請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73712
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳洵毅 | |
dc.contributor.author | Yong-Hong Lai | en |
dc.contributor.author | 賴泳宏 | zh_TW |
dc.date.accessioned | 2021-06-17T08:08:34Z | - |
dc.date.available | 2019-08-20 | |
dc.date.copyright | 2019-08-20 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-17 | |
dc.identifier.citation | Aurbach, D., E. Pollak, R. Elazari, G. Salitra, C. S. Kelley, and J. Affinito, 2009: On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. Journal of the Electrochemical Society, 156, A694-A702.
Balat, M., and G. Ayar, 2005: Biomass energy in the world, use of biomass and potential trends. Energy Sources, 27, 931-940. Bhaskara, R. M. L., 1968: Organic electrolyte cells. Google Patents. Bruce, P. G., S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, 2012: Li–O2 and Li–S batteries with high energy storage. Nature Materials, 11, 19. Cañas, N. A., K. Hirose, B. Pascucci, N. Wagner, K. A. Friedrich, and R. Hiesgen, 2013: Investigations of lithium–sulfur batteries using electrochemical impedance spectroscopy. Electrochimica Acta, 97, 42-51. Cha, E., M. D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, and W. Choi, 2018: 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries. Nature Nanotechnology, 13, 337. Chen, J., and Coauthors, 2015: Molecular-confinement of polysulfides within mesoscale electrodes for the practical application of lithium sulfur batteries. Nano Energy, 13, 267-274. Cheng, X.-B., J.-Q. Huang, Q. Zhang, H.-J. Peng, M.-Q. Zhao, and F. Wei, 2014: Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium–sulfur batteries. Nano Energy, 4, 65-72. Chung, S. H., and A. Manthiram, 2014: A natural carbonized leaf as polysulfide diffusion inhibitor for high‐performance lithium–sulfur battery cells. ChemSusChem, 7, 1655-1661. Danuta, H., and U. Juliusz, 1962: Electric dry cells and storage batteries. Google Patents. Deb, A. K. S., and Coauthors, 2018: Carbon nano tubes functionalized with novel functional group- amido-amine for sorption of actinides. Journal of Hazardous Materials, 345, 63-75. Deng, Z., Z. Zhang, Y. Lai, J. Liu, J. Li, and Y. Liu, 2013: Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading. Journal of The Electrochemical Society, 160, A553-A558. Gu, X., C.-j. Tong, B. Wen, L.-m. Liu, C. Lai, and S. Zhang, 2016: Ball-milling synthesis of ZnO@ sulphur/carbon nanotubes and Ni(OH)2@sulphur/carbon nanotubes composites for high-performance lithium-sulphur batteries. Electrochimica Acta, 196, 369-376. He, X., J. Ren, L. Wang, W. Pu, C. Jiang, and C. Wan, 2009: Expansion and shrinkage of the sulfur composite electrode in rechargeable lithium batteries. Journal of Power Sources, 190, 154-156. Huang, J.-Q., Z.-L. Xu, S. Abouali, M. Akbari Garakani, and J.-K. Kim, 2016a: Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon, 99, 624-632. Huang, J.-Q., Z. Wang, Z.-L. Xu, W. G. Chong, X. Qin, X. Wang, and J.-K. Kim, 2016b: Three-dimensional porous graphene aerogel cathode with high sulfur loading and embedded TiO2 nanoparticles for advanced lithium–sulfur batteries. ACS Applied Materials & Interfaces, 8, 28663-28670. Kim, K. R., S.-H. Yu, and Y.-E. Sung, 2016: Enhancement of cycle performance of Li–S batteries by redistribution of sulfur. Chemical Communications, 52, 1198-1201. Lei, T., and Coauthors, 2017: Multi‐functional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries. Advanced Energy Materials, 7, 1601843. Li, H., L. Sun, Y. Zhang, T. Tan, G. Wang, and Z. Bakenov, 2017: Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. Journal of Energy Chemistry, 26, 1276-1281. Li, Z., J. Zhang, and X. W. Lou, 2015a: Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium–sulfur batteries. Angewandte Chemie International Edition, 54, 12886-12890. Li, Z., J. T. Zhang, Y. M. Chen, J. Li, and X. W. D. Lou, 2015b: Pie-like electrode design for high-energy density lithium–sulfur batteries. Nature Communications, 6, 8850. Li, Z., Y. Huang, L. Yuan, Z. Hao, and Y. Huang, 2015c: Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon, 92, 41-63. Liang, X., and Coauthors, 2015: Split-half-tubular polypyrrole@ sulfur@ polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy, 11, 587-599. Liu, R., and Coauthors, 2011: Dopamine as a carbon source: the controlled synthesis of hollow carbon spheres and yolk‐structured carbon nanocomposites. Angewandte Chemie International Edition, 50, 6799-6802. Liu, Y., X. Qin, S. Zhang, G. Liang, F. Kang, G. Chen, and B. Li, 2018: Fe3O4-Decorated porous graphene interlayer for high-performance lithium–sulfur batteries. ACS Applied Materials & Interfaces, 10, 26264-26273. Ma, L., and Coauthors, 2016: Enhanced Li-S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano, 10, 1050-1059. Manthiram, A., S. H. Chung, and C. Zu, 2015: Lithium–sulfur batteries: progress and prospects. Advanced Materials, 27, 1980-2006. Mikhaylik, Y. V., and J. R. Akridge, 2004: Polysulfide shuttle study in the Li/S battery system. Journal of The Electrochemical Society, 151, A1969-A1976. Mohan, D., C. U. Pittman, and P. H. Steele, 2006: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels, 20, 848-889. Mäki‐Arvela, P., B. Holmbom, T. Salmi, and D. Y. Murzin, 2007: Recent progress in synthesis of fine and specialty chemicals from wood and other biomass by heterogeneous catalytic processes. Catalysis Reviews, 49, 197-340. Niu, X.-Q., and Coauthors, 2015: Nickel hydroxide-modified sulfur/carbon composite as a high-performance cathode material for lithium sulfur battery. ACS Applied Materials & Interfaces, 7, 16715-16722. Pang, Q., D. Kundu, M. Cuisinier, and L. Nazar, 2014: Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries. Nature Communications, 5, 4759. Peled, E., A. Gorenshtein, M. Segal, and Y. Sternberg, 1989a: Rechargeable lithium- sulfur battery. Journal of Power Sources, 26, 269-271. Peled, E., Y. Sternberg, A. Gorenshtein, and Y. Lavi, 1989b: Lithium‐sulfur battery: evaluation of dioxolane‐based electrolytes. Journal of the Electrochemical Society, 136, 1621-1625. Ponraj, R., A. G. Kannan, J. H. Ahn, J. H. Lee, J. Kang, B. Han, and D. W. Kim, 2017: Effective trapping of lithium polysulfides using a functionalized carbon nanotube-coated separator for lithium-sulfur cells with enhanced cycling stability. ACS Applied Materials & Interfaces, 9, 38445-38454. Ragauskas, A. J., and Coauthors, 2006: The path forward for biofuels and biomaterials. Science, 311, 484-489. Rauh, R., K. Abraham, G. Pearson, J. Surprenant, and S. Brummer, 1979: A lithium/dissolved sulfur battery with an organic electrolyte. Journal of The Electrochemical Society, 126, 523-527. Rehman, S., and Coauthors, 2016: 3D Vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium‐sulfur batteries. Advanced Energy Materials, 6, 1502518. Scrosati, B., J. Hassoun, and Y.-K. Sun, 2011: Lithium-ion batteries. A look into the future. Energy & Environmental Science, 4, 3287-3295. Shi, H., and Coauthors, 2018: Functional carbons remedy the shuttling of polysulfides in lithium–sulfur batteries: confining, trapping, blocking, and breaking up. Advanced Functional Materials, 28, 1800508. Singh, B. P., V. Choudhary, S. Teotia, D. T. Gupta, V. N. Singh, S. Dhakate, and R. B. Mathur, 2015: Solvent Free, Efficient, Industrially Viable, Fast Dispersion Process Based Amine Modified MWCNT Reinforced Epoxy Composites of Superior Mechanical Properties. Advance Material Letters, Vol. 6, 104-113 pp. Stankovich, S., R. D. Piner, X. Chen, N. Wu, S. T. Nguyen, and R. S. Ruoff, 2006: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). Journal of Materials Chemistry, 16, 155-158. Su, Y.-S., and A. Manthiram, 2012: A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chemical Communications, 48, 8817-8819. Tao, X., and Coauthors, 2016: Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nature Communications, 7, 11203. Wang, H., and Coauthors, 2011: Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Letters, 11, 2644-2647. Wang, Y., Z. Iqbal, and S. V. Malhotra, 2005: Functionalization of carbon nanotubes with amines and enzymes. Chemical Physics Letters, 402, 96-101. Wang, Y., J. Y. Huang, X. B. Chen, L. Wang, and Z. Z. Ye, 2018: Powder metallurgy template growth of 3D N-doped graphene foam as binder-free cathode for high-performance lithium/sulfur battery. Carbon, 137, 368-378. Wang, Z. Y., and Coauthors, 2014: Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature Communications, 5. Wyman, C. E., B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, and Y. Lee, 2005: Coordinated development of leading biomass pretreatment technologies. Bioresource Technology, 96, 1959-1966. Xi, K., S. Cao, X. Peng, C. Ducati, R. V. Kumar, and A. K. Cheetham, 2013: Carbon with hierarchical pores from carbonized metal–organic frameworks for lithium sulphur batteries. Chemical Communications, 49, 2192-2194. Xu, R., and Coauthors, 2014: Insight into sulfur reactions in Li–S batteries. ACS Applied Materials & Interfaces, 6, 21938-21945. Yi, R. W., and Coauthors, 2019: A light-weight free-standing graphene foam-based interlayer towards improved Li-S cells. Electrochimica Acta, 299, 479-488. Yuan, L., X. Qiu, L. Chen, and W. Zhu, 2009: New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy. Journal of Power Sources, 189, 127-132. Zhang, K., and Coauthors, 2014: Nickel foam as interlayer to improve the performance of lithium–sulfur battery. Journal of Solid State Electrochemistry, 18, 1025-1029. Zhang, L., L. Ji, P.-A. Glans, Y. Zhang, J. Zhu, and J. Guo, 2012: Electronic structure and chemical bonding of a graphene oxide–sulfur nanocomposite for use in superior performance lithium–sulfur cells. Physical Chemistry Chemical Physics, 14, 13670-13675. Zhang, S. S., 2012: Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO3-contained electrolyte. Journal of The Electrochemical Society, 159, A920-A923. Zheng, J., and Coauthors, 2014: Lewis acid–base interactions between polysulfides and metal organic framework in lithium sulfur batteries. Nano Letters, 14, 2345-2352. Zhou, G., Y. Zhao, and A. Manthiram, 2015: Dual‐confined flexible sulfur cathodes encapsulated in nitrogen‐doped double‐shelled hollow carbon spheres and wrapped with graphene for Li–S batteries. Advanced Energy Materials, 5, 1402263. Zhou, G., and Coauthors, 2013a: Fibrous Hybrid of graphene and sulfur nanocrystals for high-performance lithium–sulfur batteries. ACS Nano, 7, 5367-5375. Zhou, W., X. Xiao, M. Cai, and L. Yang, 2014: Polydopamine-coated, nitrogen-doped, hollow carbon–sulfur double-layered core–shell structure for improving lithium–sulfur batteries. Nano Letters, 14, 5250-5256. Zhou, X., and Coauthors, 2013b: Improving the performance of lithium–sulfur batteries by graphene coating. Journal of Power Sources, 243, 993-1000. Zhuang, R., S. Yao, X. Shen, and T. Li, 2019: A freestanding MoO2‐decorated carbon nanofibers interlayer for rechargeable lithium sulfur battery. International Journal of Energy Research, 43, 1111-1120. Zou, Q., and Y.-C. Lu, 2016: Solvent-dictated lithium sulfur redox reactions: an operando UV–vis spectroscopic study. The Journal of Physical Chemistry Letters, 7, 1518-1525. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73712 | - |
dc.description.abstract | 傳統鋰離子電池礙於能量密度的限制,要裝備在電動車之中所需之量非常大,因此被譽為新一代鋰離子電池的鋰硫電池,藉著它所具備的高能量密度逐漸發展起來。鋰硫電池的發展過程中,長鍊硫的穿梭效應一直限制著它的應用,因此本研究致在開發兩種不同的保護層,來限制穿梭效應對鋰硫電池的影響,並提升電池性能。其一為木質素添加於奈米碳管保護層,製備不同比例木質素添加之奈米碳管保護層。首先利用BET和SEM發現25wt%木質素添加保護層有最佳之孔徑分布與比表面積,且也針對配置各比例保護層之鋰硫電池做定電流充放電實驗,由結果得知在配置25wt%木質素添加奈米碳管保護層,具備高初始放電容量與低衰退率,說明此比例為最佳配比並能有效減緩穿梭效應的影響。
其二為胺基化奈米碳管保護層,目的在於利用官能基修飾過後的碳材表面對長鍊硫產生吸附作用,因此除了奈米碳管的物理阻隔,還外加了極性表面的吸附效果,以此來減緩穿梭效應的影響。本研究利用自行合成之胺基化奈米碳管,再利用XPS和FTIR檢驗完材料特性後,將其製備成保護層結構,配置於鋰硫電池系統中,運用CV和EIS確認具備高電化學可逆性與低電荷轉移阻抗後,以1 C rate電流密度進行充放電,發現配有胺基化奈米碳管保護層之鋰硫電池擁有相當高的初始放電容量(1470 mAh g-1)和低衰退率(0.25% per cycle),原因是胺基與醯胺基吸附長鍊硫使穿梭效應減低,活性物質使用量增加。其後,也利用EDS及吸附實驗確認胺基化奈米碳管保護層對長鍊硫的吸附效果,並以UV-Vis量化其阻擋長鍊硫通過程度。 | zh_TW |
dc.description.abstract | Lithium-ion batteries have been widely used in our daily life because the climate change, in part due to burning fossil fuels, forces human beings to alter the lifestyle. Recently electric vehicles developed rapidly and traditional lithium-ion batteries couldn’t meet the demand for the high energy density, so the lithium-sulfur (Li-S) batteries, which was considered as the next generation of lithium-ion batteries, gradually attract lots of attentions due to its high energy density.
During the development of Li-S batteries, the polysulfide shuttle effect always limits its applications. Thus, in our work, we devote to exploiting two types of protection layer to alleviate the polysulfide shuttle effect and enhance the performance of the Li-S batteries. One of them is the lignin/MWCNT composite protection layer. We successfully prepare various weight ratios of lignin/MWCNT composite protection layer and find the 25 wt% lignin/MWCNT protection layer have the highest specific surface area and advantageous pore distribution on the basic of BET and SEM results. Moreover, we conduct the galvanostatic charge/discharge experiment for the Li-S batteries with various weight ratios lignin/MWCNT composite protection layer and discover that the Li-S batteries with 25 wt% lignin/MWCNT composite protection layer have the best electrochemical performance with its high capacity and low decay rate. Our results indicate that the 25 wt% lignin adding into the MWCNT protection layer is the best formula and alleviate the polysulfide shuttle effect effectively. The other type of protection layer is fabricated by amide and amine group multi-walled carbon tube (A-MWCNT), which is aimed to suppress shuttle effect by the polar surface of carbon materials to perform strong interaction with polysulfides. A-MWCNT not only have the physical hindering ability to limit polysulfide passing but also possess the chemical adsorption ability to polysulfides and so reduce the shuttle effect. In our work, we successfully synthesized A-MWCNT and confirm its characterization by using XPS and FTIR. Next, we fabricate the free-standing A-MWCNT protection layer and assemble it into the Li-S batteries. The Li-S batteries with the A-MWCNT protection layer are demonstrated to have high electrochemical reversibility and low charge transfer resistance according to the results of CV and EIS. We also find that the Li-S batteries with A-MWCNT protection layer show great electrochemical performance with high initial capacity (1470 mAh g-1) and low decay rate (0.25% per cycle) because the amide and amine interact with the polysulfide and increase the active material utilization. We further qualitatively determine the adsorption ability of A-MWCNT protection layer to polysulfide by using EDS mapping analysis and adsorption test and measure the blocking extent in quantitative by UV-Vis analysis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:08:34Z (GMT). No. of bitstreams: 1 ntu-108-R06631037-1.pdf: 7428511 bytes, checksum: 57ec0e0c32ecd1bc247d0a865c1bc1ce (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii 圖目錄 viii 表目錄 xii 一、研究動機 1 二、文獻探討 4 2.1 鋰硫電池 4 2.2鋰硫電池的電化學特性 4 2.3電解液 7 2.4硫電極體積膨脹 8 2.5元素硫(S8)與硫化鋰(Li2S)之低導電性 9 2.6低電流活化系統 10 2.7自放電現象 12 2.8穿梭效應 12 2.9穿梭效應抑制策略 13 2.10保護層添加於鋰硫電池 14 2.10.1奈米碳管保護層 14 2.10.2 多孔性泡沫金屬保護層 15 2.10.3 生物性材料保護層 16 2.11 極性元素的添加 16 2.12路易斯酸鹼對理論 18 2.13官能基的改質 18 2.14胺基化碳材的使用 19 2.15 胺基化奈米碳管的製備 19 2.16 木質素 20 三、材料與方法 22 3.1實驗藥品 22 3.2實驗流程 22 3.2.1木質素添加奈米碳管保護層實驗 23 3.2.2胺基化奈米碳管保護層實驗 24 3.3電極製作 25 3.4保護層製作 26 3.4.1 木質素添加奈米碳管保護層 26 3.4.2 胺基化奈米碳管保護層 27 3.5電解液配製 30 3.6電池組裝 30 3.7材料檢測 31 3.7.1傅立葉轉換紅外光譜-FTIR 31 3.7.2 X射線光電子能譜-XPS 32 3.7.3能量色散X射線譜-EDS 33 3.7.4 Brunauer–Emmett–Teller theory-BET 35 3.7.5 掃描式電子顯微鏡-SEM 36 3.7.6 紫外-可見分光光度法-UV-Vis 37 3.8電化學檢測 38 3.9長鍊硫溶液的配製 40 3.10保護層定性與定量分析 40 3.10.1定性實驗 40 3.10.2定量實驗 40 四、結果與討論 42 4.1 木質素添加奈米碳管保護層 42 4.1.1 材料檢測 42 4.1.2電化學檢測 46 4.2胺基化奈米碳管保護層 55 4.2.1胺基化奈米碳管材料檢測 55 4.2.2製備free-standing胺基化奈米碳管保護層 57 4.2.3 保護層裝配之鋰硫電池性能檢測 59 4.2.4循環後保護層EDS Mapping 72 4.2.5吸附實驗(adsorption test)與UV-Vis定量分析 73 4.3活化步驟對添加保護層之鋰硫電池的影響 78 五、結論 80 5.1結論 80 5.1.1木質素添加奈米碳管保護層應用於鋰硫電池 80 5.1.2胺基化奈米碳管保護層應用於鋰硫電池 81 5.2各鋰硫電池之保護層研究性能比較 81 六、未來展望 83 七、參考文獻 84 | |
dc.language.iso | zh-TW | |
dc.title | 官能基修飾與木質素添加奈米碳管保護層於鋰硫電池應用 | zh_TW |
dc.title | Performance Enhancement of Lithium-Sulfur Batteries by Functionalized Carbon Nanotube and Lignin/Carbon Nanotube Composite Protection Layer | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張豐丞,廖英志,郭彥廷 | |
dc.subject.keyword | 鋰離子電池,鋰硫電池,奈米碳管,木質素,官能基化,保護層, | zh_TW |
dc.subject.keyword | Li-ion batteries,Li-S batteries,Carbon nanotube,Lignin,Functionalization,Protection layer, | en |
dc.relation.page | 93 | |
dc.identifier.doi | 10.6342/NTU201903702 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 7.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。