Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73735
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江昭皚
dc.contributor.authorHsiang-Yu Huangen
dc.contributor.author黃祥煜zh_TW
dc.date.accessioned2021-06-17T08:09:02Z-
dc.date.available2024-08-19
dc.date.copyright2019-08-19
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citation台灣電力公司。2006。台灣電力系統頻率運轉規範之研擬。
台灣電力公司。2017。再生能源發電概況。網址:https://www.taipower.com.tw/tc/page.aspx?mid=204。上網日期:20019-08-06。
台灣電力公司。2018。台灣電力股份有限公司輸電系統規劃準則。網址:https://www.taipower.com.tw/upload/146/2017111318193843329.pdf。上網日期:20019-08-06。
Bae, K. Y., Jang, H. S., & Sung, D. K. 2016. Hourly solar irradiance prediction based on support vector machine and its error analysis. IEEE Transactions on Power Systems 32(2): 935-945.
Chicco, G., Schlabbach, J., & Spertino, F. 2009. Experimental assessment of the waveform distortion in grid-connected photovoltaic installations. Solar Energy 83(7): 1026-1039.
Forsyth, P., Maguire, T., & Kuffel, R. 2004. Real time digital simulation for control and protection system testing. In “2004 IEEE 35th Annual Power Electronics Specialists Conference”, 329-335. Aachen, Germany: IEEE.
Hochreiter, S., & Schmidhuber, J. 1997. Long short-term memory. Neural computation 9(8): 1735-1780.
Iowa State University. 2019. Radiation and Climate. Applied Agricultural Meteorology (AGRONOMY 541). Department of Agronomy, Iowa State University. Available at: http://agron-www.agron.iastate.edu/courses/Agron541/classes/541/lesson03b/3b.3.html. Accessed 06 August 2019.
Jang, H. S., Bae, K. Y., Park, H. S., & Sung, D. K. 2016. Solar power prediction based on satellite images and support vector machine. IEEE Transactions on Sustainable Energy 7(3): 1255-1263.
KoohiKamali, S., Yusof, S., Selvaraj, J., & Esa, M. N. B. 2010. Impacts of grid-connected PV system on the steady-state operation of a Malaysian grid. In “2010 IEEE International Conference on Power and Energy”, 858-863. Kuala Lumpur, Malaysia: IEEE.
Kuffel, R., Giesbrecht, J., Maguire, T., Wierckx, R. P., & McLaren, P. 1995. RTDS-a fully digital power system simulator operating in real time. In “Proceedings of EMPD '95: 1995 International Conference on Energy Management and Power Delivery”, 498-503). Westin Stamford and Westin Plaza, Singapore: IEEE.
Kumary, S. S., Oo, V. A. A. M. T., Shafiullah, G. M., & Stojcevski, A. 2014. Modelling and power quality analysis of a grid-connected solar PV system. In “2014 Australasian Universities Power Engineering Conference (AUPEC)“, 1-6. Perth, Australia: IEEE
Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A., Taylor, C & Van Cutsem, T. 2004. Definition and classification of power system stability. IEEE transactions on Power Systems 19(2): 1387-1401.
Mihalakakou, G., Santamouris, M., & Asimakopoulos, D. N. 2000. The total solar radiation time series simulation in Athens, using neural networks. Theoretical and Applied Climatology 66(3-4): 185-197.
Paatero, J. V., & Lund, P. D. 2007. Effects of large-scale photovoltaic power integration on electricity distribution networks. Renewable Energy 32(2): 216-234.
Park, M., & Yu, I. K. 2004. A novel real-time simulation technique of photovoltaic generation systems using RTDS. IEEE Transactions on Energy Conversion 19(1): 164-169.
Pfister, G., McKenzie, R. L., Liley, J. B., Thomas, A., Forgan, B. W., & Long, C. N. 2003. Cloud coverage based on all-sky imaging and its impact on surface solar irradiance. Journal of Applied Meteorology 42(10): 1421-1434.
Sharma, V., Yang, D., Walsh, W., & Reindl, T. 2016. Short term solar irradiance forecasting using a mixed wavelet neural network. Renewable Energy 90: 481-492.
Tamimi, B., Cañizares, C., & Bhattacharya, K. 2013. System stability impact of large-scale and distributed solar photovoltaic generation: The case of Ontario, Canada. IEEE transactions on sustainable energy 4(3): 680-688.
Urbanetz, J., Braun, P., & Rüther, R. 2012. Power quality analysis of grid-connected solar photovoltaic generators in Brazil. Energy Conversion and management 64: 8-14.
Wan, C., Zhao, J., Song, Y., Xu, Z., Lin, J., & Hu, Z. 2015. Photovoltaic and solar power forecasting for smart grid energy management. CSEE Journal of Power and Energy Systems 1(4): 38-46.
Wang, F., Mi, Z., Su, S., & Zhao, H. 2012. Short-term solar irradiance forecasting model based on artificial neural network using statistical feature parameters. Energies 5(5): 1355-1370.
IEA. 2017. World Energy Outlook 2017: International Energy Agency. Available at: https://www.iea.org/weo2017/. Accessed 06 August 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73735-
dc.description.abstract本研究將對於臺灣中部地區興建併網型太陽光電系統,對於周遭電力系統進行衝擊預測。基於深度學習技術,提出太陽能日照度的預測方法,利用歷史數據建立機器學習預測模型,在本研究中,透過實際太陽光電系統長期收集太陽輻射量與相關環境資料,搭配中央氣象局所提供的衛星雲圖萃取雲量特徵作為訓練資料,使用兩種機器學習方法中常用的遞迴神經網路-長短期記憶網路(Long short-term memory, LSTM)與其變形版本(Gated recurrent unit, GRU),分別進行短期(未來10分鐘)與中期(未來30分鐘)的太陽輻射量預測。此外,本研究亦使用即時數位模擬系統(Real Time Digital Simulator, RTDS)建立併網型太陽光電系統模型,以長期太陽光電系統資料與預測結果輸入至模型中產生系統衝擊資料。結果顯示,在太陽輻射量預測階段,其中LSTM模型的十分鐘短期預測誤差(Root mean square error, RMSE)為19 W/m2 ,三十分鐘短期預測RMSE為32 W/m2,而GRU模型的十分鐘短期預測RMSE為19 W/m2,三十分鐘短期則為31 W/m2。基於預測結果的一定準度上,藉由預測太陽能輻射量透過電力電子即時數位模擬器進行更為精確的電力系統衝擊分析,此結果有助於提供臺灣電力公司人員調整調度電力決策,提高電網穩健性。zh_TW
dc.description.abstractThis study establishes a grid-connected photovoltaic (PV) system with a real time digital simulator (RTDS) model based on a real-world power grid in central Taiwan to simulate and analyze the impact of the PV system on the whole power system. Based on deep learning technology, a solar irradiance prediction method is proposed, and the historical data are used to establish the deep learning prediction model. Long-term solar irradiance and related environmental information are collected by the PV system, and additional cloud features are extracted from satellite images to improve the prediction accuracy. With the two common recursive neural network models, the long short-term memory (LSTM) and its modified version (GRU), the irradiance is predicted in a short-term manner (the next 10 minutes) and a medium-term manner (the next 30 minutes). The 10-minute short-term prediction error (RMSE) for the LSTM model is 19 W / m2, while the 30-minute short-term prediction RMSE is 32 W / m2. In addition, the 10-minute short-term prediction RMSE for the GRU model is 19 W / m2, while the 30-minute short-term prediction RMSE is 31 W / m2. Based on these prediction accuracy results, a real-time digital simulator is used to examine the impact of the PV system on the whole power system. The simulation results help Taiwan Power Company to make proper power dispatch decisions, so that the grid stability can be largely improved.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:09:02Z (GMT). No. of bitstreams: 1
ntu-108-R06631032-1.pdf: 6673471 bytes, checksum: 96290aa868916d98e272b7e4214ab7be (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 iii
摘要 v
Abstract vii
Table of Contents ix
List of Figures xiii
List of Tables xvii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and propose 3
1.3 Thesis organization 5
Chapter 2 Literature Review 7
2.1 Power system 7
2.1.1 Power system stability 7
2.1.2 Power system simulator 10
2.2 Grid-Connected Photovoltaic system 12
2.3 Satellite Cloud Images 15
2.4 Solar Irradiance Prediction 19
2.4.1 Artificial Neural Network model 20
2.4.2 Recurrent Neural Network 22
Chapter 3 Materials and Methods 25
3.1 Framework of the method 25
3.2 Real-time digital simulator 27
3.2.1 Simulation and data sources 28
3.2.2 Process of RTDS simulation 29
3.3 Dataset of Photovoltaic system and Satellite Cloud Image 31
3.3.1 Photovoltaic system 31
3.3.2 Satellite Cloud Image 35
3.4 Deep learning methods for Solar Irradiance Prediction 38
3.4.1 Long short-term memory 38
3.4.2 Time Interval of irradiance prediction 44
Chapter 4 Results and Discussion 45
4.1 The system architecture of the RTDS model 45
4.2 Deep learning methods for predicting solar irradiance 46
4.2.1 Data preprocessing and feature selection. 48
4.2.2 Dataset Splitting and Hyperparameter Search 53
4.2.3 Performance of the GRU Model 59
4.3 Case studies on the impact brought by the grid-connected photovoltaic system 65
4.3.1 Case study: Installed capacity of the grid-connected photovoltaic system 68
4.3.2 Case study: Drastically changing solar irradiance 73
4.3.3 Case study: Long-term data simulation 80
4.4 Prediction of the Impact Brought by a Grid-Connected Photovoltaic System 83
4.4.1 Data Pre-Processing for the Impact Prediction 83
4.4.2 Performance indexes for the impact prediction 86
4.4.3 Model operation demonstration 94
Chapter 5 Conclusion 97
References 99
dc.language.isoen
dc.subject即時數位模擬器zh_TW
dc.subject併網型太陽能光電系統zh_TW
dc.subject深度學習zh_TW
dc.subjectDeep Learningen
dc.subjectGrid-Connected Photovoltaic Systemen
dc.subjectRTDSen
dc.title基於深度學習之太陽光電系統對電力品質衝擊預測與分析zh_TW
dc.titlePrediction and Analysis of Impact on Power Quality for a Photovoltaic System Based on Deep Learningen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳立成,蕭瑛東,李建興,曾傳蘆
dc.subject.keyword深度學習,併網型太陽能光電系統,即時數位模擬器,zh_TW
dc.subject.keywordDeep Learning,Grid-Connected Photovoltaic System,RTDS,en
dc.relation.page101
dc.identifier.doi10.6342/NTU201903827
dc.rights.note有償授權
dc.date.accepted2019-08-17
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved