Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73718
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王倫(Lon Wang)
dc.contributor.authorWei-Chun Luen
dc.contributor.author呂威駿zh_TW
dc.date.accessioned2021-06-17T08:08:42Z-
dc.date.available2021-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-16
dc.identifier.citation[1] C. Gunn, T. L. Koch, “Silicon Photonics,” in Optical Fiber Telecommunications V A (5th ed.), I. P. Kaminow, T. Li, and A. E. Willner, ed. (Academic, 2008).
[2] B. Jalali and S. Fathpour, “Silicon Photonics,” J. Light. Technol. 14(12), 4600-4615 (2006).
[3] R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE J. Sel. Top. Quantum Electron 12(6), 1678-1687. (2006).
[4] M. Casalino, “Recent Advances in Silicon Photodetectors Based on the Internal Photoemission Effect,” in New Research on Silicon - Structure, Properties, Technology V.1, Talanin, ed. (IntechOpen 2017).
[5] I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express 20(17), 28594-28602 (2012).
[6] Y. P. Huang and L. A. Wang, In-line silicon Schottky photodetectors on silicon cored fibers working in 1550 nm wavelength regimes. Appl. Phys. Lett. 106, 191106 (2015).
[7] Y. Raichlin and A. Katzir, “Fiber-optic evanescent wave spectroscopy in the middle infrared,” Appl. Spectrosc. 62(2), 55-72 (2008).
[8] T. Schädle and B. Mizaikoff, “Mid-infrared waveguides: A Perspective,” Appl. Spectrosc, 70(10), 1625–1638 (2016).
[9] M. H. Chiu, S. N. Hsu and H. H. Yang, “D-type fiber optic sensor used as a refractometer based on total-internal reflection heterodyne interferometry,” Sens. Actuator B 101, 322–327 (2004).
[10] M. H. Chiu, S. F. Wang and R. S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett, 30(3), 233-235 (2005).
[11] S. F. Wang, M. H. Chiu, J. C. Hsu, R. S. Chang and F. T. Wang, “Theoretical analysis and experimental evaluation of D-type optical fiber sensor with a thin gold film,” Opt. Commun. 253, 283–289 (2005).
[12] C. H. Chen, T. C. Tsao, J. L. Tang and W. T. Wu, “A multi-D-shaped optical fiber for refractive index sensing,” Sensors 10, 4794-4804 (2010).
[13] P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photonics Rev. 10(6), 922–961 (2016).
[14] Y. Zhang, C. Gua, A. M. Schwartzberg and J. Z. Zhang, “Surface-enhanced Raman scattering sensor based on D-shaped fiber,” Appl. Phys. Lett. 87, 123105 (2005).
[15] P. Vaiano, B. Carotenuto, M. Pisco, A. Ricciardi, G. Quero, M. Consales, A. Crescitelli, E. Esposito, and A. Cusano, “Lab on fiber technology for biological sensing applications,” Laser Photonics Rev. 10(6), 922–961 (2016).
[16] B. M. Beam, J. L. Burnett, N. A. Webster and S. B. Mendes, “Applications of the Planar Fiber Optic Chip,” in Recent Progress in Optical Fiber Research V.1, M. Yasin, ed. (InTechOpen 2012).
[17] P. Kramer and L. J. van Ruyven, “The influence of temperature on spreading resistance measurement,” Solid State Electron 15(7), 757-766 (1972).
[18] C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” J. Quantum Electron 46(5), 633-643 (2010).
[19] M. Casalino, G. Coppola, M. Iodice, I. Rendina and L. Sirleto, “Near-Infrared All-Silicon Photodetectors,” J. photoenergy 1, 1-6 (2012).
[20] M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana. D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola and A. C. Ferrari, “Vertically illuminated, resonant cavity enhanced, graphene−silicon Schottky photodetectors,” ACS Nano 11(11), 10955−10963 (2017).
[21] I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11, 2219–2224 (2011).
[22] P. J. A. Sazio, A. A. Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi and J. V. Badding, “Microstructured Optical Fibers as High-Pressure Microfluidic Reactors,” Science 311(5767), 1583-1586 (2006).
[23] J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokuoz, M. Ellison and S. Sharma, “Silicon optical fiber,” ‎Opt. Express 16(23), 18675-18683 (2008).
[24] B. Scott, K. Wang, V. Caluori and G. Pickrell, “Fabrication of silicon optical fiber,” Opt. Eng 48(10), 100501-1-100501-3 (2009).
[25] A. C. Peacock, U. J. Gibson and J. Ballato, “Silicon optical fibres – past, present, and future,” Adv. Phys. 1(1), 114-127 (2016).
[26] L. L. Blyler Jr and F. V. DiMarcello, “Fiber Drawing, Coating, and Jacketing,” Proc. IEEE 68(10), 1194-1198 (1980).
[27] U. Paek, “High-speed high-strength fiber drawing,” J. Light. Technol. 4(8). 1048-1060 (1986).
[28] U. Paek, “Free Drawing and Polymer Coating of Silica Glass Optical Fibers,” J. Heat Transfer. 121(4). 774-788 (1999).
[29] H. Y. Lin, W. H. Tsai, Y. C. Tsao and B. C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46(5), 800-806 (2007).
[30] H. Seidel, L. Csepregi, A. Heuberger and H. Baumgärtel, “Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behaviour of passivation layer,” J. Electrochem. Soc, 137(11), 3612-3626 (1990).
[31] W. H. Tsai, Y. C. Tsao, H. Y. Lin and B. C. Sheu, “Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance,” Opt. Lett. 30(17). 2209-2211 (2005).
[32] H. Y. Lin, Y. C. Tsao, W. H. Tsai, Y. W. Yang, T. R. Yan and B. C. Sheu, “Development and application of side-polished fiber immunosensor based on surface plasmon resonance for the detection of Legionella pneumophila with halogens light and 850 nm-LED,” Sens. Actuator A-Phys. 138, 299-305 (2007).
[33] Y. C. Lin, W. H. Tsai, Y. C. Tsao and J. K. Tai, “An enhanced optical multimode fiber sensor based on surface plasmon resonance with cascaded structure,” IEEE Photonics Technol. Lett. 20(15), 1287-1289 (2008).
[34] Y. C. Tsao, W. H. Tsai, W. C. Shih and M. S. Wu, “An In-situ Real-Time Optical Fiber Sensor Based on Surface Plasmon Resonance for Monitoring the Growth of TiO2 Thin Films,” Sensors 13, 9513-9521 (2013).
[35] X. Zhao, Y. C. Su, W. H. Tsai, C. H. Wang, T. L. Chuan, C. W. Lin, Y. C. Tsao and M. S. Wu, “Improvement of the sensitivity of the surface plasmon resonance sensors based on multi-layer modulation techniques,” Opt. Commun, 335, 32-36 (2015).
[36] X. H. Zhao, Y. C. Tsao, F. J. Lee, W. H. Tsai, C. H. Wang, T. L. Chuang, M. S. Wu and C. W. Lin, “Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies,” J. Virol. Methods, 233, 15-20 (2016).
[37] C. H. Chen, T. C Chao, W. Y. Li, W. C. Shen, C. W. Cheng, J. L. Tang, L. K. Chau and W. T. Wu, “Novel D-type fiber optic localized plasmon resonance sensor realized by femtosecond laser engraving,” J LASER MICRO NANOEN, 5(1), 1-5 (2010).
[38] J. Zhao, S. Q. Cao, C. G. Liao, Y. Wang, G. J. Wang, X. Z. Xu, C. L. Fu, G. W. Xu, J. R. Lian and Y. P. Wang, “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sens. Actuator B-Chem, 230, 206–211 (2016).
[39] J. Y. Tang, J. J. Zhou, J. W. Guan, S. Long, J. H. Yu, H. Y. Guan, H. H. Lu, Y. H. Luo, J. Zhang and Z. Chen, “Fabrication of side-polished single mode-multimode-single mode fiber and its characteristics of refractive index sensing,” IEEE J. Sel. Top. Quant. Electron, 23(2). 5600708 (2017).
[40] G. V. Mishakov and V. I. Sokolov, “Precision technique for side-polished fiber fabrication,” Proc. SPIE 4644, 498-502 (2002).
[41] Y. X. Zhang and L. Wang, Z. H. Liu. “The polishing detection method of side-polished fiber,” Proc. SPIE 8202, 820211 (2011).
[42] C. Li, X. B. Peng, C. Wang, S. Q. Cao and H. Zhang, “Few-layer MOS2-deposited flexible side-polished fiber Bragg grating bending sensor for pulse detection,” in Proceedings of IEEE conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (IEEE, 2017), 2007-2010.
[43] G. H, Chen. “Characteristics of Silicon-cored fibers: annealing, coupling, and application in sensing high refractive index liquids,” in Graduated Institute of Photonics and Optoelectronics, National Taiwan University, Taiwan. (2018).
[44] H. Dong, L. Chen, J. J. Zhou, J. H. Yu, H. Y. Guan, W. T. Qiu, J. L. Dong, H. H. Lu, J. Y. Tang, W. G. Zhu, Z. G. Cai, Y. Xiao, J. Zhang and Z. Chen, “Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors,” Opt Express 25(5). 5352-5365 (2017).
[45] J. C. Hsu, S. W. Jeng and Y. S.Sun, “Simulation and experiments for optimizing the sensitivity of curved D-type optical fiber sensor with a wide dynamic range,” Opt. Commun. 341, 210-217 (2015).
[46] J. A. Kim, T. H. Hwang, S. R. Dugasani, R. Amin, A. Kulkarni, S. H. Park and T. S. Kim, “Graphene based fiber optic surface plasmon resonance for bio-chemical sensor applications,” Sens. Actuator B 187, 426-433 (2013).
[47] M. Casalino, M. Iodice, L. Sirleto, S. Rao, I. Rendina, and G. Coppola, “Low dark current silicon-on-insulator waveguide metal-semiconductor-metal-photodetector based on internal photoemissions at 1550 nm” J. Appl. Phys. 114(15), 153103-1-153103-4 (2013).
[48] B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2(4), 335–338 (2015).
[49] P. Berini, A. Olivieri and C. K. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology 23(44), 444011 (2012).
[50] S. Y. Zhu, H. S. Chu, G. Q. Lo, P. Bai and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100(6), 061109 (2012).
[51] M. W. Knight, H. Sobhani, P. Nordlander and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702-704 (2011).
[52] A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat. Commun. 4, 1643 (2013).
[53] M. A. Nazirzadeh, F. B. Atar, B. B. Turgut and A. K. Okyay, “Random sized plasmonic nanoantennas on silicon for low-cost broad-band near-infrared photodetection,” Sci. Rep. 4, 7103 (2014).
[54] S. Muehlbrandt, A. Melikyan, T. Harter, K. Kohnle, A. Muslija, P. Vincze, S. Wolf, P. Jokobs, Y. Fedoryshyn, W. Freude, J. Leuthold, C. Koos and M. Kohl, “Silicon-plasmonic internal photoemission detector for 40 Gbit/s data reception,” Optica 3 (7), 741–747 (2016).
[55] M. Amirmazlaghani, F. Raissi, O. Habibpour, J. Vukusic and J. Stake, “Graphene-Si Schottky IR detector,” IEEE J. Quant. Electron 49(7), 589–594 (2013).
[56] P. Vabbina, N. Choudhary, A. A. Chowdhury, R. Sinha, M. Karabiyik, S. Das, W. Choi, N. Palaoi and N. Pala, “Highly sensitive wide bandwidth photodetector based on internal photoemission in CVD grown p-type MoS2/graphene Schottky junction,” ACS Appl. Mater. Interfaces 7(28), 15206–15213 (2015).
[57] Y. B. Huang. “Fabrication of Schottky photodetector by using Si-cored fibers,” in Graduated Institute of Photonics and Optoelectronics, National Taiwan University, Taiwan. (2015).
[58] F. H. L. Koppens, T. Mueller, Ph. Avouris, A. C. Ferrari, M. S. Vitiello and M. Polini, “Photodetectors based on graphene, other two-dimensional materials and hybrid systems,” Nat. Nanotechnol. 9, 780–793 (2014).
[59] C. C. Chen, M. Aykol, C. C. Chang, A. F. J. Levi and S. B. Cronin, “Graphene-Silicon Schottky Diodes,” Nano Lett. 11(11), 5097–5097 (2011).
[60] U. Levy, M. Grajower, P. A. D. Gonçalves, N. A. Mortensen and J. B. Khurgin, “Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission,” APL Photonics 2, 026103 (2017).
[61] Y. B. An, A. Behnam, E. Pop, and A. Ural, “Metal-semiconductor-metal photodetectors based on graphene/p-type silicon Schottky junctions,” Appl. Phys. Lett 102, 013110 (2013).
[62] M. L. Brongersma, N. J. Halas and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10, 25–34 (2015).
[63] M. Hashemi, M. H. Farzad , N. A. Mortensen and S. S. Xiao, “Enhanced Plasmonic Light Absorption for Silicon Schottky-Barrier Photodetectors,” Plasmonics 8(2), 1059–1064 (2013).
[64] A. Akbari, R. N. Tait and P. Berini, “Surface plasmon waveguide Schottky detector,” Opt. Express 18(8), 8505-8514 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73718-
dc.description.abstract在本論文中,我們將自製的矽核光纖側拋研磨成D型,並在此研磨平台上製造蕭特基光偵測器。利用手持式研磨機,我們能快速的生產D型光纖,且能夠在光學顯微鏡下做研磨狀況的即時觀測。先前我們已在蝕刻纖衣的矽核光纖上製作光偵測器有了初步的成果。為了提升元件的響應度及頻寬,我們引入D型光纖來增加光偵測器的表現。首先用模擬軟體TracePro的光追跡法與模擬軟體Rsoft的光傳播法來研究D型矽核光纖中的光學特性,結果顯示D型矽核光纖能增加光線全反射的次數,且光波會較靠近研磨表面,這些特性使元件能夠更有效的利用在光纖中傳輸的光能量。緊接著量測研磨前後光學能量的差異與紅外線攝影機拍攝元件,實驗證實在D型矽核光纖中傳播的光會露出研磨表面,間接驗證了模擬結果。
隨後我們利用D型光纖的光學優勢製作光偵測器,提升了元件的響應度從0.226 mA/W至0.577 mA/W。而因為D型光纖的結構,能夠減少蕭特基金屬接觸的面積,進而減小元件的電容,使元件的頻寬從30 MHz提升至170 MHz。且在此製造方式下,我們能同時在多根光纖上製作光偵測器,並能與商用光纖快速的熔接省除傳統光電元件複雜的耦合步驟,使矽核光纖成為有潛力的矽光子元件。
zh_TW
dc.description.abstractIn this thesis, we polished our homemade silicon-cored fibers (SCFs) into D-shaped and fabricated Schottky photodetectors (PDs) on the polishing platform. By using a handheld polishing machine, we could produce D-shaped SCF fast and able to observe the polishing condition under optical microscope instantly. In the past, we have fabricated a Schottky PD on a cladding-etched SCF and showed good performance. In order to increase the responsivity and bandwidth of the PD, we introduced D-shaped fibers. At first, we used ray tracing method and beam propagation method by simulation software TracePro and Rsoft respectively to study the optical properties in a D-shaped SCF. The simulation results showed that there are more times of internal total reflection occur and the light is closer to the polishing surface in a D-shaped fiber than cladding-etched fiber. These phenomena made a PD utilize the optical power in the fiber more efficiently. Then, we measured the optical power before and after polishing accompanied by the infrared camera upside the polishing surface. The experiments proved that the difference in power was caused by the light leaked out from the D-shaped polishing area.
We utilized the optical properties of the D-shaped SCF to fabricate photodetectors. The responsivity increased from 0.226 mA/W to 0.577 mA/W. The 3 dB frequency also increased from 30 MHz to 170 MHz. Under this manufacturing method, we could fabricate multiple Schottky PDs on D-shaped SCFs at the same time and quickly spliced with commercial fibers to eliminate the complicated coupling steps of traditional optoelectronic components. With these advantages of fabrications and optical properties, D-shaped SCF has the potential to realize all-in-fiber sensor and silicon photonics device.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:08:42Z (GMT). No. of bitstreams: 1
ntu-108-R05941113-1.pdf: 6593613 bytes, checksum: 010c943718ba1904ef3b1781815cc76e (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
Statement of Contributions iv
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xii
LIST OF ABBREVIATIONS xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature review 3
1.2.1 D-shaped fiber 3
1.2.2 The theory of Schottky junction 9
1.2.3 Resonant cavity enhanced silicon Schottky PD 14
1.2.4 Silicon waveguide-based Schottky infrared PD 16
Chapter 2 Fabrication of D-shaped Si-cored Fibers 19
2.1 Fabrication of Si-cored fibers 19
2.2 Silicon V-groove design and fabrication 25
2.3 Polishing of D-shaped Si-cored Fiber 28
2.4 Fabrication of multiple D-shaped Si-cored fibers by using handheld polishing machine 35
Chapter 3 Schottky Photodetector made on D-shaped Si-cored fiber 43
3.1 Simulation of optical properties in D-shaped Si-cored fibers 43
3.1.1 Ray tracing method by TracePro 45
3.1.2 Beam propagation method by Rsoft 49
3.2 Optical propagation properties of D-shaped Si-cored fiber 56
Chapter 4 Schottky Photodetectors Made on D-shaped Si-cored Fibers 64
4.1 Fabrication of Schottky PDs on multiple D-shaped SCFs 64
4.2 Opto-electrical characteristics of Schottky PD on D-shaped SCF 66
4.3 Bandwidth of Schottky PD on D-shaped SCF 71
4.4 Comparison and discussion of the device performance 75
4.4.1 Consistency of Schottky PDs on D-shaped SCFs 75
4.4.2 Comparison of the PD performance with previous work and other methods 78
Chapter 5 Conclusions and Future Works 82
5.1 Conclusions 82
5.2 Future works 84
References 86
Publications 94
dc.language.isoen
dc.subject蕭特基光偵測器zh_TW
dc.subjectD型光纖zh_TW
dc.subject矽核光纖zh_TW
dc.subjectSchottky photodetectorsen
dc.subjectsilicon-cored fibersen
dc.subjectD-shaped fibersen
dc.title在多根D型矽核光纖上製作蕭特基近紅外光偵測器zh_TW
dc.titleFabrication of Near-Infrared Schottky Photodetectors on
Multiple D-shaped Si-cored Fibers
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡五湖(Woo-Hu Tsai),徐世祥(Shih-Hsiang Hsu),王蒼容(Chun-Long Wang)
dc.subject.keyword矽核光纖,D型光纖,蕭特基光偵測器,zh_TW
dc.subject.keywordsilicon-cored fibers,D-shaped fibers,Schottky photodetectors,en
dc.relation.page94
dc.identifier.doi10.6342/NTU201903944
dc.rights.note有償授權
dc.date.accepted2019-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
6.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved