請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73702完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張家銘 | |
| dc.contributor.author | Yuan-Chun Ho | en |
| dc.contributor.author | 何元鈞 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:08:22Z | - |
| dc.date.available | 2029-08-16 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-18 | |
| dc.identifier.citation | [1] Wierschem, E.N. (2013). “Target energy transfer using nonlinear energy sinks for the attenuation of transient loads on building structures,”Doctoral Thesis, University of Illinois at Urbana Champaign, USA.
[2] Gutierrez Soto, M. and Adeli, H. (2013), “Tuned Mass Dampers. Archives of Computational Methods in Engineering,” Springer New York, 20(4), 419-431. [3] Li, Q.S.,M.ASCE, Zhi, L.H., Tuan, A.Y., Kao, C.S. (2010), “Dynamic behavior of Taipei 101 Tower: field measurement and numerical analysis,” Journal of Structural Engineering, 137(1), 143-155. [4] De Angelis, M., Perno, S. and Reggio, A. (2012), “Dynamic response and optimal design of structures with large mass ratio TMD,” Earthquake Engineering & Structural Dynamics, 41(1), 41-60. [5] Soong, T.T. and Dargush, G.F. (1997), “Passive energy dissipation systems in structural engineering,”John Wiley & Sons Inc,10,74-84 [6] Den Hartog, J.P. (1956).,Mechanical vibrations (4th edn), McGraw-Hill:New York. [7] Sadek, F., Mohraz, B., Taylor,A.W., Chung, R.M. (2007), “A method of estimating the parameters of tuned mass dampers for seismic applications,” Earthquake Engineering & Structural Dynamics, 26(6), 617-635. [8] Ghosh, A. and Basu , B. (2007), “A closed‐form optimal tuning criterion for TMD in damped structures,” Journal of the International Association for Structural Control and Monitoring, 14(4), 681-692. [9] Hoang, N., Y. Fujino, and P. Warnitchai (2008), “Optimal tuned mass damper for seismic applications and practical design formulas,” Journal of Engineering Mechanics, 30(3), 707-715. [10] Tsai, H. C. and Lin, G. C. (1993). “Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems,” ASCE Journal of Engineering Mechanics, 120(2), 135-158. [11] Bakre, S. and Jangid, R. (2007), “Optimum parameters of tuned mass damper for damped main system,” Journal of the International Association for Structural Control and Monitoring, 14(3), 448-470. [12] Chung, L.L., Wu, L.Y., Huang, H.H., Chang, C.H., Lien, K.H. (2009), “Optimal design theories of tuned mass dampers with nonlinear viscous damping.” Earthquake engineering and engineering vibration, 8(4), 547-560. [13] Vakakis, A.F. and Gendelman, O. (2001), “Energy pumping in nonlinear mechanical oscillators: part II—resonance capture,” Journal of Applied Mechanics, 68(1), 42-48. [14] Gendelman, O. V. (2001), “Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators,” Nonlinear dynamics Springer New York, 25(1-3), 237-253. [15] Vakakis, A. F. (2001), “Inducing passive nonlinear energy sinks in vibrating systems,” Journal of Vibration and Acoustics, 123(3), 324-332. [16] Gendelman, O. and Starosvetsky, Y. (2007), “Quasi-periodic response regimes of linear oscillator coupled to nonlinear energy sink under periodic forcing,” Journal of applied mechanics, 74(2), 325-331. [17] Alexander, N.A. and Schilder, F. (2009), “Exploring the performance of a nonlinear tuned mass damper,” Journal of Sound and Vibration, 319(1-2), 445-462. [18] Gatti, G., Kovacic, I. and Brennan, M.J. (2010), “On the response of a harmonically excited two degree-of-freedom system consisting of a linear and a nonlinear quasi-zero stiffness oscillator,” Journal of Sound and Vibration, 329(10), 1823-1835. [19] Andersen, D., Vakakis, A. and Bergman, L. (2011), “Dynamics of a System of Coupled Oscillators With Geometrically Nonlinear Damping, in Nonlinear Modeling and Applications, Volume 2,” Springer New York, 1-7. [20] Andersen, D., Vakakis, A., Bergman, L., Starosvetsky, Y. (2012), “Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping,” Nonlinear Dynamics Springer New York, 67(1), 807-827. [21] Duncan, M., C. Wassgren, and C. Krousgrill (2005), “The damping performance of a single particle impact damper,” Journal of Sound and Vibration, 286(1-2), 123-144. [22] Karayannis, I., Vakakis, A. and Georgiades, F. (2008), “Vibro-impact attachments as shock absorbers. Proceedings of the Institution of Mechanical Engineers, Part C,” Journal of Mechanical Engineering Science, 222(10), 1899-1908. [23] Al-Shudeifat, M.A., Wierschem, N., Quinnc, D.D., Vakakis, A.F., Bergman, L.A., Spencer Jr., B.F. (2013), “Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation,” International journal of non-linear mechanics, 52, 96-109. [24] Nucera, F., McFarland, Bergman, L.A., D.M., Kerschen, G. (2007), “Targeted energy transfers in vibro-impact oscillators for seismic mitigation,” Nonlinear Dynamics Springer New York, 50(3), 651-677. [25] Wang, J., Wierschem, E.N., Spencer Jr., B.F. (2014), “Track nonlinear energy sink for rapid response reduction in building structures,” Journal of Engineering Mechanics, 141(1), 40-46. [26] Wang, J., Wierschem, E.N., Spencer Jr., B.F., Lu, X. (2016), “Numerical and experimental study of the performance of a single‐sided vibro‐impact track nonlinear energy sink.” Earthquake Engineering & Structural Dynamics. 45(4), 635-652. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73702 | - |
| dc.description.abstract | 臺灣位於歐亞板塊和菲律賓板塊間之擠壓地帶,地震活動非常活躍,對於如何減輕結構在地震時的反應為重大研究方向。調諧質量阻尼器(Tuned Mass Damper)是目前廣泛使用的被動控制系統,然而使用線性彈簧作為調頻機制,利用於低樓層建築中,將受到主結構頻率較低,而限制其使用性。另外,調頻範圍也限於單一頻率,在結構遭受損傷致使勁度及自然頻率改變時,將影響控制效果。本研究將研發新型的被動控制系統,稱為兩段式非線性單擺式質量阻尼器(Dual-length Nonlinear Pendulum),基於調諧質量阻尼器的理論與非線性調諧質量阻尼器(Nonlinear Energy Sinks)提供幾何非線性回復力為設計基礎。將調諧質量阻尼器調頻機制,提升為單擺吊裝質量球,利用在擺動中角度變化所帶來的非線性勁度,使調頻範圍不再只受限於單一頻率;將擺幅範圍內,增加使擺長改變的阻擋版機制,使擺長將隨著輸入外力大小的不同,隨之改變兩種長度,期待在中小型地震與大地震中使用不同區段的消能機制,藉此提升此被動控制系統在低樓層建築的使用性範圍。
本研究將此非線性系統之數值模型建立於電腦軟體MATLAB中進行模擬,透過內建求解函數迭代,進而得到精準的模擬成果。由於非線性系統在分析方法選擇上具有限制性,故本研究將系統控制效果以位移控制作為判斷標準,並且以小波轉換呈現頻率以及能量的變化。在數值模擬分析中,施加不同類型的外力,並利用上述分析方法了解此非線性系統在頻率域及時間域所具有的特性,以及提供的控制行為,藉此歸納出最具控制效果的參數。在實驗驗證部分,以一兩層樓之試體,於此試體加裝本研究所研發之阻尼器,利用振動台提供地震力輸入,驗證本研究所研發項目,具有符合期待的控制效果展現。 | zh_TW |
| dc.description.abstract | Tuned Mass Damper (TMD) is one of well-known passive control systems that can effectively reduce structural responses under seismic excitations. However, due to the high fundamental frequency in low-rise buildings, the allowable displacement is insufficient to accommodate excessive responses during severe earthquakes. In addition, the functionality of a single tuned mass damper is limited to tune an individual frequency, leading to overestimated performance while variation of stiffness occurs. Therefore, an innovative passive control system, entitled “Dual-length Nonlinear Pendulum”, is proposed in this study. This pendulum can provide variable resonances during swinging and result in an applicable frequency range. By means of a specific stopper, the length of a pendulum can be suddenly changed to a short one and yield a high-frequency resonance. Then, the energy from earthquakes is more effectively transferred to high frequencies, and the structural responses can be quickly damped out. Therefore, a pendulum with a stopper has higher capability of mitigating structural responses during severe to extreme earthquake events.
In this study, the dual-length nonlinear pendulum is developed and experimentally verified for a seismically-excited model building. First, the numerical model of this nonlinear pendulum is established to understand the dynamic behavior and control performance. A series of parametric studies are carried out to explore the effectiveness and functionality of this nonlinear pendulum for a low-rise building (e.g., with a relatively high fundamental frequency). These studies include the instantaneous natural frequency and mode shapes with respect to positions, frequency-domain amplitudes under harmonic excitation, frequency content due to impulsive loads, energy distributions during earthquakes, and seismic performance. Then, a design example is provided in accordance with the parametric studies, and the dual lengths of the nonlinear pendulum are to tune the first and second natural frequencies of a building. Seismic performance of the building with the optimally designed nonlinear pendulum is also numerically evaluated. Moreover, a two-story, shear-type model building is fabricated to experimentally investigate and verify seismic performance of the proposed dual-length nonlinear pendulum. During the test, records from 1999 Chi-Chi earthquake are considered as the ground excitation. Performance of the nonlinear pendulum is also compared to the uncontrolled bare frame building and the building with a tuned mass damper. This nonlinear pendulum exhibits a high ability to reduce structural responses during relatively large earthquakes. As seen in the experimental results, the proposed dual-length nonlinear pendulum has higher performance than the conventional tuned mass damper, in particular when structural degradation occurs or seismic intensity becomes large. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:08:22Z (GMT). No. of bitstreams: 1 ntu-108-R06521239-1.pdf: 29448932 bytes, checksum: 173317505976a5be736052854e867e63 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 I 摘要 III Abstract V 目錄 VII 圖目錄 XI 表目錄 XV 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 研究內容 4 第二章 數值模型建立 5 2.1 前言 5 2.2 拉格朗日方程式 5 2.3 系統矩陣建立 7 2.3.1 勁度矩陣的建立 8 2.3.2 多自由度系統矩陣建立 8 2.4 兩段式單擺擺長參數建立 10 2.4.1 Den Hartog’s Method設計準則 11 2.4.2 單擺自然頻率與單擺擺長 12 2.4.3 第二段單擺擺長 13 2.4.4 擺幅碰撞 14 2.5 系統狀態數值模擬方法 15 2.6 小結 16 第三章 數值分析方法 18 3.1 前言 18 3.2 特徵分析方法 18 3.2.1 特徵值分析 18 3.2.2 特徵向量分析 20 3.3 頻率域分析方法 21 3.3.1 頻率與振幅關係 21 3.3.2 傅立葉變換 23 3.3.3 小波轉換 24 3.4 時間域分析方法 25 3.4.1 系統狀態之反應極值與方均根 25 3.4.2 各樓層系統狀態之動能 27 3.5 小結 27 第四章 兩段式非線性單擺式質量阻尼器之設計 29 4.1 前言 29 4.2 衝擊外力下系統性能探討 29 4.2.1 初始位移下系統性能探討 30 4.2.2 初始速度下系統性能探討 39 4.2.3 一個週期正弦波下系統性能探討 45 4.2.4 連續正弦波下頻率反應與振幅反應關係 49 4.3 地震力下系統性能探討 56 4.3.1 地表加速度輸入選取 56 4.3.2 PGA=0.3g設計地震力下系統性能探討 65 4.3.3 PGA=0.05g及PGA=0.5g設計地震力下系統性能探討 75 4.4 最佳設計數值分析 90 4.4.1 系統狀態特性分析 90 4.4.2 系統狀態動能分析 97 4.5 小結 98 第五章 實驗驗證及結果 99 5.1 前言 99 5.2 實驗配置及架構 99 5.2.1 實驗構架設計 99 5.2.2 兩段式非線性單擺式質量阻尼器機構設計 103 5.2.3 實驗設備 107 5.2.4 地震力歷時 111 5.3 實驗流程及設計 111 5.3.1 實驗流程 111 5.3.2 N.P.系統實驗參數設計 115 5.4 實驗結果 122 5.4.1 CHY028測站E-W向地震歷時結果比較 122 5.4.2 實驗結果各項性能比較 134 5.5 小結 158 第六章 結論與未來展望 160 6.1 結論 160 6.2 未來展望 162 參考文獻 164 | |
| dc.language.iso | zh-TW | |
| dc.subject | 低樓層建築 | zh_TW |
| dc.subject | 結構控制 | zh_TW |
| dc.subject | 兩段式非線性單擺式質量阻尼器 | zh_TW |
| dc.subject | 實驗驗證 | zh_TW |
| dc.subject | 耐震性能 | zh_TW |
| dc.subject | Seismic Performance | en |
| dc.subject | Structural Control | en |
| dc.subject | Low-rise Buildings | en |
| dc.subject | Experimental Verification | en |
| dc.subject | Dual-length Nonlinear Pendulum | en |
| dc.title | 兩段式非線性單擺式質量阻尼器之研發與實驗驗證 | zh_TW |
| dc.title | Development and experimental verification of Dual-length nonlinear pendulum for seismic protection of buildings | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林子剛,楊卓諺 | |
| dc.subject.keyword | 結構控制,兩段式非線性單擺式質量阻尼器,實驗驗證,耐震性能,低樓層建築, | zh_TW |
| dc.subject.keyword | Structural Control,Dual-length Nonlinear Pendulum,Experimental Verification,Seismic Performance,Low-rise Buildings, | en |
| dc.relation.page | 167 | |
| dc.identifier.doi | 10.6342/NTU201903832 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 28.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
