請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73694
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張育森(Yu-Sen Chang) | |
dc.contributor.author | Rong-Wei Zhuang | en |
dc.contributor.author | 莊鎔瑋 | zh_TW |
dc.date.accessioned | 2021-06-17T08:08:12Z | - |
dc.date.available | 2026-02-01 | |
dc.date.copyright | 2021-03-11 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-02 | |
dc.identifier.citation | 朱建鏞. 1997. 品種、小葉數以及季節對玫瑰花單節扦插繁殖之影響.中國園藝. 43:29-40. 吳俊偉. 2003. 環境綠化植物耐陰性指標之硏究. 國立台灣大學園藝暨景觀學系研究所碩士論文. 中華民國. 台北. 李哖. 1998. 九重葛. 財團法人七星環境綠化基金會. 中華民國. 台北. 李瑞美.2012. 光線、限水與乙烯釋放劑對九重葛‘台北紅’生長與開花之影響. 國立台灣大學園藝暨景觀學系研究所碩士論文. 中華民國, 台北. 阮文忠. 2010. 遮光和氮肥對聖誕紅插穗生產和盆花品質之影響. 國立中興大學園藝系研究所碩士論文. 中華民國. 台中. 房經貴、曹雪、黃振喜、楊光、王晨、於華平. 2010. 夏黑葡萄不同節段硬枝扦插成苗的研究. 中外葡萄與葡萄酒. 2:23-25. 林伯年、堀內昭作、沈德緒. 1994. 園藝植物繁育學. 上海科學技術出版社. 上海. 涂旭帆. 2010.九重葛生殖生長之影響因子. 國立中興大學園藝學系研究所碩士論文. 中華民國. 台中. 施建羽. 2012. 影響四季桂插穗發根若干因子研究. 亞熱帶植物科學41:48-50. 許嘉錦. 2010. 火炬九重葛盆花之栽培與利用. 臺東區農業專訊. 73:21-24. 許嘉錦. 2013. 新型態火炬九重葛盆花栽培技術. 臺東區農業專訊. 86:18-21. 郭能禎. 2001. 植物生長調節劑、枝條成熟度及修剪方式對九重葛生長及開花之影響. 國立台灣大學園藝暨景觀學系研究所碩士論文. 中華民國. 台北. 張道輝、王甲威、宗曉娟、魏海蓉、徐麗、劉慶忠. 2012. 藍莓新梢扦插育苗設施光溫濕半自動聯控系統的研製. Transactions of the Chinese Society of Agri. Engineering. 28:8-18. 陳彥睿、許謙信. 1997. 玫瑰花‘沙蔓莎’品種扦插繁殖之研究. 臺中區農業改良場研究彙報. 55:1-50. 陳淑真、熊同銓. 2003. 玫瑰葉齡及品種對於光合作用之影響. 華岡農科學報. 1:73-83. 陳惠菁、張育森. 1999. 插穗直徑、發根劑以及扦插時期對九重葛插穗生長之影響. 中國園藝 45:417-426. 黃妍蓉. 2012. 插穗狀態與化學藥劑對花木類植物插穗發根之影響. 國立台灣大學園藝暨景觀學系研究所碩士論文. 中華民國, 台北. 黃秀真、張允瓊. 2012. 生長素對銀柳扦插苗生長之影響. 國立宜蘭大學生物資源學刊 8:13-25. 萬蜀淵. 1996. 園藝植物繁殖學. 中國農業出版社. 北京. 葉姿瑩. 2006. 生產迷你型聖誕紅之新方法.國立中興大學園藝學系研究所碩士論文. 中華民國. 台中. 劉哲維. 2019. 百香果扦插繁殖方法建立及扦插, 嫁接扦插與嫁接苗植株生長發育之調查. 劉悅明、傅小霞、譚梓軒. 2017. 三角梅的嫩枝扦插繁殖初探. 廣東園林, 23:82-85 劉慶忠、趙紅軍、鄭亞芹、王俠禮、石立岩. 2001. 高灌藍莓微體繁殖技術研究初報. 落葉果樹. 33:1-3. 賴允慧. 2004. 扶桑花扦插繁殖技術之研究. 國立台灣大學園藝暨景觀學系研究所碩士論文. 中華民國. 台北. 戴廷恩、林宗賢. 1996. 黑葉荔枝不同葉齡葉片形態與光合作用特性之研究. 中國園藝 1:8-49. 謝志南、賴瑞雲、鐘讚華、林麗仙. 2008. 三角梅插穗扦插生根過程解剖學觀察. 閩西職業技術學院學報10:97-99. 謝志南、賴瑞雲、鐘讚華、張雪芹、林麗仙、蘇明華. 2010 a. 留葉配合IBA處理對三角梅插穗發根及生理生化指標的影響. 安徽農業科學 38:19980-19982. 謝志南、賴瑞雲、鐘讚華、張雪芹、林麗仙、蘇明華. 2010 b. 遮光對三角沒插穗生根及光合作用的影響. 安徽農業科學 38:16748-16750. 謝志南、鐘讚華、賴瑞雲、張雪芹、蘇明華. 2011. 基質溫度對三角梅插穗生根及其葉片光合作用的影響. 廣西植物 31:222-226. 魏茂勝. 2019. 不同處理對茶絨杜鵑扦插發根與生長的影響. J. Forest Environ. 39:27-31 Al-Salem, M. M., Karam, N. S. 2001. Auxin, wounding, and propagation medium affect rooting response of stem cuttings of Arbutus andrachne. HortScience 36:976-978. Atak, A., and Yalçın, T. 2014. Effects of different applications on rooting of Actinidia deliciosa ‘Hayward’ hardwood and softwood cuttings. Intl. Symposium on Kiwifruit 1096. p. 117-125. Awad, A. E., Kamel Dawh, A. and Attya, M. A. 1987. Cutting thickness and auxin affecting the rooting and consequently the growth, and flowering of Bougainvillea glabra L. Intl. Symp. on Prop. Ornamental Plants 226:445-454. Babita, S., Sindhu, S. S., Harendra, Y. and Saxena, N. K. 2017. Effect of exogenous rooting hormone on Bougainvillea cv. Thimma propagation through hardwood cuttings. HortFlora Res. Spectrum. 6:292-295. Bollmark, M. and Eliasson, L. 1990. Ethylene accelerates the breakdown of cytokinins and thereby stimulates rooting in Norway spruce hypocotyl cuttings. Physiologia Plantarum. 80:534-540. Borsani, O., Valpuesta, V. and Botella, M. A. 2001. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in arabidopsis seedlings. Plant Physiol. 126:1024-1030. Brand, M. H. 1997. Shade influences plant growth, leaf color, and chlorophyll content of Kalmia latifolia L. cultivars. HortScience 32:206-208. Buchala, A. J. and Schmid, A. 1979. Vitamin D and its analogues as a new class of plant growth substances affecting rhizogenesis. Nature. 280:230-231. Capenter, W. J. 1987. Medium temperatures and rooting response of azalea. Proc. Fla. State Hort. Soc. 100:328-330. Costa, J. M. and Challa, H. 2002. The effect of the original leaf area on growth of softwood cuttings and planting material of rose. Scientia Hort. 95:111-121. Davis, T. D., and Potter, J. R. 1985. Carbohydrates, water potential, and subsequent rooting of stored Rhododendron cuttings. HortScience 20:292-293. Davies, F. T., Geneve, R. L., Kester, D. E. and Hartmann, H. T. 2011. Hartmann and Kester's plant propagation: principles and practice. Prentice Hall. De Klerk, G. J. and Hanecakova, J. 2008. Ethylene and rooting of mung bean cuttings. The role of auxin induced ethylene synthesis and phase-dependent effects. Plant Growth Regulation. 56:203. Denaxa, N. K., Vemmos, S. N. and Roussos, P. A. 2012. The role of endogenous carbohydrates and seasonal variation in rooting ability of cuttings of an easy and a hard to root olive cultivars (Olea europaea L.). Scientia Hort. 143:19-28. Dore, J., 1965. Physiology of regeneration in cormophytes.. In: Differenzierung und Entwicklung/Differentiation and Dev. Springer, Berlin.. p. 1648-1738 Druege, U., Zerche, S., Kadner, R. and Ernst, M. 2000. Relation between nitrogen status, carbohydrate distribution and subsequent rooting of chrysanthemum cuttings as affected by pre-harvest nitrogen supply and cold-storage. Ann. Bot. 85:687-701. Eliasson, L. and Brunes, L. 1980. Light effects on root formation in aspen and willow cuttings. Physiol. Plantarum. 48:261-265. Haissig, B. E. 1974. Influences of auxins and auxin synergists on adventitious root primordium initiation and development. New Zealand J. For. Sci. 4:311-23. Haissig, B. E. 1990. Reduced irradiance and applied auxin influence carbohydrate relations in Pinus banksiana cuttings during propagation. Physiologia Plantarum. 78:455-461. Hajano, R. A., Memon, N., Leghari, M. H., Chachar, Q. I. and Sharif, N. 2015. Effect of basal applications of naphthalene acetic acid (NAA) on sprouting and rooting potential of stem cuttings of bougainvillea (Bougainvillea glabra). Pakistan J. Agriculture, Agr. Engineering and Veterinary Sci. 31:42-53. Hambrick III, C. E., Davies Jr, F. T. and Pemberton, H. B. 1991. Seasonal changes in carbohydrate/nitrogen levels during field rooting of Rosa multiflora ‘Brooks 56’ hardwood cuttings. Scientia Hort. 46:137-146. Hinesley, L. E., Blazich, F. A. and Snelling, L. K. 1994. Propagation of Atlantic white cedar by stem cuttings. HortScience. 29:217-219. Kato, N. and Esaka, M., 1999. Changes in ascorbate oxidase gene expression and ascorbate levels in cell division and cell elongation in tobacco cells. Physiologia plantarum. 105:321-329. Kilkenny, A. J., Wallace, H. M., Walton, D. A., Adkins, M. F. and Trueman, S. J. 2012. Improved root formation in eucalypt cuttings following combined auxin and anti-ethylene treatments. J. Plant Sci. 7:138. Kobayashi, K. D., McConnell, J., and Griffis, J. 2007. Bougainvillea. University of Hawaii, USA. Lebrun, A., Toussaint, A. N. and Roggemans, J. 1998. Description of Syzygium paniculatum Gaertn. ‘Verlaine’ and its propagation by stem cuttings. Scientia Hort. 75:103-111. Lewis, D. R., Negi, S., Sukumar, P. and Muday, G. K. 2011. Ethylene inhibits lateral root development, increases IAA transport and expression of PIN3 and PIN7 auxin efflux carriers. Dev. 138:3485-3495. Liu, J., Mukherjee, L. and Reid, D. M. 1990. Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. III. The role of ethylene. Physiologial Plantarum. 78:268-276. Ljung, K., Bhalerao, R. P., and Sandberg, G. 2001. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. The plant J. 28:465-474. McDonald, M. P., Visser, E. J. W. 2003. A study of the interaction between auxin and ethylene in wild type and transgenic ethylene‐insensitive tobacco during adventitious root formation induced by stagnant root zone conditions. Plant Biol. 5:50-556. Narin, A., İşler, Y. and Özer, M. 2018. Prediction of PAF attacks using time-domain measures of heart rate variability. Karaelmas Sci. and Engineering J. 8:536-542. Noori, I. M. and Muhammad, A. A. 2020. Rooting of peach [Prunus persica (L.) Batsch] hardwood cuttings as affected by IBA concentration and substrate pH. J. Appl. Hort. 22:33-37. Parmar, B. R., Patel, V. B., Bhalerao, P. P. and Tank, R. V. 2010. Effect of different plant growth regulators on vegetative propagation of Bougainvillea peruviana cv. Touch Glory through hard wood cutting. Asian J. Hort. 5:222-224. Prescott, A.G. and John, P., 1996. Dioxygenases: molecular structure and role in plant metabolism. Annual Rev. plant Biol. 47:245-271. Ramírez-Carvajal, G. A., Morse, A. M., Dervinis, C. and Davis, J. M. 2009. The cytokinin type-B response regulator PtRR13 is a negative regulator of adventitious root development in Populus. Plant Physiol. 150:759-771. Roy, R. K. 2019. Boygainvillea A Color Handbook. Daya Publishing House. New Delhi. IN. Růžička, K., Ljung, K., Vanneste, S., Podhorská, R., Beeckman, T., Friml, J. and Benková, E. 2007. Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. The Plant Cell. 19;2197-2212. Saifuddin, M., Hossain, A. M. B. S. and Normaniza, O. 2010. Impacts of shading on flower formation and longevity, leaf chlorophyll and growth of Bougainvillea glabra. Asian J. Plant Sci. 9:1-8. Salehi Sardoei, A., Shahmoradzadeh Fahraji, S. and Ghasemi, H. 2014. Effect of salicylic acid on rooting of poinsettia (Euphorbia pulcherrima). Intl J. of Advanced Biological and Biomedical Res. 2:1883-1886. Sarrou, E., Therios, I. and Dimassi-Theriou, K. 2014. Melatonin and other factors that promote rooting and sprouting of shoot cuttings in Punica granatum cv. Wonderful. Turkish J. Bot. 38:293-301. Schier, G. A. and Campbell, R. B. 1976. Differences among Populas species in ability to form adventitious shoots and roots. Canadian J. Forest Res. 6:253-261. Senaratna, T., Touchell, D., Bunn, E. and Dixon, K. 2000. Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation. 30:157-161. Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. and Fatkhutdinova, D. R. 2003. Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci. 164:317-322. Singh, B.., Sindhu, S. S., Yadav, H., Saxena, N. K. 2017 a. Effect of exogenous rooting hormone on Bougainvillea cv. Thimma propagation through hardwood cuttings. HortFlora Res. Spectrum, 6:292-295. Singh, B., Sindhu, S. S., Yadav, H. and Saxena, N. K. 2017 b. Influence of growth hormones on hardwood cutting of Bougainvillea cv. Dr HB Singh. Chem. Sci. Rev. Lett. 6:1903-1907. Singh, K. K., Rawat, J. M. S.and Tomar, Y. K. 2011. Influence of IBA on rooting potential of torch glory Bougainvillea glabra during winter season. J. Hort. Sci. Ornamental Plants. 3:162-165. Steffens, B. and Rasmussen, A. 2016. The physiology of adventitious roots. Plant Physiol. 170:603-617. Stepanova, A. N., Hoyt, J. M., Hamilton, A. A., and Alonso, J. M. 2005. A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. The Plant Cell. 17:2230-2242. Stepanova, A. N., Yun, J., Likhacheva, A. V. and Alonso, J. M. 2007. Multilevel interactions between ethylene and auxin in Arabidopsis roots. The Plant Cell. 19:2169-2185. Swamy, S. L., Puri, S. and Singh, A. K. 2002. Effect of auxins (IBA and NAA) and season on rooting of juvenile and mature hardwood cuttings of Robinia pseudoacacia and Grewia optiva. New Forests. 23:143-157. Taiz, L. and Zeiger, E. 2002. Photosynthesis: physiological and ecological considerations. Plant Physiol. 9:172-174. Taiz, L., and Zeiger, E. 2006. Plant physiology fifth edition. Cummings series in the life sciences. USA. Benjamin. Tsipouridis, C., Thomidis, T., and Isaakidis, A. 2003. Rooting of peach hardwood and semi-hardwood cuttings. Australian J. Experimental Agri. 43:1363-1368. Vasar, V. 2001. Effect of ascorbic acid and citric acid on ex-vitro rooting and acclimatization of Prunus avium L. micro-shoots. Intl. Symp. on Acclimatization and Establishment of Micropropagated Plants. 616: 251-254. Haissig, B. E. 1974. Influences of auxins and auxin synergists on adventitious root primordium initiation and development. New Zealand J. For. Sci. 4:311-23. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73694 | - |
dc.description.abstract | 九重葛(Bougainvillea spp.)通常以無性繁殖的方式進行繁殖,國內九重葛業者在盆花生產上多選擇使用高壓繁殖,但如要大量生產,則繁殖倍率高的扦插繁殖是較合適的方式。九重葛扦插繁殖多使用成熟度高的硬木插穗,但是硬木插穗取得較困難,若能使用容易取得的軟木插穗扦插,將能更快速的量產一致性的苗木,故本文以九重葛軟木插穗進行扦插繁殖試驗,並找出適合軟木插穗的藥劑處理、取穗條件,並探討品種差異以及遮陰處理之影響,以改善軟木插穗扦插不易的問題,建立九重葛軟木扦插繁殖之方法。 生長素(auxin)種類與施用的方式(粉劑或液劑)對於九重葛‘Pixie’插穗發根的影響的試驗結果可得知,頂芽插穗處理6,000 mg·L-1 IBA(indole-3-butyric acid)粉劑或6,000 mg·L-1 NAA(1-naphthaleneacetic acid)粉劑,效果皆優於液劑,其中以6,000 mg·L-1 NAA粉劑插穗發根率(52%)優於IBA處理。九重葛‘Pixie’取穗部位對於發根影響的試驗結果可得知,九重葛‘Pixie’上半部枝條的插穗發根率為96.7%,下半部枝條的插穗的發根率達100%,兩者無顯著差異,不過,九重葛‘Pixie’上半部枝條插穗發根品質略優於下半部枝條,但無論上半部(不含頂芽)或下半部枝條的插穗,兩者都能得到品質很好的扦插苗,因此後續如要進行九重葛‘Pixie’的扦插繁殖,兩種插穗都可以使用,最大化材料使用效率以及扦插生產效益。 從品種對於九重葛軟木插穗發根能力影響的試驗中可得知,九重葛‘Singapore Pink’與‘Pixie’不處理發根劑的情況下,插穗發根率分別達到93.3%與80%,是容易發根的品種。九重葛‘Eva’與‘Taipei Red’插穗不處理發根劑發根率低落,經處理6,000 mg·L-1 IBA粉劑後,發根率顯著提升至73.3%與76.7%,九重葛‘Markris’與‘Imperial Delight’處理IBA 6,000 mg·L-1粉劑後,發根有顯著提升至23.3%與36.7%,但是發根率仍低,表示發根劑雖然有促進九重葛插穗發根的效果,但會受到品種的影響。九重葛‘Thimma’經處理發根劑後依然沒有發根,且插穗皆死亡,此品種可能為不容易發根的品種。對於發根能力不佳的品種,後續進一步處理高效複合發根劑(根旺發NO. 3),探討高效複合發根劑是否比單獨處理生長素(IBA或NAA)有促進軟木插穗發根的效果,試驗結果顯示根旺發NO. 3粉劑顯著促進九重葛‘Markris’與‘Thimma’發根率與插穗品質,發根率分別提升至100%及66.7%,而對於九重葛‘Taipei Red’效果不顯著,推測根旺發NO. 3對於發根困難的品種有促進發根的效果,但對於易發根的品種效果則不顯著。對於不易發根的花木類植物,根旺發NO. 3用於促進發根可能具有相當大的潛力。 扦插環境光度方面,九重葛‘Pixie’在夏季進行70%遮陰處理(平均光強度318 μmol.m-2.s-1),插穗品質最佳且發根率可達100%。85%遮陰處理(平均光強度140 μmol.m-2.s-1)下的插穗發根品質不佳,發根速度較慢,發根率也較低。秋季時,九重葛‘Markris’以70%遮陰處理(平均光強度164.8 μmol.m-2.s-1),插穗有最佳發根率為87.6%,85%遮陰處理(平均光強度76.8 μmol.m-2.s-1)的插穗發根率最差為53.3%,發根品質方面,則以50%遮陰處理(平均光強度237.1 μmol.m-2.s-1)較佳;九重葛‘Thimma’以50%遮陰處理發根最佳,九重葛‘Taipei Red’扦插存活率低,可能與插穗營養狀態及環境變化有關。綜合上述結果,強度合適的光照有助於九重葛插穗的發根,夏季時氣候穩定,但是容易有光強度過高的問題,夏季時扦插遮陰70%較佳。秋季時光強度減弱,以50-70%遮陰處理效果較佳,。然而,扦插時85%的遮陰處理(平均光強度低於140 μmol.m-2.s-1)會顯著抑制插穗的發根,因此建議九重葛扦插時光強度可在200-400 μmol.m-2.s-1之間。 本研究對於九重葛軟木插穗的品種差異、取穗條件、藥劑處理以及扦插光強度環境有進一步的了解,並成功提升九重葛軟木插穗的扦插成功率,總結以上試驗結果建立九重葛軟木插穗扦插繁殖技術,解決九重葛扦插繁殖生產苗木的問題。 | zh_TW |
dc.description.abstract | Bougainvillea (Bougainvillea spp.) is usually reproduced by non-sexual propagation. Domestic bougainvillea famers often choose to use laying propagation for pot flower production. However, if massive production is necessery, cutting propagation with higher propagation rate is a more appropriate method for grower. The technigue for bougainvillea cutting propagation mostly uses mature hardwood cuttings. However, hardwood cuttings are more difficult to obtain. Therefore, by using easy-to-obtain softwood cuttings massive production might become practicable. So the goal of this study is founding on using bougainvillea softwood citting propagation method to find out suitable chemical treatments and cutting taking conditions for softwood cuttings, and discussing the differences of varieties and the influence of shading treatments. To solve the problem of difficult cuttings of softwood cuttings, and establish a practicable method for the propagation of bougainvillea softwood cuttings. According to the results of the effect of auxin type (IBA or NAA) and application method (powder or liquid) on the rooting of ‘Pixie’ bougainvillea cuttings The top bud cuttings treated with 6,000 mg·L-1 IBA(Indole-3-butyric acid) powder or 6,000 mg·L-1 NAA (1-Naphthaleneacetic acid) powder are better than solution treatment. The rooting percentage of cuttings with 6,000 mg·L-1 NAA powder is significantly better than others. The rooting percentage of 'Pixie' bougainvillea cuttings that obtain from upper half of the branches is 96.7%, and the rooting percentage of cuttings that obtain from lower half of the branches is 100 %, there is no significant difference between the two. However, the rooting quality of the upper half branch cuttings is slightly better than the lower half branch cuttings. Both the upper half (excluding the top buds) and the base half of the cuttings can acquire good quality cuttings. Suggesting two kinds of cuttings can be used to cutting propagation. Not only maximize the resourse usage efficiency but also promote the cutting production efficiency. Base on the result of rooting ability trooting ability.‘Singapore Pink’ and ‘Pixie’ bougainvillea cuttings without treated the rooting-inducer and rooting percentage of cuttings are 93.3% and 80%. Suggesting both cultivars are suitable for cutting prapagation. ‘Eva’ and ‘Taipei Red’ bougainvillea cuttings without treating rooting stimulator have lower rooting percatage than the rest. The ‘Eva’ and ‘Taipei Red’ bougainvillea cuttings were treated with 6,000 mg·L-1 IBA powder, and the rooting percentage was significantly increased to 73.3% and 76.7%. ‘Markris’ and ‘Imperial Delight’ bougainvillea cuttings treated with IBA 6,000 mg·L-1 powder, the rooting percentage increased significantly to 23.3% and 36.7%, but rooting percentage was still low. Although the rooting stimulator has a good effect on promoting rooting capability of bougainvillea cuttings, but the effect is different between cultivars. All ‘Thimma’ bougainvillea cuttings were perished, suggesting ‘Thimma’ bougainvillea is difficult for rooting. Rooting stimulator NO. 3 powder has the best effect of promoting the rooting of softwood cuttings than IBA or NAA. The rooting percentage of ‘Markris’ and ‘Thimma’ bougainvillea cuttings increased to 100% and 66.7%. Hoever, ‘Taipei Red’ bougainvillea cutting that treated with rooting stimulator NO. 3 is not significant affected. This result suggest that rooting stimulator NO. 3 has the good effect of promoting rooting for cultivar that difficult to root, but has no effect on cultivar that easy to root. For cultivars that have low rooting percentage, rooting stimulator NO. 3 may have considerable potential for promoting rooting. ‘Pixie’ bougainvillea cutting undet 70% shading treatment (average light intensity is 318 μmol.m-2.s-1) in summer, and the cutting rooted quality were the best and the root percentage reaches 100%. Cuttings rooting quality under 85% shading treatment(average light intensity is 140 μmol.m-2.s-1) was poor and the cuttings rooting speed was slow, and the rooting percentage was also low. In autumn, when ‘Markris’ bougainvillea cutting was put under 70% shading treatment (average light intensity is 168.4 μmol.m-2.s-1) enivvroment, the cuttings had the best root percentage of 87.6%. Onvertheless, under 85% shading treatment (average light intensity is 76.8 μmol.m-2.s-1), cuttings had the worst root percentage of 53.3%. Under 50% shading treatment (average light intensity is 237.1 μmol.m-2.s-1), cuttings have best rooting quality. ‘Thimma’ bougainvillea cuttings had best rooting under 50% shading treatment. All ‘Taipei Red’ bougainvillea cuttings survival percentage was low during experiment, which may be related to unstable environment. According to the experiment result, applying appropriate intensity of light is helpful for the rooting of the bougainvillea cuttings. Summer season is good for cutting propagation, but it could have excessive light intensity during dat time. In summer, the optimum shading percsntage is 70%. In autumn, the light intensity was weakened, therefore the optimum shading percsntage is between 50-70%. However, the cuttings under 85% shading treatment (average light intensity lower than 140 μmol. μmol.m-2.s-1) will significantly inhibit the rooting. Therefore, when applying cutting propagation on bougainvillea, the optimum light intensity should between 200-400 μmol.m-2.s-1. This study has a better understand on the effects of the cultivar differences of bougainvillea softwood cuttings, under diffferent season, cutting conditions, chemical treatments and light intensity environment. By summarizing all experemants results.A practicable cutting propagation technigue were established, whitch may solves the problem of bougainvillea cutting propagation and production of cutting seedlings. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:08:12Z (GMT). No. of bitstreams: 1 U0001-2901202118020700.pdf: 3274215 bytes, checksum: b09757065869363b83ccff3f54fc853e (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 目錄 摘要 I Abstract III 目錄 VI 圖目錄 VIII 表目錄 IX 第一章、前言 1 第二章、前人研究 3 一、九重葛繁殖方式 3 第三章、九重葛‘Pixie’軟木扦插繁殖技術之探討 11 一、 前言 12 二、 材料與方法 13 試驗一 生長素與施用方式對於九重葛‘Pixie’軟木插穗扦插繁殖之影響 13 試驗二 取穗部位對於九重葛‘Pixie’軟木插穗扦插繁殖之影響 15 三、 結果 17 試驗一 生長素與施用方式對於九重葛‘Pixie’軟木插穗扦插繁殖之影響 17 試驗二 節位對於九重葛‘Pixie’軟木插穗扦插繁殖之影響 17 四、 討論 19 試驗一 生長素與施用方式對於 九重葛‘Pixie’軟木插穗扦插繁殖之影響 19 試驗二 取穗部位對於九重葛‘Pixie’軟木插穗扦插繁殖之影響 20 五、 結論 21 第四章、品種對於九重葛軟木扦插繁殖之影響 28 一、前言 29 二、 材料與方法 30 試驗一 品種對於九重葛軟木扦插繁殖之影響 30 試驗二 發根劑對於、B. peruviana ‘Thimma’、B. buttiana ‘Imperial Delight’與 B.peruviana ‘Markris’軟木插穗扦插繁殖之影響 31 三、 結果 33 試驗一 品種對於九重葛軟木扦插繁殖之影響 33 試驗二 發根劑對於B. buttiana ‘Taipei Red’、B. peruviana ‘Markris’與B. peruviana ‘Thimma’軟木插穗扦插繁殖之影響 34 四、 討論 36 試驗一 品種對於九重葛軟木扦插繁殖之影響 36 試驗二 發根劑對於B. buttiana ‘Taipei Red’、B. peruviana ‘Markris’ 與B. peruviana ‘Thimma’軟木插穗扦插繁殖之影響 37 五、 結論 38 第五章、遮陰與季節對於九重葛軟木扦插繁殖之影響 48 一、 前言 49 二、 材料與方法 50 三、 結果 53 四、 討論 55 五、 結論 56 第六章、結論 73 參考資料 75 | |
dc.language.iso | zh-TW | |
dc.title | 發根劑、品種與光度對於九重葛扦插繁殖之影響 | zh_TW |
dc.title | Effects of Rooting Stimulator, Cultivars and Light Intensity on Bougainvillea Cutting Propagation | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許富鈞(Fu-Chiun Hsu),朱玉(Chu Yu),林冠宏(Kuan-Hung Lin) | |
dc.subject.keyword | 軟木插穗,插穗節位,遮陰,植物生長調節劑, | zh_TW |
dc.subject.keyword | softwood cutting,cutting node,shading,plant growth regulator, | en |
dc.relation.page | 81 | |
dc.identifier.doi | 10.6342/NTU202100262 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-02-02 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2901202118020700.pdf 目前未授權公開取用 | 3.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。