. Cameron, A.J., J.E. Shaw, and P.Z. Zimmet, The metabolic syndrome: prevalence in worldwide populations. Endocrinol Metab Clin North Am, 2004. 33(2): p. 351-75, table of contents.
146. Kaneko, K., et al., Obesity and the kidney. J Pediatr, 2010. 156(2): p. 342-3.
147. Axelsson, J., Obesity in chronic kidney disease: good or bad? Blood Purif, 2008. 26(1): p. 23-9.
148. Rea, D.J., et al., Glomerular volume and renal histology in obese and non-obese living kidney donors. Kidney Int, 2006. 70(9): p. 1636-41.
149. Kurella, M., J.C. Lo, and G.M. Chertow, Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J Am Soc Nephrol, 2005. 16(7): p. 2134-40.
150. Kanauchi, M., et al., Associations of chronic kidney disease with the metabolic syndrome in non-diabetic elderly. Nephrol Dial Transplant, 2006. 21(12): p. 3608-9.
151. Ding, C., et al., The associations of metabolic syndrome with incident hypertension, type 2 diabetes mellitus and chronic kidney disease: a cohort study. Endocrine, 2018. 60(2): p. 282-291.
152. Thomas, G., et al., Metabolic syndrome and kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol, 2011. 6(10): p. 2364-73.
153. Wang, S.J., et al., Parametric survival models for predicting the benefit of adjuvant chemoradiotherapy in gallbladder cancer. AMIA Annu Symp Proc, 2010. 2010: p. 847-51.
154. Zhang, Z. and J. Sun, Interval censoring. Stat Methods Med Res, 2010. 19(1): p. 53-70.
155. Cox, D.M., HD, The theory of stochastic processes. Chapman & Hall, 1965.
156. Eknoyan, G., et al., The burden of kidney disease: improving global outcomes. Kidney Int, 2004. 66(4): p. 1310-4.
157. Fox, C.S., et al., Predictors of new-onset kidney disease in a community-based population. JAMA, 2004. 291(7): p. 844-50.
158. Drey, N., et al., A population-based study of the incidence and outcomes of diagnosed chronic kidney disease. Am J Kidney Dis, 2003. 42(4): p. 677-84.
159. Tohidi, M., et al., Incidence of chronic kidney disease and its risk factors, results of over 10 year follow up in an Iranian cohort. PLoS One, 2012. 7(9): p. e45304.
160. Yamagata, K., et al., Risk factors for chronic kidney disease in a community-based population: a 10-year follow-up study. Kidney Int, 2007. 71(2): p. 159-66.
161. Johnson, E.S., et al., Predicting renal replacement therapy and mortality in CKD. Am J Kidney Dis, 2007. 50(4): p. 559-65.
162. Ku, E., K.L. Johansen, and C.E. McCulloch, Time-Centered Approach to Understanding Risk Factors for the Progression of CKD. Clin J Am Soc Nephrol, 2018. 13(5): p. 693-701.
163. Kelly, T.N., et al., The role of renin-angiotensin-aldosterone system genes in the progression of chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort (CRIC) study. Nephrol Dial Transplant, 2015. 30(10): p. 1711-8.
164. Siragy, H.M. and R.M. Carey, Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease. Am J Nephrol, 2010. 31(6): p. 541-50.
165. Carrero, J.J., et al., Sex and gender disparities in the epidemiology and outcomes of chronic kidney disease. Nat Rev Nephrol, 2018. 14(3): p. 151-164.
166. Ji, H., et al., Sex differences in renal injury and nitric oxide production in renal wrap hypertension. Am J Physiol Heart Circ Physiol, 2005. 288(1): p. H43-7.
167. Luksha, L., et al., Mechanisms of endothelial dysfunction in resistance arteries from patients with end-stage renal disease. PLoS One, 2012. 7(4): p. e36056.
168. Elliot, S.J., et al., Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis. Kidney Int, 2007. 72(4): p. 464-72.
169. Pscheidt, C., et al., Sex- and Time-Dependent Patterns in Risk Factors of End-Stage Renal Disease: A Large Austrian Cohort with up to 20 Years of Follow-Up. PLoS One, 2015. 10(8): p. e0135052.
170. Fioretto, P., et al., Renal protection in diabetes: role of glycemic control. J Am Soc Nephrol, 2006. 17(4 Suppl 2): p. S86-9.
171. Ruster, C. and G. Wolf, Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol, 2006. 17(11): p. 2985-91.
172. Harper, C.R. and T.A. Jacobson, Managing dyslipidemia in chronic kidney disease. J Am Coll Cardiol, 2008. 51(25): p. 2375-84.
173. Lucove, J., et al., Metabolic syndrome and the development of CKD in American Indians: the Strong Heart Study. Am J Kidney Dis, 2008. 51(1): p. 21-8.
174. Iseki, K., The okinawa screening program. J Am Soc Nephrol, 2003. 14(7 Suppl 2): p. S127-30.
175. Uc, A., et al., Chronic Pancreatitis in the 21st Century - Research Challenges and Opportunities: Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas, 2016. 45(10): p. 1365-1375.
176. Garg, A.X., et al., Estimating the prevalence of renal insufficiency in seniors requiring long-term care. Kidney Int, 2004. 65(2): p. 649-53.
177. Wu, H.Y., et al., Diagnostic performance of random urine samples using albumin concentration vs ratio of albumin to creatinine for microalbuminuria screening in patients with diabetes mellitus: a systematic review and meta-analysis. JAMA Intern Med, 2014. 174(7): p. 1108-15.
178. Siu, Y.P., et al., Use of allopurinol in slowing the progression of renal disease through its ability to lower serum uric acid level. Am J Kidney Dis, 2006. 47(1): p. 51-9.
179. Lanaspa, M.A., et al., Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. J Am Soc Nephrol, 2014. 25(11): p. 2526-38.
180. Iseki, K., et al., Significance of hyperuricemia on the early detection of renal failure in a cohort of screened subjects. Hypertens Res, 2001. 24(6): p. 691-7.
181. Weiner, D.E., et al., Uric acid and incident kidney disease in the community. J Am Soc Nephrol, 2008. 19(6): p. 1204-11.
182. Babitt, J.L. and H.Y. Lin, Mechanisms of anemia in CKD. J Am Soc Nephrol, 2012. 23(10): p. 1631-4.
183. Ricardo, A.C., et al., Healthy lifestyle and risk of kidney disease progression, atherosclerotic events, and death in CKD: findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am J Kidney Dis, 2015. 65(3): p. 412-24.
184. Hsu, T.W., et al., Renoprotective effect of renin-ang
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7375-
dc.description.abstract研究背景和目的
慢性腎臟病是一種具有世界性,和非傳染性特色的疾病,它的盛行率有越來越高的趨勢。而且,慢性腎臟病會導致較高的死亡率和失能率,所以照顧慢性腎臟病變成是世界政府的財政負擔和嚴重的健康照護問題。台灣在2014年時,有著有著全世界最高的透析盛行率和發生率。慢性腎臟病的高盛行率可能是主要的原因。然而,關於台灣慢性腎臟病相關的流行病學統計資料是有所不足的。因此,我門設計此研究來探討台灣慢性腎臟病的樣貌,慢性腎臟病進展的危險因子和轉移機率預測方程式。最後,我們還試著去估算慢性腎臟病在不同期別之間的年度轉移機率,也就是慢性腎臟病的自然病史。
