請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73708完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹瀅潔 | |
| dc.contributor.author | Li-Te Huang | en |
| dc.contributor.author | 黃立德 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:08:29Z | - |
| dc.date.available | 2019-08-20 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-17 | |
| dc.identifier.citation | 1. Taiwan Green Productivity Foundation, ENERGY AUDIT ANNUAL REPORT FOR NON- PRODUCTIVE INDUSTRIES 2018. 2018.
2. Hong, T., et al., An ontology to represent energy-related occupant behavior in buildings. Part I: Introduction to the DNAs framework. Building and Environment, 2015. 92: p. 764-777. 3. Kwon, M., et al., Personal control and environmental user satisfaction in office buildings: Results of case studies in the Netherlands. Building and Environment, 2019. 149: p. 428-435. 4. American Society of Heating Refrigerating and Air-Conditioning Engineers and American National Standards Institute, Thermal environmental conditions for human occupancy. ANSI/ASHRAE standard,. 2013, Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 52 pages. 5. Ormandy, D. and V. Ezratty, Health and thermal comfort: From WHO guidance to housing strategies. Energy Policy, 2012. 49: p. 116-121. 6. International Organization for Standardization., Moderate thermal environments : determination of the PMV and PPD indices and specification of the conditions for thermal comfort = Ambiances thermiques modérées : détermination des indices PMV et PPD et spécification des conditions de confort thermique. Second edition. ed. International standard. 1994, Genève, Switzerland: International Organization for Standardization. iv, 27 leaves. 7. Fanger, P.O., Thermal comfort. Analysis and applications in environmental engineering. 1970: Copenhagen. p. 244 pages. 8. Humphreys Revd, M.A., Thermal comfort temperatures world-wide - the current position. Renewable Energy, 1996. 8(1): p. 139-144. 9. Carlucci, S., et al., Review of adaptive thermal comfort models in built environmental regulatory documents. Building and Environment, 2018. 137: p. 73-89. 10. Bouden, C. and N. Ghrab, An adaptive thermal comfort model for the Tunisian context: a field study results. Energy and Buildings, 2005. 37(9): p. 952-963. 11. Singh, M.K., S. Mahapatra, and S.K. Atreya, Adaptive thermal comfort model for different climatic zones of North-East India. Applied Energy, 2011. 88(7): p. 2420-2428. 12. Mishra, A.K. and M. Ramgopal, An adaptive thermal comfort model for the tropical climatic regions of India (Köppen climate type A). Building and Environment, 2015. 85: p. 134-143. 13. Ioannou, A., L. Itard, and T. Agarwal, In-situ real time measurements of thermal comfort and comparison with the adaptive comfort theory in Dutch residential dwellings. Energy and Buildings, 2018. 170: p. 229-241. 14. Becker, R. and M. Paciuk, Thermal comfort in residential buildings – Failure to predict by Standard model. Building and Environment, 2009. 44(5): p. 948-960. 15. De Dear, R. and G.S. Brager, Developing an adaptive model of thermal comfort and preference. 1998. 16. Yao, R., B. Li, and J. Liu, A theoretical adaptive model of thermal comfort – Adaptive Predicted Mean Vote (aPMV). Building and Environment, 2009. 44(10): p. 2089-2096. 17. Califano, R., A. Naddeo, and P. Vink, The effect of human-mattress interface's temperature on perceived thermal comfort. Appl Ergon, 2017. 58: p. 334-41. 18. Liu, J., R. Yao, and R. McCloy, A method to weight three categories of adaptive thermal comfort. Energy and Buildings, 2012. 47: p. 312-320. 19. Orosa, J.A. and A.C. Oliveira, A new thermal comfort approach comparing adaptive and PMV models. Renewable Energy, 2011. 36(3): p. 951-956. 20. Lee, S., et al., A Bayesian approach for probabilistic classification and inference of occupant thermal preferences in office buildings. Building and Environment, 2017. 118: p. 323-343. 21. Földváry Ličina, V., et al., Development of the ASHRAE Global Thermal Comfort Database II. Building and Environment, 2018. 142: p. 502-512. 22. Kim, J., et al., Occupant comfort and behavior: High-resolution data from a 6-month field study of personal comfort systems with 37 real office workers. Building and Environment, 2019. 148: p. 348-360. 23. Kc, R., et al., An in-situ study on occupants’ behaviors for adaptive thermal comfort in a Japanese HEMS condominium. Journal of Building Engineering, 2018. 19: p. 402-411. 24. Lopes, M.A.R., C.H. Antunes, and N. Martins, Energy behaviours as promoters of energy efficiency: A 21st century review. Renewable and Sustainable Energy Reviews, 2012. 16(6): p. 4095-4104. 25. Nicol, J.F. and M.A. Humphreys, Adaptive thermal comfort and sustainable thermal standards for buildings. Energy and Buildings, 2002. 34(6): p. 563-572. 26. Giamalaki, M. and D. Kolokotsa, Understanding the thermal experience of elderly people in their residences: Study on thermal comfort and adaptive behaviors of senior citizens in Crete, Greece. Energy and Buildings, 2019. 185: p. 76-87. 27. Fabi, V., et al., A methodology for modelling energy-related human behaviour: Application to window opening behaviour in residential buildings. Building Simulation, 2013. 6(4): p. 415-427. 28. Lu, S., et al., Data-driven simulation of a thermal comfort-based temperature set-point control with ASHRAE RP884. Building and Environment, 2019. 156: p. 137-146. 29. Li, D., C.C. Menassa, and V.R. Kamat, Personalized human comfort in indoor building environments under diverse conditioning modes. Building and Environment, 2017. 126: p. 304-317. 30. Gao, P.X. and S. Keshav, Optimal Personal Comfort Management Using SPOT+, in Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient Buildings - BuildSys'13. 2013. p. 1-8. 31. Lee, S., et al., Inference of thermal preference profiles for personalized thermal environments with actual building occupants. Building and Environment, 2019. 148: p. 714-729. 32. S. Purdon; B. Kusy; R. Jurdak; G. Challen. Model-Free HVAC Control Using Occupant Feedback. in Second IEEE International Workshop on Global Trends inSmart Cities 2013. 2013. 33. Chen, X., Q. Wang, and J. Srebric, Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation. Applied Energy, 2016. 164: p. 341-351. 34. Karjalainen, S., Thermal comfort and use of thermostats in Finnish homes and offices. Building and Environment, 2009. 44(6): p. 1237-1245. 35. Kim, Y.-J., K.-U. Ahn, and C.-S. Park, Decision making of HVAC system using Bayesian Markov chain Monte Carlo method. Energy and Buildings, 2014. 72: p. 112-121. 36. Jang, H. and J. Kang, A stochastic model of integrating occupant behaviour into energy simulation with respect to actual energy consumption in high-rise apartment buildings. Energy and Buildings, 2016. 121: p. 205-216. 37. Ghahramani, A., C. Tang, and B. Becerik-Gerber, An online learning approach for quantifying personalized thermal comfort via adaptive stochastic modeling. Building and Environment, 2015. 92: p. 86-96. 38. Martin, O., Bayesian Analysis with Python Second Edition. Second ed. 2018, UK.: Packt. 471. 39. ASHRAE, Standard 55-2013 user’s manual: ANSI/ASHRAE standard 55-2013, thermal environmental conditions for human occupancy. 2016. 40. Nagano, K., et al., Effects of ambient temperature steps on thermal comfort requirements. Int J Biometeorol, 2005. 50(1): p. 33-9. 41. Salvatier, J., T.V. Wiecki, and C. Fonnesbeck, Probabilistic programming in Python using PyMC3. PeerJ Computer Science, 2016. 2. 42. Stern;, A.G.J.B.C.H.S. and D.B.D.A.V.a.D.B. Rubin, Bayesian Data Analysis, Third Edition. Texts in Statistical Science Series, ed. H.S.o.P.H. Francesca Dominici, USA, et al. 2015: CHAPMAN & HALL/CRC. 43. van Ravenzwaaij, D., P. Cassey, and S.D. Brown, A simple introduction to Markov Chain Monte-Carlo sampling. Psychon Bull Rev, 2018. 25(1): p. 143-154. 44. Li Te Huang; Yi Yang Chiu;Ying Chieh Chan. The Design of Building Management Platform Based On Cloud Computing and Low-Cost Devices. in 36th International Symposium on Automation and Robotics in Construction. 2019. Banff, Alberta, Canada. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73708 | - |
| dc.description.abstract | 現代人的生活有90%以上的時間與建築物息息相關,也因此我們愈來愈依賴空調系統來協助維持建築室內環境的舒適度。為了維持或提升室內環境使用者的舒適度,往往需耗費大量的能源來達成。然而,我們對於建築物營運維護過程中最主要服務對象,也就是每一位建築環境使用者,所知甚少。
熱舒適是表達對於熱環境滿意的心理狀態,至今研究人員尋求各種方法來評估使用者舒適度的量化模型,其中發展較久且廣為人知的就是預測平均投票指標,也就是PMV模型。由於每位使用者對於環境舒適度接受範圍不同;進一步來說,當使用者無法忍受熱舒適度時所造成的反應稱作使用者行為,這其中已包含各人容忍度的差異。因此我們藉由使用者的行為來反應其對於環境熱舒適的喜好。過去的研究亦指出環境使用者的行為對於能源使用效率有直接關係,因此如何用一套好的方式來分析環境使用者行為是很重要的課題。 本研究中,我們建立PMV指標與使用者行為兩者之間關係,並引入貝氏方法分析,希望藉此得到個人使用者熱舒適度檔案(模型),再將成果用來擬訂讓使用者與建築構件互動次數最小化之單人環境空調控制策略,來達到節能的第一步。本研究使用先前自行研發建置的雲端管理平台進行實驗,該平台已經具備環境監測與控制建築構件(空調)的能力。藉由實驗來驗證個人化熱舒適檔案的建立與空調控制策略的成效。 我們從實驗的成果證實,透過使用者與建築構件互動可以用來建立個人化熱舒適檔案,形成一套在線學習系統並且依據熱舒適檔案對室內環境進行自動控制。 | zh_TW |
| dc.description.abstract | Nowadays, we spend more than 90% of our time inside of buildings. People rely on more heating, ventilation, and air conditioning (HVAC) systems to maintaining indoor environmental comfort. In order to achieve comfort in the indoor environment, it also costs a huge amount of energy. However, when we maintain the daily operation of the building, we are still don't know how to fit the thermal comfort needs of the main body of the service: the occupants.
Thermal comfort is the condition of mind that expresses satisfaction with the thermal environment. Researchers use many methods want to find indicators that can effectively quantify occupant behavior. One of the indexes have long-term development and also widely known is the predicted mean vote (PMV) index. Each occupant accepts the environmental comfort range is different. Further, when the occupant cannot tolerate thermal comfort and trigger the activity, which is called occupant behavior; and it includes the difference tolerance of each person. Past research has pointed out that occupants directly affect the efficiency of energy use, and therefore develop a method to capture, simulate or establish occupant behavior model is an important topic. In this study, we establish a relationship between PMV index and occupant behavior, and then import the Bayesian approach analysis, to get a personalized occupant thermal comfort profile (model). Then we according to the thermal comfort profile to develop a strategy to control the environment to reduce the interaction between the occupant and the building components (like air conditioner), as the first step of energy saving. The study was conducted experiments through our own cloud management platform, which has environmental data monitoring and air conditioner (AC) control capabilities. The experiments were conducted to verify the effectiveness of the establishment of personalized thermal comfort profiles and AC control strategies. From the experimental results, we can through the occupant interactions with the building components to create a personalized thermal comfort profile, by the online learning system and apply automated control to the environment according to the thermal comfort profile. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:08:29Z (GMT). No. of bitstreams: 1 ntu-108-R06521709-1.pdf: 3783130 bytes, checksum: 64d9495364798b1fd384a54927251d61 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES ix Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Objectives 4 1.4 Document Overview 5 Chapter 2 Literature Review 7 2.1 Thermal Comfort 7 2.2 Occupants’ Behavior 10 2.3 Personalized HVAC Control 12 2.4 Bayesian Approach 13 Chapter 3 Methodology 15 3.1 Thermal Sensation Indicator - PMV 15 3.2 Modeling Thermal Preference 19 3.3 Application Bayesian Approach 24 3.4 Online Learning and Control - System Structures 29 3.4.1 The Initial Preparation Phase 29 3.4.2 The Training Phase 31 3.4.3 The Control Phase 34 3.4.4 The Design of Data Pool 37 Chapter 4 Experiments 38 4.1 Experimental Environment and Sensor Network 38 4.2 Data Collecting and Management Platform 40 4.3 Experimental Design 46 Chapter 5 Results 48 5.1 Prior Development 48 5.2 Model Training – Active Exploration 50 5.3 Using Developed Thermal Comfort Profile for AC Control 53 5.4 Improving Training Process Through Data Simulation 56 Chapter 6 Discussion and Suggestion 62 6.1 Discussion 62 6.1.1 The Effect of the Standard Deviation Value in the Parameter 62 6.1.2 Sensitivity Analysis of PMV Model Factors 63 6.1.3 Occupant Behavior and Energy Saving 65 6.1.4 Occupant Behavior Immediately After They Entered the Space 67 6.2 Suggestion 69 Chapter 7 Conclusion 70 References 72 | |
| dc.language.iso | en | |
| dc.subject | 預測平均投票模型 | zh_TW |
| dc.subject | 個人化使用者熱舒適模型 | zh_TW |
| dc.subject | 使用者行為 | zh_TW |
| dc.subject | 在線學習 | zh_TW |
| dc.subject | 自動化控制 | zh_TW |
| dc.subject | occupant behavior | en |
| dc.subject | predicted mean vote (PMV) | en |
| dc.subject | personalized occupant thermal comfort profile | en |
| dc.subject | online learning | en |
| dc.subject | automated control | en |
| dc.title | 藉由人與建築的互動發展個人化熱舒適模型與空調控制策略 | zh_TW |
| dc.title | Development of personalized thermal comfort profiles and AC control strategies through human-building interactions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 謝尚賢,許聿廷,吳翌禎 | |
| dc.subject.keyword | 預測平均投票模型,個人化使用者熱舒適模型,使用者行為,在線學習,自動化控制, | zh_TW |
| dc.subject.keyword | predicted mean vote (PMV),personalized occupant thermal comfort profile,occupant behavior,online learning,automated control, | en |
| dc.relation.page | 76 | |
| dc.identifier.doi | 10.6342/NTU201903692 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
