請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73751完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏溪成 | |
| dc.contributor.author | Jun-Yan Chen | en |
| dc.contributor.author | 陳俊諺 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:09:24Z | - |
| dc.date.available | 2029-08-15 | |
| dc.date.copyright | 2019-08-19 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-16 | |
| dc.identifier.citation | [1] K. M. Abraham, Prospects and Limits of Energy Storage in Batteries. J Phys Chem Lett, 2015. 6(5): p. 830-844.
[2] A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon and W. van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005. 4: p. 366-377. [3] D. W. Murphy, F. J. Di Salvo, J. N. Carides and J. V. Waszczak, Topochemical reactions of rutile related structures with lithium. Materials Research Bulletin, 1978. 13(12): p. 1395-1402. [4] Z. Yang, J. Zhang, M. C. W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon and J. Liu, Electrochemical Energy Storage for Green Grid. Chemical Reviews, 2011. 111(5): p. 3577-3613. [5] J. Li and J. R. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si. Journal of the Electrochemical Society, 2007. 154(3): p. A156-A161. [6] W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 2011. 196(1): p. 13-24. [7] A. Arya and A. L. Sharma, Polymer electrolytes for lithium ion batteries: a critical study. Ionics, 2017. 23(3): p. 497-540. [8] Z.-L. Xu, X. Liu, Y. Luo, L. Zhou and J.-K. Kim, Nanosilicon anodes for high performance rechargeable batteries. Progress in Materials Science, 2017. 90: p. 1-44. [9] J. Lu, Z. Chen, F. Pan, Y. Cui and K. Amine, High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochemical Energy Reviews, 2018. 1(1): p. 35-53. [10] C. J. Wen and R. A. Huggins, Chemical diffusion in intermediate phases in the lithium-silicon system. Journal of Solid State Chemistry, 1981. 37(3): p. 271-278. [11] M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction. Electrochemical and Solid-State Letters, 2004. 7(5): p. A93-A96. [12] X. H. Liu and J. Y. Huang, In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy & Environmental Science, 2011. 4(10): p. 3844-3860. [13] T. Hatchard and J. R. Dahn, In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon. Journal of The Electrochemical Society, 2004. 151(6): p. A838-A842. [14] C.-M. Park, J.-H. Kim, H. Kim and H.-J. Sohn, Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews, 2010. 39(8): p. 3115-3141. [15] M. T. McDowell, S. W. Lee, J. T. Harris, B. A. Korgel, C. Wang, W. D. Nix and Y. Cui, In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett, 2013. 13(2): p. 758-764. [16] S. Chae, M. Ko, K. Kim, K. Ahn and J. Cho, Confronting Issues of the Practical Implementation of Si Anode in High-Energy Lithium-Ion Batteries. Joule, 2017. 1(1): p. 47-60. [17] Y. Liu, Z. Y. Wen, X. Y. Wang, A. Hirano, N. Imanishi and Y. Takeda, Electrochemical behaviors of Si/C composite synthesized from F-containing precursors. Journal of Power Sources, 2009. 189(1): p. 733-737. [18] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. Wang and Y. Cui, A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Letters, 2012. 12(6): p. 3315-3321. [19] Z. Sun, S. Tao, X. Song, P. Zhang and L. Gao, A Silicon/double-shelled carbon yolk-like nanostructure as high-performance anode materials for lithium-ion battery. Journal of the Electrochemical Society, 2015. 162(8): p. A1530-A1536. [20] Q. Li, L. Yin and X. Gao, Reduction chemical reaction synthesized scalable 3D porous silicon/carbon hybrid architectures as anode materials for lithium ion batteries with enhanced electrochemical performance. RSC Advances, 2015. 5(45): p. 35598-35607. [21] J.-H. Lee, W.-J. Kim, J.-Y. Kim, S.-H. Lim and S.-M. Lee, Spherical silicon/graphite/carbon composites as anode material for lithium-ion batteries. Journal of Power Sources, 2008. 176(1): p. 353-358. [22] T. H. Hwang, Y. M. Lee, B.-S. Kong, J.-S. Seo and J. W. Choi, Electrospun Core–Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes. Nano Letters, 2012. 12(2): p. 802-807. [23] J. K. Lee, K. B. Smith, C. M. Hayner and H. H. Kung, Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chemical Communications, 2010. 46(12): p. 2025-2027. [24] S. Ahn, Y. Kim, K. J. Kim, T. H. Kim, H. Lee and M. H. Kim, Development of high capacity, high rate lithium ion batteries utilizing metal fiber conductive additives. Journal of Power Sources, 1999. 81-82: p. 896-901. [25] R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik and J. Jamnik, The role of carbon black distribution in cathodes for Li ion batteries. Journal of Power Sources, 2003. 119-121: p. 770-773. [26] A. Madzvamuse, L. Hamenu, L. Mohammed and J. M. Ko, Effect of Morphologically Different Conductive Agents on the Performance of Silicon Anode in Lithium-Ion Batteries. ChemistrySelect, 2018. 3(38): p. 10805-10810. [27] S. Rajendran, P. Sivakumar and R. S. Babu, Studies on the salt concentration of a PVdF–PVC based polymer blend electrolyte. Journal of Power Sources, 2007. 164(2): p. 815-821. [28] D. E. Fenton, J. M. Parker and P. V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer, 1973. 14(11): p. 589. [29] C. A. Angell, C. Liu and E. Sanchez, Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature, 1993. 362(6416): p. 137-139. [30] Z. Xue, D. He and X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A, 2015. 3(38): p. 19218-19253. [31] X. Qian, N. Gu, Z. Cheng, X. Yang, E. Wang and S. Dong, Plasticizer effect on the ionic conductivity of PEO-based polymer electrolyte. Materials Chemistry and Physics, 2002. 74(1): p. 98-103. [32] L. Fan, Z. Dang, C.-W. Nan and M. Li, Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P(VDF-HFP) blends. Electrochimica Acta, 2002. 48(2): p. 205-209. [33] Y. V. Baskakova, O. g. V. Yarmolenko and O. N. Efimov, Polymer gel electrolytes for lithium batteries. Russian Chemical Reviews, 2012. 81(4): p. 367-380. [34] J. Y. Song, Y. Y. Wang and C. C. Wan, Conductivity Study of Porous Plasticized Polymer Electrolytes Based on Poly(vinylidene fluoride) A Comparison with Polypropylene Separators. Journal of The Electrochemical Society, 2000. 147(9): p. 3219-3225. [35] J. E. Weston and B. C. H. Steele, Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics, 1982. 7(1): p. 75-79. [36] F. Croce, G. B. Appetecchi, L. Persi and B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature, 1998. 394(6692): p. 456-458. [37] R. Murugan, V. Thangadurai and W. Weppner, Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angewandte Chemie International Edition, 2007. 46(41): p. 7778-7781. [38] J. Awaka, N. Kijima, H. Hayakawa and J. Akimoto, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 2009. 182(8): p. 2046-2052. [39] J.-Y. Kim, H. Hwang, S. Oh, Y.-S. Kim, U.-J. Kim and J. W. Choi, Investigation of structural modification and thermal characteristics of lignin after heat treatment. International Journal of Biological Macromolecules, 2014. 66: p. 57-65. [40] T. Chen, Q. Zhang, J. Pan, J. Xu, Y. Liu, M. Al-Shroofy and Y.-T. Cheng, Low-Temperature Treated Lignin as Both Binder and Conductive Additive for Silicon Nanoparticle Composite Electrodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016. 8(47): p. 32341-32348. [41] G. Brauer, W. Anwand, F. Eichhorn, W. Skorupa, C. Hofer, C. Teichert, J. Kuriplach, J. Cizek, I. Prochazka, P. G. Coleman, T. Nozawa and A. Kohyama, Characterization of a SiC/SiC composite by X-ray diffraction, atomic force microscopy and positron spectroscopies. Applied Surface Science, 2006. 252(9): p. 3342-3351. [42] M. R. Johan, O. H. Shy, S. Ibrahim, S. M. Mohd Yassin and T. Y. Hui, Effects of Al2O3 nanofiller and EC plasticizer on the ionic conductivity enhancement of solid PEO–LiCF3SO3 solid polymer electrolyte. Solid State Ionics, 2011. 196(1): p. 41-47. [43] L. Hu, Z. Tang and Z. Zhang, New composite polymer electrolyte comprising mesoporous lithium aluminate nanosheets and PEO/LiClO4. Journal of Power Sources, 2007. 166(1): p. 226-232. [44] W. Xia, B. Xu, H. Duan, Y. Guo, H. Kang, H. Li and H. Liu, Ionic Conductivity and Air Stability of Al-Doped Li7La3Zr2O12 Sintered in Alumina and Pt Crucibles. ACS Applied Materials & Interfaces, 2016. 8(8): p. 5335-5342. [45] K. Zhu, Y. Liu and J. Liu, A fast charging/discharging all-solid-state lithium ion battery based on PEO-MIL-53(Al)-LiTFSI thin film electrolyte. RSC Advances, 2014. 4(80): p. 42278-42284. [46] M. H. Brooker and J. B. Bates, Raman and Infrared Spectral Studies of Anhydrous Li2CO3 and Na2CO3. The Journal of Chemical Physics, 1971. 54(11): p. 4788-4796. [47] L. Cheng, E. J. Crumlin, W. Chen, R. Qiao, H. Hou, S. Franz Lux, V. Zorba, R. Russo, R. Kostecki, Z. Liu, K. Persson, W. Yang, J. Cabana, T. Richardson, G. Chen and M. Doeff, The origin of high electrolyte–electrode interfacial resistances in lithium cells containing garnet type solid electrolytes. Physical Chemistry Chemical Physics, 2014. 16(34): p. 18294-18300. [48] J. E. Ni, E. D. Case, J. S. Sakamoto, E. Rangasamy and J. B. Wolfenstine, Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. Journal of Materials Science, 2012. 47(23): p. 7978-7985. [49] S. Yu, R. D. Schmidt, R. Garcia-Mendez, E. Herbert, N. J. Dudney, J. B. Wolfenstine, J. Sakamoto and D. J. Siegel, Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO). Chemistry of Materials, 2016. 28(1): p. 197-206. [50] M. Keller, G. B. Appetecchi, G.-T. Kim, V. Sharova, M. Schneider, J. Schuhmacher, A. Roters and S. Passerini, Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI. Journal of Power Sources, 2017. 353: p. 287-297. [51] L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan and J. B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy, 2018. 46: p. 176-184. [52] C.-Z. Zhao, X.-Q. Zhang, X.-B. Cheng, R. Zhang, R. Xu, P.-Y. Chen, H.-J. Peng, J.-Q. Huang and Q. Zhang, An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proceedings of the National Academy of Sciences, 2017. 114(42): p. 11069. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73751 | - |
| dc.description.abstract | 本研究分為兩大部分,第一部分是將導電劑導入碳包覆程序以製備鋰離子電池之碳矽負極。第二部分為複合高分子電解質之研究。
有別於以往於配製漿料時額外添加導電劑,本研究將導電劑導入碳前驅物與回收矽混合並共同參與無氧燒結進行碳包覆程序,利用燒結過程使導電劑與活性材料之間有更緊密的接觸,進而建立良好的電子傳遞網路,其中木質素:回收矽:導電石墨KS-6以重量比1:1:2.91所製成的複合材料其首圈嵌入、嵌出電容量可達1055.5 mAh/gC-Si+KS-6、879.3 mAh/gC-Si+KS-6,庫倫效率為0.833,經過101圈充放電循環後,電容量保留率為62.6%,平均電容量衰退率為0.370%/cycle,於首圈便能展現其高電容量,而木質素:回收矽:導電碳黑Super-P以重量比1:1:2.91所製成的複合材料,其首圈嵌入、嵌出電容量為1042.9 mAh/gC-Si+Super-P、767.3 mAh/gC-Si+Super-P,庫倫效率為0.737,經過101圈充放電後,其電容量保留率為65.1%,平均電容量衰退率為0345%/cycle,可見透過導入導電劑參與燒結過程,能夠建立有效的導電網路利於電子轉移並減緩電容量衰退。 本論文的第二部分為複合高分子電解質之研究。首先比較不同鋰鹽濃度製備的聚氧乙烯(PEO)高分子電解質,隨著鋰鹽濃度的上升,其高分子結晶性下降,結晶區域減少,其中[EO](ethylene oxide)/[Li+] = 15之高分子電解質於60°C下,離子導電度可達2.65×10-4 S/cm,隨後以此比例混合成固態電解質,再摻雜不同重量比之陶瓷氧化物Li7La3Zr2O12。透過差式掃描分析(DSC)顯示隨著陶瓷氧化物的添加量增加,其熔點與玻璃轉化溫度呈先降後升的趨勢,並且於50 wt%添加量時達到最低點,顯示摻雜陶瓷氧化物能夠有效抑制高分子結晶,然而陶瓷氧化物表面容易與空氣中的微量水氣以及二氧化碳反應,透過拉曼分析顯示為Li2CO3之鈍化層,導致鋰離子傳遞受阻,因此隨著陶瓷氧化物的摻雜量上升,造成離子導電度下降,然而離子導電度並非影響其應用的唯一因素,摻雜陶瓷氧化物能有效的改善鋰金屬與電解質界面阻抗之問題,並且隨著添加量的提升,電解質之氧化裂解電位由4.42V上升至6.0V,顯示添加陶瓷氧化物於高分子中能夠有效改善其電化學穩定性。 | zh_TW |
| dc.description.abstract | This thesis contains two parts which are the carbon-silicon composite negative electrode for lithium-ion battery employing the conductive agent into calcination process and composite polymer-ceramic solid electrolytes.
Besides adding conductive agents in paste formulation stage of negative electrode materials, the conductive agents employed together with carbon precursor and recycled silicon in calcination for the carbon-coated-silicon process. In this study, conductive agents and active materials have a closer contact in calcination process to build an efficient conductive network. It shows the lithiation and delithiation capacities of the first cycle 1055.5 mAh/gC-Si+KS-6 , 879.3 mAh/gC-Si+KS-6 with the coulomobic efficiency of 83.3% for the composition of lignin:recycled silicon:conductive graphite in mass ratio 1:1:2.91. The composite electrode exhibits capacity retention of 62.6% and average capacity decay rate of 0.370%/cycle over 101cycles. The electrode shows the lithiation and delithiation capacities of the first cycle 1042.9 mAh/gC-Si+Super-P , 767.3 mAh/gC-Si+Super-P with the coulomobic efficiency of 73.7% for the composition of ligin:recycled silicon:conductive carbon black in mass ratio of 1:1:2.91. The composite electrode of carbon-coated silicon with carbon black exhibits capacity retention of 65.1% and average capacity decay rate of 0.345%/cycle over 101cycles. It can be found that introducing the conductive agents in calcination stage helps to build a conductive network for charge transfer and reduce the rate of capacity decay. In the study of composite polymer-ceramic solid electrolyte, we compared the polymer electrolyte in various lithium salt concentration. With the increase of lithium salt concentration, crystallinities of the polymer electrolyte decreased. The ionic conductivity of the polymer electrolyte with [EO](ethylene oxide)/[Li+] = 15 is 2.65×10-4 S/cm at 60C. Then different amount of LLZO was added based on this ratio of polymer electrolyte. It can be found from DSC analysis that adding ceramic oxide inhibits the polymer crystallization effectively. However the surface of ceramic oxide react with the moisture and carbon dioxide to form Li2CO3 easily. This insulating layer can be seen by Raman spectroscopy. So the ionic conductivity decreases as the addition of the ceramic oxide increases. The addition of the ceramic oxide improves the interfacial resistance between lithium metal and polymer electrolyte. The oxidative decomposition voltage increases from 4.42V to 6.0V with increasing the addition of ceramic oxide. So the addition of ceramic oxide into polymer electrolyte can improve the electrochemical stability effectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:09:24Z (GMT). No. of bitstreams: 1 ntu-108-R06524088-1.pdf: 7152455 bytes, checksum: ab4fb4ae476b6bd8c2a46ac1310a17a5 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 目錄
中文摘要 i 英文摘要 iii 圖目錄 vii 表目錄 xii 第1章 緒論 1 1.1. 前言 1 1.2. 鋰離子電池簡介 2 1.3. 研究動機與目的 5 1.3.1. 負極材料研究動機 5 1.3.2. 複合高分子電解質研究動機 6 第2章 文獻回顧 7 2.1. 負極材料 7 2.1.1. 矽負極材料 8 2.1.2. 碳矽負極材料 13 2.1.3. 導電劑 17 2.2. 高分子電解質 19 2.2.1. 固態高分子電解質 20 2.2.2. 膠態高分子電解質 22 2.2.3. 複合高分子電解質 24 第3章 碳矽負極材料 25 3.1. 實驗內容 25 3.1.1. 實驗藥品與材料 25 3.1.2. 實驗儀器與設備 26 3.1.3. 電極與材料之製備 27 3.1.4. 材料分析 33 3.1.5. 電池電化學特性分析 35 3.2. 結果與討論 37 3.2.1. 碳矽複材前驅物之性質分析 37 3.2.2. 碳矽複合材料 50 第4章 複合高分子電解質 76 4.1. 實驗內容 76 4.1.1. 實驗藥品與材料 76 4.1.2. 實驗儀器與設備 77 4.1.3. 高分子電解質之製備 78 4.1.4. 材料分析 80 4.1.5. 電化學特性分析 82 4.2. 結果討論 84 4.2.1. 鋰鹽濃度對於高分子電解質之影響 84 4.2.2. 複合高分子電解質 89 第5章 結論 102 參考文獻 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 木質素 | zh_TW |
| dc.subject | 複合高分子電解質 | zh_TW |
| dc.subject | 碳/矽負極 | zh_TW |
| dc.subject | 鋰電池導電劑 | zh_TW |
| dc.subject | conductive agent | en |
| dc.subject | carbon/silicon negative electrode | en |
| dc.subject | lignin | en |
| dc.subject | composite polymer-ceramic solid electrolyte | en |
| dc.title | 導電劑對碳-矽負極表現影響與固態複合電解質對鋰離子電池之研究 | zh_TW |
| dc.title | Conductive Agent Effects on Performances of Carbon-Silicon Negative Electrodes and Characteristic Studies of Ceramic Polymer Solid Electrolyte for Lithium Ion Batteries | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周偉龍(wlchou0388@gmail.com),吳永富 | |
| dc.subject.keyword | 鋰電池導電劑,碳/矽負極,木質素,複合高分子電解質, | zh_TW |
| dc.subject.keyword | conductive agent,carbon/silicon negative electrode,lignin,composite polymer-ceramic solid electrolyte, | en |
| dc.relation.page | 110 | |
| dc.identifier.doi | 10.6342/NTU201903215 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