材料與方法
本論文所研究的資料來自參與基隆闔家歡篩檢計劃的民眾。首先,描述台灣慢性腎臟病的盛行率與發生率。之後,利用加速失效模式(Accelerated failure time model)來評估影響慢性腎臟病狀況轉換的危險因子。影響腎絲球過濾率從≥60到59-30 mL/min/1.73m2 為起動因子,而影響eGFR 59-30到<30 mL/min/1.73m2是為促進因子。同時建立慢性腎臟病進展的預測方程式。最後,還利用五階段馬爾可夫模式來描述慢性腎臟病的自然病史(第一階段:腎絲球過濾率從≥60 mL/min/1.73m2,第二階段:腎絲球過濾率從59-30 mL/min/1.73m2,第三階段:腎絲球過濾率從<30 mL/min/1.73m2,第四階段:接受透析,第五階段:全因死亡)。

結果
第一部分:慢性腎臟病的盛行率與發生率
預估所有慢性腎臟病(1-5期)的盛行率是15.46%,而慢性腎臟病3-5期盛行率是9.06%。預估所有慢性腎臟病的發生率是27.21/每1000人年,而慢性腎臟病3-5期的發生率是16.89/每1000人年。在次族群分析中,老年人,男生,高血壓,糖尿病,代謝代謝症候群,和蛋白尿者,有較高的慢性腎臟病盛行率和發生率。此外,慢性腎臟病3-5期盛行率與發生率的比值顯示為5.37 (代表平均處於這個時期的時間為5.37年)。男生,年紀較輕,和代謝代謝症候群者,有較低的盛行率與發生率比值(與他們相對的族群比較)。
第二部分:慢性腎臟病的啟動因子和促進因子。
慢性腎臟病的獨立啟動因子為年紀大(風險比率: 1.08;95%信賴區間: 1.07-1.09),糖尿病(風險比率: 1.49;95%信賴區間: 1.23-1.81),代謝症候群分數 (風險比率: 1.13;95%信賴區間: 1.0-1.19),,蛋白尿 (風險比率: 1.16;95%信賴區間: 1.10-1.22),,高尿酸血症 (HR: 1.12;95%CI: 1.08-1.17),與較高的低密度膽固醇(風險比率: 1.15;95%CI: 1.02-1.30) ,和腎絲球過濾率 (風險比率: 0.94;95%CI: 0.93-0.95)。慢性腎臟病的獨促進因子為冠狀動脈疾病(風險比率: 1.57;95%CI: 1.04-2.36),代謝症候群分數(風險比率: 1.31;95%CI: 1.12-1.53),,蛋白尿(風險比率: 1.48;95%CI: 1.31-1.67,高尿酸血症(風險比率: 1.11 ; 95%CI: 1.02-1.22),,與貧血(風險比率: 0.84;95%CI: 0.75-0.95), 和腎絲球過濾率(風險比率: 0.89;95%CI: 0.87-0.91)。此外,我們針對慢性腎臟病的發生與慢性腎臟病的進展,發展出兩套預測方程式,可以估算出慢性腎臟病狀態轉移的絕對發生機率。
第三部分:慢性腎臟病的隨機過程馬可夫鍊模式
我們成功地估計出慢性腎臟病的自然病史。每年腎絲球過濾率從≥60 到 59–30 mL/min/1.73m2的進展機率是0.0169。 從eGFR 59–30到<30 mL/min/1.73m2的進展機率是0.0259。從eGFR <30 mL/min/1.73m2 到需要接受透析的進展機率是0.0988。男性相對約女性,有較有較高的慢性腎臟病進展機率和死亡率。整體而言,平均停留在腎絲球過濾率從59–30 mL/min/1.73m2(慢性腎臟病第三期)的時間是5.84年,平均停留在腎絲球過濾率從<30 mL/min/1.73m2(慢性腎臟病第4–5期)的時間是2.99年。不同性別,糖尿病,和蛋白尿會表現出不同的平均停留時間。
結論
台灣有高的慢性腎臟病盛行率與發生率。我們的研究找出了慢性腎臟病進展的相關獨立因子,同時並建立慢性腎臟病進展的預測方程式。這些結果可以讓我們對慢性腎臟病的進展能有更加的瞭解,有助於在慢性腎臟病的照護中,針對危險族群發展出特異化醫療。而發展出的危險預估方程式也可以輕易地被整合入報告系統,可以早期警示醫師,將高危險群病患轉介至腎臟科,接受多學科的全人照護。此外,慢性腎臟病的平均停留時間可以被當成慢性腎臟病介入政策的評量指標。最後,我們還利用隨機馬可夫模式,發展出慢性腎臟病的進展病史(近似自然病史),這讓我們對慢性腎臟病的進展有更近一步的了解。也有利於未來慢性腎臟病介入計畫的成本效益的分析。
zh_TW
dc.description.abstractBackground and objectives
Chronic kidney disease (CKD) is a major noncommunicable disease and has become a global public health problem with an increasing prevalence. Caring for patients with CKD has been shown to present financial and medical burdens owing to high mortality and morbidity. In 2014, Taiwan has the highest incidence and prevalence of end-stage renal disease, requiring renal replacement therapy. CKD may contribute to this burden. However, the current data on the epidemiologic features of CKD in Taiwan are incomplete. Therefore, we designed this study to elucidate the epidemiologic pictures of CKD, the risk factors for CKD progression and the annual transition rate between CKD stages.
Materials and Methods
Subjects from Keelung Community-based Integrated Screening (KCIS) Program were enrolled since 1999 to 2009. We reported prevalence and incidence rate of CKD stages and tried to estimate the risk factors for CKD state transition using accelerated failure time model. The initiator and progressor were defined as the factor affecting the eGFR from eGFR ≥60 to 59–30 and from eGFR 59–30 to <30 mL/min/1 respectively. Moreover, a five-state Markov process was used to describe the Clinical history of CKD stages (state 1: eGFR ≥60 mL/min/1.73 m2, state 2: eGFR 59–30 mL/min/1.73 m2, state 3: eGFR <30 mL/min/1.73 m2, state 4; Receiving dialysis, and state 5: all-cause death).

Results
Part I: The prevalence and incidence of CKD stages
The participants’ mean age was 47.7 ± 15.4 years. The estimated prevalence was 15.46% for total CKD and 9.06% for CKD stages 3–5. The incidence was 27.21/1000 person-years (PY) for total CKD and 16.89/1000-PY for CKD stages 3–5. Older patients, males, and those patients with comorbidities of diabetes mellitus (DM), hypertension, and metabolic syndrome (MetS) exhibited higher prevalence and incidence rates than their opposing counterparts. Moreover, the average dwelling time (ADT) of CKD stages 3–5 was 5.37 years (95% confidence interval (CI): 5.17–5.57). Males and those with comorbidities of DM or MetS had shorter ADTs in CKD stages 3–5 than their opposing counterparts.
Part II: The independent initiators and progressors of CKD
The independent initiators of CKD were old age (HR, 1.08; 95% CI, 1.07–1.09), diabetes (HR, 1.49; 95%CI, 1.23–1.81), metabolic syndrome scores (HR, 1.13; 95%CI, 1.08–1.19), proteinuria (HR, 1.16; 95%CI, 1.10–1.22), hyperuricemia (HR, 1.12; 95%CI, 1.08–1.17), higher low-density lipoprotein level (HR, 1.15; 95%CI, 1.02–1.30), and low eGFR level (HR, 0.94; 95%CI, 0.93–0.95). The independent progressors of CKD were coronary artery disease (HR, 1.57; 95%CI, 1.04–2.36), metabolic syndrome scores (HR, 1.31; 95%CI, 1.12–1.53), proteinuria (HR, 1.48; 95%CI, 1.31–1.67), hyperuricemia (HR, 1.11; 95%CI, 1.02–1.22), low hemoglobin level (HR, 0.84; 95%CI, 0.75–0.95), and low eGFR level (HR, 0.89; 95%CI, 0.87–0.91). Furthermore, two risk prediction functions were also built for the absolute risk prediction of CKD state transition.
Part III: The stochastic Markov model of CKD
The annual progression rate was 0.0169 (95% CI, 0.0164–0.0173) from eGFR ≥60 to 59-30 mL/min/1.73m2, was 0.0259 (95%CI, 0.0240–0.0278) form eGFR 59-30 to <30 mL/min/1.73m2, was 0.0988 (95% CI, 0.0902–0.1075) from eGFR <30 mL/min/1.73m2 to dialysis. The man had higher progression rate for the movement from eGFR ≥60 to eGFR 59–30 mL/min/1.73m2 than the woman. The ADT of eGFR 59–30 mL/min/1.73m2 (CKD stage 3)was 5.48 years (95%CI, 5.62–6.07) and was 2.99 years (95%CI, 2.77–3.25) for eGFR <30 mL/min/1.73m2 (CKD stages 4–5). The ADT varied by age, gender and comorbidities.
Conclusion
The prevalence and incidence of CKD in Taiwan are high. We ascertained the independent initiators and progressors of CKD in our study. The results are useful to understand the association between factors and the state transition of CKD, which can be beneficial for developing specialized CKD care programs for the risky population. Also, these two prediction functions can be easily integrated into the reporting system to early alert the physicians to transfer the risky patients to receive a nephrologist-based multidisciplinary care. Moreover, the ADT in CKD can be used as an indicator for evaluating the CKD policy. Finally, a stochastic mode of CKD was successfully established to elucidate the approximated natural history of CKD in Taiwan, which this can offer an updated understanding of the CKD progression and also can be applied to the cost-effectiveness analysis of CKD intervention.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:42:26Z (GMT). No. of bitstreams: 1
ntu-108-D02849026-1.pdf: 3872967 bytes, checksum: 0f31bbc6203f3e308b9ed5804b8fb613 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 I
Abstract IV
CONTENTS VIII
LIST OF FIGURES XI
LIST OF TABLES XII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Study Aims 2
Chapter 2 Literature Review 5
2.1 The epidemiologic features of CKD in Taiwan 5
2.1.1 The prevalence of CKD in different centuries 7
2.2 The risk factors of CKD initiation or progression 10
2.3 CKD transition model 18
Chapter 3 Data Source and Methods 20
3.1 The data source 20
3.2 Data collection 25
3.3 Glossary 27
3.4 The definition of chronic kidney disease stages 28
3.5 Metabolic syndrome 29
3.6 Prevalence and incidence of CKD 30
3.7 Multi-state model of chronic kidney disease 30
3.7.1 Accelerated failure time mode with interval censoring 31
3.7.2 A stochastic model for the dynamic changes of CKD 36
3.8 Average dwelling time (ADT) 42
3.8.1 Prevalence and incidence (P/I) ratio 42
3.8.2 Markov process using stochastic process 47
3.9 Statistical software used in our study 47
Chapter 4 Results 48
4.1 Part 1 Epidemiologic features of CKD in Taiwan 48
4.1.1 Clinical characteristics of CKD stages 3–5 49
4.1.2 Prevalence of CKD stages 3-5 in subgroups 51
4.1.3 Incidence of CKD 51
4.1.4 ADT in CKD stages 3-5 55
4.2 Part 2 The initiators and progressor of CKD 58
4.2.1 Factors associated with the progression of state 1 in the CKD transition model 60
4.2.2 Factors associated with the progression of state 2 in the CKD transition model 62
4.2.3 Factors influencing state transition of CKD 64
4.2.4 Risk prediction functions of CKD state transition 67
4.2.5 Model discrimination and Validation. 68
4.3 Part 3 Stochastic Markov model of CKD 69
4.3.1 Prevalence of CKD in the subgroups 69
4.3.2 Annual transition rate in a multi-state model 72
4.3.3 Kinetic epidemiological curves of CKD stages 78
Chapter 5 Discussion and Future Work 84
5.1 part I Epidemiologic study 84
5.1.1 The main finding of part I 84
5.1.2 Discussion of part I 84
5.1.3 the limitation of part I 88
5.2 part II Risk determents of CKD transition 90
5.2.1 main finding of part II 90
5.2.2 Discussion of part II 90
5.2.3 The limitation of part II 92
5.2.4 The conclusion of part II 93
5.3 Part III stochastic Markov model of CKD 94
5.3.1 Main finding of part III 94
5.3.2 Discussion of part III 94
5.3.3 The limitation of part III 97
5.3.4 The conclusion of part III 97
5.4 Further work 99
5.4.1 Prediction model for dialysis using Bayesian clinical reasoning 99
5.4.2 Semi-Markov application to CKD transition 103
Reference 108
Appendix 119
dc.language.isoen
dc.subjectnatural historyen
dc.subjectchronic kidney diseaseen
dc.subjectprevalenceen
dc.subjectincidenceen
dc.subjectsurvival analysisen
dc.subjectaverage dwelling timeen
dc.subjectmulti-state Markov modelen
dc.subjectstochastic processen
dc.title慢性腎臟病進展的定量化流行病學模型zh_TW
dc.titleQuantitative Epidemiological Models for Chronic Kidney Disease Progressionen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.oralexamcommittee鄭宗記,陳保中,呂至剛,徐邦治,陳祈玲
dc.subject.keyword慢性腎臟病,盛行率,發生率,存活分析,平均存續時間,多階段馬可夫模式,隨機過程,自然病史,zh_TW
dc.subject.keywordchronic kidney disease,prevalence,incidence,survival analysis,average dwelling time,multi-state Markov model,stochastic process,natural history,en
dc.relation.page121
dc.identifier.doi10.6342/NTU201900529
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-02-13
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf3.78 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved