Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73698
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李百祺
dc.contributor.authorHung-Chih Koen
dc.contributor.author葛竑志zh_TW
dc.date.accessioned2021-06-17T08:08:17Z-
dc.date.available2024-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-17
dc.identifier.citation[1] S. N. Goldberg, 'Radiofrequency tumor ablation: principles and techniques,' Eur J Ultrasound, vol. 13, no. 2, pp. 129-47, Jun 2001.
[2] C. J. Simon, D. E. Dupuy, and W. W. Mayo-Smith, 'Microwave ablation: principles and applications,' Radiographics, vol. 25 Suppl 1, pp. S69-83, Oct 2005.
[3] Y. H. Wang, A. H. Liao, J. H. Chen, C. R. Wang, and P. C. Li, 'Photoacoustic/ultrasound dual-modality contrast agent and its application to thermotherapy,' J Biomed Opt, vol. 17, no. 4, pp. 045001, Apr 2012.
[4] D. O. Lapotko, E. Lukianova, and A. A. Oraevsky, 'Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles,' Lasers Surg Med, vol. 38, no. 6, pp. 631-42, Jul 2006.
[5] Y. S. Chen et al., 'Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy,' Opt Express, vol. 18, no. 9, pp. 8867-78, Apr 2010.
[6] K. H. Song, C. Kim, K. Maslov, and L. V. Wang, 'Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,' Eur J Radiol, vol. 70, no. 2, pp. 227-31, May 2009.
[7] H. Ju, R. A. Roy, and T. W. Murray, 'Gold nanoparticle targeted photoacoustic cavitation for potential deep tissue imaging and therapy,' Biomed Opt Express, vol. 4, no. 1, pp. 66-76, Jan 2013.
[8] M. J. Blomley, J. C. Cooke, E. C. Unger, M. J. Monaghan, and D. O. Cosgrove, 'Microbubble contrast agents: a new era in ultrasound,' BMJ, vol. 322, no. 7296, pp. 1222-5, May 2001.
[9] S. Sirsi and M. Borden, 'Microbubble Compositions, Properties and Biomedical Applications,' Bubble Sci Eng Technol, vol. 1, no. 1-2, pp. 3-17, Nov 2009.
[10] W. Cui et al., 'Preparation and evaluation of poly(L-lactide-co-glycolide) (PLGA) microbubbles as a contrast agent for myocardial contrast echocardiography,' J Biomed Mater Res B Appl Biomater, vol. 73, no. 1, pp. 171-8, Apr 2005.
[11] B. Krasovitski, H. Kislev, and E. Kimmel, 'Modeling photothermal and acoustical induced microbubble generation and growth,' Ultrasonics, vol. 47, no. 1-4, pp. 90-101, Dec 2007.
[12] W. Lauterborn, T. Kurz, R. Geisler, D. Schanz, and O. Lindau, 'Acoustic cavitation, bubble dynamics and sonoluminescence,' Ultrason Sonochem, vol. 14, no. 4, pp. 484-91, Apr 2007.
[13] J. Turánek et al., P. A. Serra, Ed. Lipid-based nanoparticles and microbubbles–multifunctional lipid-based biocompatible particles for in vivo imaging and theranostics. Rijeka: InTech Inc., 2015, pp. 79-116.
[14] A. Delalande, S. Kotopoulis, M. Postema, P. Midoux, and C. Pichon, 'Sonoporation: mechanistic insights and ongoing challenges for gene transfer,' Gene, vol. 525, no. 2, pp. 191-9, Aug 2013.
[15] G. Peruzzi, G. Sinibaldi, G. Silvani, G. Ruocco, and C. M. Casciola, 'Perspectives on cavitation enhanced endothelial layer permeability,' Colloids Surf B Biointerfaces, vol. 168, pp. 83-93, Aug 2018.
[16] N. Y. Rapoport, A. L. Efros, D. A. Christensen, A. M. Kennedy, and K. H. Nam, 'Microbubble Generation in Phase-Shift Nanoemulsions used as Anticancer Drug Carriers,' Bubble Sci Eng Technol, vol. 1, no. 1-2, pp. 31-39, 2009.
[17] M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, 'Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions,' Pharm Res, vol. 27, no. 12, pp. 2753-65, Dec 2010.
[18] A. Hannah, G. Luke, K. Wilson, K. Homan, and S. Emelianov, 'Indocyanine green-loaded photoacoustic nanodroplets: dual contrast nanoconstructs for enhanced photoacoustic and ultrasound imaging,' ACS Nano, vol. 8, no. 1, pp. 250-9, Jan 2014.
[19] K. Wilson, K. Homan, and S. Emelianov, 'Biomedical photoacoustics beyond thermal expansion using triggered nanodroplet vaporization for contrast-enhanced imaging,' Nat Commun, vol. 3, pp. 618, Jan 2012.
[20] S. W. Liu, W. W. Liu, and P. C. Li, 'Triggered vaporization of gold nanodroplets for enhanced photothermal therapy,' Proc SPIE BiOS, vol. 9323, pp. 93232C, 2015.
[21] N. Reznik et al., 'The efficiency and stability of bubble formation by acoustic vaporization of submicron perfluorocarbon droplets,' Ultrasonics, vol. 53, no. 7, pp. 1368-76, Sep 2013.
[22] W. G. Pitt, R. N. Singh, K. X. Perez, G. A. Husseini, and D. R. Jack, 'Phase transitions of perfluorocarbon nanoemulsion induced with ultrasound: a mathematical model,' Ultrason Sonochem, vol. 21, no. 2, pp. 879-91, Mar 2014.
[23] D. S. Li, O. D. Kripfgans, M. L. Fabiilli, J. Brian Fowlkes, and J. L. Bull, 'Initial nucleation site formation due to acoustic droplet vaporization,' Appl Phys Lett, vol. 104, no. 6, pp. 063703, Feb 2014.
[24] E. Strohm, M. Rui, I. Gorelikov, N. Matsuura, and M. Kolios, 'Vaporization of perfluorocarbon droplets using optical irradiation,' Biomed Opt Express, vol. 2, no. 6, pp. 1432-42, Jun 2011.
[25] J. D. Dove, P. A. Mountford, T. W. Murray, and M. A. Borden, 'Engineering optically triggered droplets for photoacoustic imaging and therapy,' Biomed Opt Express, vol. 5, no. 12, pp. 4417-27, Dec 2014.
[26] E. M. Strohm, M. Rui, M. C. Kolios, I. Gorelikov, and N. Matsuura, 'Optical droplet vaporization (ODV): Photoacoustic characterization of perfluorocarbon droplets,' IEEE ultrason symp, pp. 495-8, 2010.
[27] W. W. Liu et al., 'Nanodroplet-Vaporization-Assisted Sonoporation for Highly Effective Delivery of Photothermal Treatment,' Sci Rep, vol. 6, pp. 24753, Apr 2016.
[28] C. W. Wei et al., 'Laser-induced cavitation in nanoemulsion with gold nanospheres for blood clot disruption: in vitro results,' Opt Lett, vol. 39, no. 9, pp. 2599-602, May 2014.
[29] A. S. Hannah, G. P. Luke, and S. Y. Emelianov, 'Blinking Phase-Change Nanocapsules Enable Background-Free Ultrasound Imaging,' Theranostics, vol. 6, no. 11, pp. 1866-76, 2016.
[30] J. Yu, X. Chen, F. S. Villanueva, and K. Kim, 'Vaporization and recondensation dynamics of indocyanine green-loaded perfluoropentane droplets irradiated by a short pulse laser,' J Appl Phys Lett, vol. 109, no. 24, pp. 243701, 2016.
[31] G. P. Luke, A. S. Hannah, and S. Y. Emelianov, 'Super-Resolution Ultrasound Imaging in Vivo with Transient Laser-Activated Nanodroplets,' Nano Lett, vol. 16, no. 4, pp. 2556-9, Apr 2016.
[32] R. Asami and K. Kawabata, 'Repeatable vaporization of optically vaporizable perfluorocarbon droplets for photoacoustic contrast enhanced imaging,' IEEE ultrason symp, pp. 1200-3, 2012.
[33] H. Yoon, S. K. Yarmoska, A. S. Hannah, C. Yoon, K. A. Hallam, and S. Y. Emelianov, 'Contrast-enhanced ultrasound imaging in vivo with laser-activated nanodroplets,' Med Phys, vol. 44, no. 7, pp. 3444-9, Jul 2017.
[34] S. Lin et al., 'Optically and acoustically triggerable sub-micron phase-change contrast agents for enhanced photoacoustic and ultrasound imaging,' Photoacoustics, vol. 6, pp. 26-36, Jun 2017.
[35] O. Shpak, M. Verweij, H. J. Vos, N. de Jong, D. Lohse, and M. Versluis, “Acoustic droplet vaporization is initiated by superharmonic focusing,” Proc Natl Acad Sci U S A, vol. 111, no. 5, pp. 1697-702, 2014.
[36] M. Aliabouzar, K. N. Kumar, and K. Sarkar, 'Acoustic vaporization threshold of lipid-coated perfluoropentane droplets,' J Acoust Soc Am, vol. 143, no. 4, pp. 2001-12, Apr 2018.
[37] A. Bouakaz, S. Frigstad, F. J. Ten Cate, and N. de Jong, 'Super harmonic imaging: a new imaging technique for improved contrast detection,' Ultrasound Med Biol, vol. 28, no. 1, pp. 59-68, Jan 2002.
[38] N. De Jong, R. Cornet, and C. D. Lancée, “Higher harmonics of vibrating gas-filled microspheres. Part one: simulations,” Ultrasonics, vol. 32, no. 6, pp. 447-53, 1994.
[39] N. De Jong, R. Cornet, and C. D. Lancée, “Higher harmonics of vibrating gas-filled microspheres. Part two: Measurements,” Ultrasonics, vol. 32, no. 6, pp. 455-59, 1994.
[40] Y. Gong, D. Zhang, and X. Gong, “Subharmonic and ultraharmonic emissions based on the nonlinear oscillation of encapsulated microbubbles in ultrasound contrast agents,” Chinese Sci Bull, vol. 50, no. 18, pp. 1975-8, Sep 2005.
[41] A. Prosperetti, “A general derivation of the subharmonic threshold for non-linear bubble oscillations,” J Acoust Soc Am, vol. 133, no. 6, pp. 3719-26, Jun 2013.
[42] P. D. Krishna, P. M. Shankar, and V. L. Newhouse, “Subharmonic generation from ultrasonic contrast agents,” Phys Med Biol, vol. 44, no. 3, pp. 681, Mar 1999.
[43] M. Minnaert, “On musical air-bubbles and the sounds of running water,” Philos Mag, vol. 16, no. 104, pp. 235-48, 1933.
[44] P. S. Sheeran, T. O. Matsunaga, and P. A. Dayton, “Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures,” Phys Med Biol, vol. 59, no. 2, pp. 379, Jan 2014.
[45] D. E. Kruse and K. W. Ferrara, “A new imaging strategy using wideband transient response of ultrasound contrast agents,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 52, no. 8, pp. 1320-9, Aug 2005.
[46] C. Y. Lai, C. H. Wu, C. C. Chen, and P. C. Li, “Quantitative relations of acoustic inertial cavitation with sonoporation and cell viability,” Ultrasound Med Biol, vol. 32, no. 12, pp. 1931-41, Dec 2006.
[47] W. S. Chen, A. A. Brayman, T. J. Matula, L. A. Crum, and M. W. Miller, “The pulse length-dependence of inertial cavitation dose and hemolysis,” Ultrasound Med Biol, vol. 29, no. 5, pp. 739-48, May 2003.
[48] W. W. Liu, S. H. Huang, and P. C. Li, “Synchronized optical and acoustic droplet vaporization for effective sonoporation,” Pharmaceutics, vol. 11, no. 6, pp. 279, Jun 2019.
[49] Z. Fan, H. Liu, M. Mayer, and C. X. Deng, “Spatiotemporally controlled single cell sonoporation,” Proc Natl Acad Sci U S A, vol. 109, no. 41, pp. 16486-16491, 2012.
[50] P. Qin, L. Xu, T. Han, L. Du, and C. H. Alfred, “Effect of non-acoustic parameters on heterogeneous sonoporation mediated by single-pulse ultrasound and microbubbles,” Ultrason Sonochem, vol. 31, pp. 107-15, Jul 2016.
[51] A. Ishijima et al., “The lifetime evaluation of vapourised phase-change nano-droplets,” Ultrasonics, vol. 69, pp. 97-105, Jul 2016.
[52] T. Giesecke and K. Hynynen, “Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro,” Ultrasound Med Biol, vol. 29, no. 9, pp. 1359-65, Sep 2003.
[53] N. Reznik, R. Williams and P. N. Burns, “Investigation of vaporized submicron perfluorocarbon droplets as an ultrasound contrast agent,” Ultrasound Med Biol, vol. 37, no. 8, pp. 1271-9, Aug 2011.
[54] M. L. Fabiilli et al., “The role of inertial cavitation in acoustic droplet vaporization,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 56, no. 5, pp. 1006-1017, May 2009.
[55] T. Porter and P. Zhang, “Temperature and size-dependence of the vaporization threshold of phase-shift emulsions,” J Acoust Soc Am, vol. 123, no. 5, pp. 2997, Jul 2008.
[56] R. Williams et al., “Characterization of submicron phase-change perfluorocarbon droplets for extravascular ultrasound imaging of cancer,” Ultrasound Med Biol, vol. 39, no. 3, pp. 475-89, Oct 2012.
[57] A. S. Hannah, D. VanderLaan, Y. S. Chen and S. Y. Emelianov, “Photoacoustic and ultrasound imaging using dual contrast perfluorocarbon nanodroplets triggered by laser pulses at 1064 nm,” Biomed Opt Express, vol. 5, no. 9, pp. 3042-52, Aug 2014.
[58] B. Krasovitski, H. Kislev, and E. Kimmel, “Modeling photothermal and acoustical induced microbubble generation and growth,” Ultrasonics, vol. 47, no. 1-4, pp. 90-101, Dec 2007.
[59] C. H. Farny, T. Wu, R. G. Holt, T. W. Murray and R. A. Roy, “Nucleating cavitation from laser-illuminated nano-particles.” Acoust Res Lett Online, vol. 6, no. 3, pp. 138-143, June 2005.
[60] D. L. Miller, A. R. Williams, J. E. Morris, and W. B. Chrisler, “Sonoporation of erythrocytes by lithotripter shockwaves in vitro,” Ultrasonics, vol. 36, no. 9, pp. 947-52, Aug 1998.
[61] H. Pan, Y. Zhou, O. Izadnegahdar, J. Cui, and C. X. Deng, “Study of sonoporation dynamics affected by ultrasound duty cycle,” Ultrasound Med Biol, vol. 31, no. 6, pp. 849-56, Jun 2005.
[62] K. Keyhani, H. R. Guzmán, A. Parsons, T. N. Lewis, and M. R. Prausnitz, “Intracellular drug delivery using low-frequency ultrasound: quantification of molecular uptake and cell viability,” Pharm Res, vol. 18, no. 11, pp. 1514-20, Nov 2001.
[63] L. M. López-Marín et al., “Shock wave-induced damage and poration in eukaryotic cell membranes,” J Membr Biol, vol. 250, no. 1, pp. 41-52, Feb 2017.
[64] D. L. Miller, S. V. Pislaru, and J. F. Greenleaf, “Sonoporation: mechanical DNA delivery by ultrasonic cavitation,” Somat Cell Mol Genet, vol. 27, no. 1-6, pp. 115-34, Nov 2002.
[65] Y. Gao et al., “Controlled nanoparticle release from stable magnetic microbubble oscillations,” NPG Asia Mater, vol. 8, no. 4, pp. e260, Apr 2016.
[66] A. D. Maxwell et al., “Noninvasive thrombolysis using pulsed ultrasound cavitation therapy–histotripsy,” Ultrasound Med Biol, vol. 35, no. 12, pp. 1982-94, Dec 2009.
[67] H. Lin, J. Chen, and C. Chen, “A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation,” Med Biol Eng Comput, vol. 54, no. 9, pp. 1317-30, Sep 2016.
[68] J. H. Xu, S. W. Li, G. G. Chen, and G. S. Luo, “Formation of monodisperse microbubbles in a microfluidic device,” AICHE J, vol. 52, no. 6, pp. 2254-9, Mar 2006.
[69] S. Ten Klooster, S. Sahin, and K. Schroën, “Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device,” Sci Rep, vol. 9, no. 1, pp. 7820, May 2019.
[70] Y. C. Tan, V. Cristini, and A. P. Lee, “Monodispersed microfluidic droplet generation by shear focusing microfluidic device,” Sensor Actuat B-Chem, vol. 114, no. 1, pp. 350-6, Mar 2006.
[71] J. H. Xu, S. W. Li, J. Tan, Y. J. Wang, and G. S Luo, “Preparation of highly monodisperse droplet in a T‐junction microfluidic device,” AICHE J, vol. 52, no. 9, pp. 3005-10, Jun 2006.
[72] L. H. Hung, S. Y. Teh, J. Jester, and A. P. Lee, “PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches,” Lab Chip, vol. 10, no. 14, pp. 1820-5, Jul 2010.
[73] Y. Y. C. Sang, E. Lorenceau, S. Wahl, M. Stoffel, D. E. Angelescu, and R. Höhler, “A microfluidic technique for generating monodisperse submicron-sized drops,” RSC Adv, vol. 3, no. 7, pp. 2330-5, Jan 2013.
[74] J. Wang et al., “Droplet microfluidics for the production of microparticles and nanoparticles,” Micromachines, vol. 8, no. 1, pp. 22, Jan 2017.
[75] S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab Chip, vol. 8, no. 2, pp. 198-220, Feb 2008.
[76] Y. H. Hsu, M. L. Moya, C. C. Hughes, S. C. George, and A. P. Lee, “A microfluidic platform for generating large-scale nearly identical human microphysiological vascularized tissue arrays,” Lab Chip, vol. 13, no. 15, pp. 2990-8, Aug 2013.
[77] Y. H. Hsu, M. L. Moya, P. Abiri, C. C. Hughes, S. C. George, and A. P. Lee, “Full range physiological mass transport control in 3D tissue cultures,” Lab Chip, vol. 13, no. 1, pp. 81-9, Jan 2013.
[78] S. M. Weis and D. A. Cheresh, “Tumor angiogenesis: molecular pathways and therapeutic targets,” Nat Med, vol. 17, no. 11, pp. 1359, Nov 2011.
[79] D. Fukumura and R. K. Jain, “Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization,” Microvasc Res, vol. 74, no. 2-3, pp. 72-84, Nov 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73698-
dc.description.abstract金奈米液滴為近年光熱治療研究中常使用到的載體,相對於早期研究所使用的微氣泡載體,不僅擁有較高的穩定度,更因為其相當微小的粒徑,將能通過腫瘤組織之血管新生區域,並透過增強滲透滯留效應增進釋放效率。金奈米液滴受到聲壓或熱能激發後將汽化成微氣泡,當聲壓足夠時更可引起穴蝕效應。如此短時間內所發生的體積變化將會在鄰近區域內產生衝擊波,因此可在液滴周遭細胞的細胞膜上造成聲穿孔作用,藉此達到運送藥物或奈米金桿至細胞內的效果。然而誘發液滴產生穴蝕效應所需的能量通常較微氣泡來得高,很可能會有對周邊正常組織造成傷害的疑慮。此外,穴蝕效應發生的同時也將迅速消耗載體的數目,導致治療成效與超音波對比度的下降。為了減少激發能量的同時兼顧物質釋放效率及載體的耗損量,本研究提出以液滴汽化過程作為誘發聲穿孔作用的機制,係基於汽化與穴蝕效應皆屬於液滴所產生之快速體積變化的觀察,因此提出汽化過程應能造成聲穿孔作用的假說。此外,利用汽化後微氣泡可再凝結回液態的特性,將提供液滴再次汽化來增進聲穿孔作用的可能性,預期將可透過反覆較低能量的激發過程提高物質釋放的效果。本研究首先將液滴固定於仿體結構中,並透過聲學方法誘發液滴汽化,確認了以人類血清白蛋白液滴包覆全氟戊烷製備之液滴具有可重複性汽化特性。另一方面,相較於傳統研究中普遍使用純光學或純聲學方法激發液滴,本研究則結合光學與聲學方法同步激發,大幅降低了誘發汽化與穴蝕效應所需的能量。於此架構下,將激發條件控制在能夠使液滴汽化但並不足以引發穴蝕效應的狀態時,觀察到汽化事件確實能夠引起聲穿孔效應,且其效率隨激發次數增加而有加強的趨勢,甚至可達到與穴蝕效應產生之聲穿孔效率相當的程度。本研究結果證實液滴汽化事件即可造成聲穿孔效應,於液滴作為藥物載體的臨床用途上,將可用較安全的激發能量促進藥物的局部釋放,並由於汽化後的微氣泡較不容易受到破壞,除了在促進釋放的過程中可降低液滴用量,更在多次激發過程中仍能維持超音波影像中的對比度。zh_TW
dc.description.abstractGold nano-droplets (AuNDs) are commonly used vehicles in photothermal therapies. In comparison to gold microbubbles (AuMBs) that have been deployed in early research, AuNDs are not only stable but also capable of passing through angiogenesis regions in a tumor because of their relatively small size. Thus, AuNDs possess a high releasing efficiency with the aid of enhanced permeability effect (EPR). AuNDs can be vaporized into microbubbles either acoustically or optically. When sufficient energy is given, cavitation takes place and results in shock waves around the microbubbles. It is the mechanical force generated from the volumetric shift that gives rise to sonoporation effect on nearby cells so that drugs or therapeutic agents can be transferred from the vehicles to the cells. However, it requires a high level of energy to drive cavitation leaving potential to damage normal tissue during the treatment. In addition, since cavitation resulting from micro bubble destruction cannot be repeated, its delivery performance and ultrasound echogenicity can drastically change. With the aim of reducing the driving energy and allowing repeatable effects, in this research, we propose a mechanism that induces sonoporation based on droplets vaporization. It is based on the fact that vaporization and cavitation both present rapid volumetric changes. We hypothesize that the subsequent mechanical force generated from the vaporization can also induce sonoporation. Under this proposed mechanism, we can leverage recondensation of the vaporized nano-droplets (i.e. from gas phase to liquid phase), and further enhance the sonoporation efficiency through the repeated recondensation-vaporization process. In our research, we immobilized AuNDs into an agarose phantom and activated the droplets through acoustic vaporization. We confirmed the ability to perform repeatable vaporization on human serum albumin (HSA)-coated perfluoropentane (PFP) droplets. On the other hand, we developed a more efficient vaporization method by synchronizing the acoustic pulse with the laser pulse. Under the same framework, we have found several activation conditions that can vaporize the droplets without significant cavitation effects. Besides, it is evidenced that the vaporization events can induce sonoporation. Although vaporization-based sonoporation was not as effective as that of cavitation-based sonoporation, we found a significant increment when multiple activations were given. Eventually, the sonoporation effects can reach to a similar level as that of the cavitation-based approach. In summary, we demonstrated that vaporization leads to sonoporation. It has the potential to be a safer strategy for enhancing the delivery efficiency in clinical applications. In other words, the vaporization-based approach requires a relatively low driving energy, reduces droplet consumption and preserves the ultrasound contrast at the same time.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:08:17Z (GMT). No. of bitstreams: 1
ntu-108-R06945021-1.pdf: 17360192 bytes, checksum: 87f1ef1715648edb876f85a4391d077a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xi
Chapter 1 序論 1
1.1 光熱治療 1
1.2 微氣泡治療潛力 2
1.2.1 微氣泡 2
1.2.2 穴蝕效應與聲穿孔作用 3
1.3 金奈米液滴治療潛力 4
1.3.1 奈米液滴與拉普拉斯壓力 4
1.3.2 液滴汽化 6
1.3.3 再凝結作用 7
1.4 研究動機 9
Chapter 2 研究方法 11
2.1 金奈米液滴之製備與量測 11
2.2 液滴仿體架構 12
2.2.1 液滴仿體之製備 12
2.2.2 聲學激發架構 12
2.2.3 超音波影像定量汽化事件 13
2.3 光聲聚焦架構與系統設計 13
2.3.1 仿體設計 13
2.3.2 光學與聲學聚焦架構 13
2.3.3 光學與聲學同步系統 14
2.3.4 超音波飛行時間量測 17
2.3.5 汽化訊號之定量 17
2.3.6 慣性穴蝕效應之定量 19
2.3.7 聲穿孔效應之定量 20
Chapter 3 研究結果 23
3.1 液滴製備結果 23
3.1.1 液滴粒徑量測 23
3.1.2 抗體接合液滴 24
3.2 可重複性汽化之可行性 26
3.2.1 聲學誘發可重複性汽化 26
3.3 誘發可重複性汽化之激發條件 28
3.3.1 以不同聲壓調整汽化與穴蝕效應事件 28
3.3.2 液滴受雷射激發次數之動態變化 29
3.3.3 超音波影像定量汽化事件 32
3.4 基於汽化之聲穿孔作用 34
3.4.1 引發聲穿孔作用之激發條件 34
3.4.2 激發次數對聲穿孔作用之影響 38
Chapter 4 討論 43
4.1 可重複性汽化之演示 43
4.1.1 液滴仿體之結果 43
4.1.2 光聲同步激發架構之結果 44
4.2 聲穿孔效率之討論 46
4.2.1 誘發液滴汽化與穴蝕效應之激發條件 46
4.2.2 有效引發聲穿孔之激發條件 49
4.2.3 汽化事件引發之聲穿孔作用 50
4.2.4 激發次數影響聲穿孔效率 51
4.3 實用性之討論 54
Chapter 5 結論與未來工作 56
5.1 研究結論 56
5.2 未來工作 56
5.2.1 以微流道系統製作液滴 56
5.2.2 體外血管腫瘤細胞實驗 58
引用文獻 61
dc.language.isozh-TW
dc.subject穴蝕效應zh_TW
dc.subject聲穿孔效應zh_TW
dc.subject光熱治療zh_TW
dc.subject聲學激發相變液滴汽化zh_TW
dc.subject光學激發相變液滴汽化法zh_TW
dc.subjectAcoustic Droplet Vaporizationen
dc.subjectThermotherapyen
dc.subjectSonoporationen
dc.subjectOptical Droplet Vaporizationen
dc.subjectCavitationen
dc.title基於金奈米液滴汽化之聲穿孔效應研究zh_TW
dc.titleSonoporation Based on Gold Nano-Droplets Vaporizationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈哲州,廖愛禾,王昱欣
dc.subject.keyword穴蝕效應,聲穿孔效應,光熱治療,聲學激發相變液滴汽化,光學激發相變液滴汽化法,zh_TW
dc.subject.keywordCavitation,Sonoporation,Thermotherapy,Acoustic Droplet Vaporization,Optical Droplet Vaporization,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201903966
dc.rights.note有償授權
dc.date.accepted2019-08-18
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
16.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved