Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7367
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭秋萍(Chiu-Ping Cheng)
dc.contributor.authorChia-Ling Yangen
dc.contributor.author楊佳陵zh_TW
dc.date.accessioned2021-05-19T17:42:17Z-
dc.date.available2029-12-31
dc.date.available2021-05-19T17:42:17Z-
dc.date.copyright2019-02-20
dc.date.issued2019
dc.date.submitted2019-02-15
dc.identifier.citation林露。2014。番茄抗青枯病品系 Hawaii 7996 之解序與其抗第一演化型青枯病菌基因座 Bwr12 之研究。國立臺灣大學植物科學研究所碩士論文。
林靖容。2018。番茄 Bwr12基因座內 12g520 與 12g550 參與防禦反應之機制研究。國立臺灣大學植物科學研究所碩士論文。
鄭峰繼。2015。初級免疫反應在番茄 Hawaii 7996 數量性狀位點 Bwr12 抗青枯病能力扮演重要角色。國立臺灣大學植物科學研究所碩士論文。
Achuo, E.A., and Prinsen, E.M., M. (2006). Influence of drought, salt stress and abscisic acid on the resistance of tomato to Botrytis cinerea and Oidium neolycopersici. Plant Pathol. 55, 178-186.
Aoun, N., Tauleigne, L., Lonjon, F., Deslandes, L., Vailleau, F., Roux, F., and Berthome, R. (2017). Quantitative Disease Resistance under Elevated Temperature: Genetic Basis of New Resistance Mechanisms to Ralstonia solanacearum. Front Plant Sci 8, 1387.
Bacete, L., Melida, H., Miedes, E., and Molina, A. (2018). Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. Plant J. 93, 614-636.
Bai, T.T., Xie, W.B., Zhou, P.P., Wu, Z.L., Xiao, W.C., Zhou, L., Sun, J., Ruan, X.L., and Li, H.P. (2013). Transcriptome and expression profile analysis of highly resistant and susceptible banana roots challenged with Fusarium oxysporum f. sp. cubense tropical race 4. PLoS One 8, e73945.
Ben, C., Debelle, F., Berges, H., Bellec, A., Jardinaud, M.F., Anson, P., Huguet, T., Gentzbittel, L., and Vailleau, F. (2013). MtQRRS1, an R-locus required for Medicago truncatula quantitative resistance to Ralstonia solanacearum. New Phytol. 199, 758-772.
Berens, M.L., Berry, H.M., Mine, A., Argueso, C.T., and Tsuda, K. (2017). Evolution of Hormone Signaling Networks in Plant Defense. Annu. Rev. Phytopathol. 55, 401-425.
Bohm, H., Albert, I., Fan, L., Reinhard, A., and Nurnberger, T. (2014). Immune receptor complexes at the plant cell surface. Curr. Opin. Plant Biol. 20, 47-54.
Boschi, F., Schvartzman, C., Murchio, S., Ferreira, V., Siri, M.I., Galvan, G.A., Smoker, M., Stransfeld, L., Zipfel, C., Vilaro, F.L., and Dalla-Rizza, M. (2017). Enhanced Bacterial Wilt Resistance in Potato Through Expression of Arabidopsis EFR and Introgression of Quantitative Resistance from Solanum commersonii. Front Plant Sci 8, 1642.
Bostock, R.M. (2005). Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu. Rev. Phytopathol. 43, 545-580.
Buttner, D. (2016). Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol. Rev. 40, 894-937.
Caldwell, D., Kim, B.S., and Iyer-Pascuzzi, A.S. (2017). Ralstonia solanacearum Differentially Colonizes Roots of Resistant and Susceptible Tomato Plants. Phytopathology 107, 528-536.
Chen, Y., Ren, X., Zhou, X., Huang, L., Yan, L., Lei, Y., Liao, B., Huang, J., Huang, S., Wei, W., and Jiang, H. (2014). Dynamics in the resistant and susceptible peanut (Arachis hypogaea L.) root transcriptome on infection with the Ralstonia solanacearum. BMC Genomics 15: 1078.
Chen, Y.Y., Lin, Y.M., Chao, T.C., Wang, J.F., Liu, A.C., Ho, F.I., and Cheng, C.P. (2009). Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt. Physiol. Plant. 136, 324-335.
Cheng, C.S., Behar, M.S., Suryawanshi, G.W., Feldman, K.E., Spreafico, R., and Hoffmann, A. (2017). Iterative Modeling Reveals Evidence of Sequential Transcriptional Control Mechanisms. Cell Syst 4, 330-343 e335.
Cheng, W., Xiao, Z., Cai, H., Wang, C., Hu, Y., Xiao, Y., Zheng, Y., Shen, L., Yang, S., Liu, Z., Mou, S., Qiu, A., Guan, D., and He, S. (2017). A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to Ralstonia solanacearum infection. Mol. Plant Pathol. 18, 1089-1100.
Chuberre, C., Plancot, B., Driouich, A., Moore, J.P., Bardor, M., Gugi, B., and Vicre, M. (2018). Plant Immunity Is Compartmentalized and Specialized in Roots. Front Plant Sci 9, 1692.
Corwin, J.A., and Kliebenstein, D.J. (2017). Quantitative Resistance: More Than Just Perception of a Pathogen. Plant Cell 29, 655-665.
Couto, D., and Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16, 537-552.
Cui, H., Tsuda, K., and Parker, J.E. (2015). Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol. 66, 487-511.
De Coninck, B., Timmermans, P., Vos, C., Cammue, B.P., and Kazan, K. (2015). What lies beneath: belowground defense strategies in plants. Trends Plant Sci. 20, 91-101.
De Lorenzo, G., Ferrari, S., Cervone, F., and Okun, E. (2018). Extracellular DAMPs in Plants and Mammals: Immunity, Tissue Damage and Repair. Trends Immunol. 39, 937-950.
Denance, N., Sanchez-Vallet, A., Goffner, D., and Molina, A. (2013). Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4, 155.
Engelberth, J., Viswanathan, S., and Engelberth, M.J. (2011). Low concentrations of salicylic acid stimulate insect elicitor responses in Zea mays seedlings. J. Chem. Ecol. 37, 263-266.
French, E., Kim, B.S., Rivera-Zuluaga, K., and Iyer-Pascuzzi, A.S. (2018). Whole Root Transcriptomic Analysis Suggests a Role for Auxin Pathways in Resistance to Ralstonia solanacearum in Tomato. Mol Plant Microbe Interact 31, 432-444.
Gao, M., Wang, X., Wang, D., Xu, F., Ding, X., Zhang, Z., Bi, D., Cheng, Y.T., Chen, S., Li, X., and Zhang, Y. (2009). Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6, 34-44.
Gish, L.A. and Clark, S.E. (2011). The RLK/Pelle family of kinases. Plant J. Cell Mol. Biol. 66: 117–127.
Gohring, J., Jacak, J., and Barta, A. (2014). Imaging of endogenous messenger RNA splice variants in living cells reveals nuclear retention of transcripts inaccessible to nonsense-mediated decay in Arabidopsis. Plant Cell 26, 754-764.
Grant, M., and Lamb, C. (2006). Systemic immunity. Curr. Opin. Plant Biol. 9, 414-420
Griebel, T., Maekawa, T., and Parker, J.E. (2014). NOD-like receptor cooperativity in effector-triggered immunity. Trends Immunol. 35, 562-570.
Halter, T., Imkampe, J., Mazzotta, S., Wierzba, M., Postel, S., Bucherl, C., Kiefer, C., Stahl, M., Chinchilla, D., Wang, X., Nurnberger, T., Zipfel, C., Clouse, S., Borst, J.W., Boeren, S., de Vries, S.C., Tax, F., and Kemmerling, B. (2014). The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Curr. Biol. 24, 134-143.
Hanemian, M., Barlet, X., Sorin, C., Yadeta, K.A., Keller, H., Favery, B., Simon, R., Thomma, B.P., Hartmann, C., Crespi, M., Marco, Y., Tremousaygue, D., and Deslandes, L. (2016). Arabidopsis CLAVATA1 and CLAVATA2 receptors contribute to Ralstonia solanacearum pathogenicity through a miR169-dependent pathway. New Phytol. 211, 502-515.
Hanif, M., Rahman, M.U., Gao, M., Yang, J., Ahmad, B., Yan, X., and Wang, X. (2018). Heterologous Expression of the Grapevine JAZ7 Gene in Arabidopsis Confers Enhanced Resistance to Powdery Mildew but Not to Botrytis cinerea. Int J Mol Sci 19.
Hernandez-Blanco, C., Feng, D.X., Hu, J., Sanchez-Vallet, A., Deslandes, L., Llorente, F., Berrocal-Lobo, M., Keller, H., Barlet, X., Sanchez-Rodriguez, C., Anderson, L.K., Somerville, S., Marco, Y., and Molina, A. (2007). Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance. Plant Cell 19, 890-903.
Hikichi, Y., Mori, Y., Ishikawa, S., Hayashi, K., Ohnishi, K., Kiba, A., and Kai, K. (2017). Regulation Involved in Colonization of Intercellular Spaces of Host Plants in Ralstonia solanacearum. Front Plant Sci 8, 967.
Hirsch, J., Deslandes, L., Feng, D.X., Balagué, C., and Marco, Y. (2002). Delayed symptom development in ein2-1, an Arabidopsis Ethylene-Insensitive Mutant, in response to bacterial wilt caused by Ralstonia solanacearum. Phytopathology 92: 1142–1148.
Ho, G.D. and Yang, C.H. (1999). A single locus leads to resistance of Arabidopsis thaliana to bacterial wilt caused by Ralstonia solanacearum through a hypersensitive-like response. Phytopathology 89: 673–678.
Hogan, C.S., Mole, B.M., Grant, S.R., Willis, D.K., and Charkowski, A.O. (2013). The type III secreted effector DspE is required early in Solanum tuberosum leaf infection by Pectobacterium carotovorum to cause cell death, and requires Wx(3-6)D/E motifs. PLoS One 8, e65534.
Horita, M., Tsuchiya, K., Suga, Y., Yano, K., Waki, T., Kurose, D., and Furuya, N. (2014). Current classification of Ralstonia solanacearum and genetic diversity of the strains in Japan. J. Gen. Plant Pathol. 80: 455–465.
Hou, S., Wang, X., Chen, D., Yang, X., Wang, M., Turrà, D., Di Pietro, A., and Zhang, W. (2014). The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Pathog. 10: e1004331.
Howard, B.E., Hu, Q., Babaoglu, A.C., Chandra, M., Borghi, M., Tan, X., He, L., Winter-Sederoff, H., Gassmann, W., Veronese, P., and Heber, S. (2013). High-throughput RNA sequencing of pseudomonas-infected Arabidopsis reveals hidden transcriptome complexity and novel splice variants. PLoS One 8, e74183.
Hu, J., Barlet, X., Deslandes, L., Hirsch, J., Feng, D.X., Somssich, I., and Marco, Y. (2008). Transcriptional responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, Ralstonia solanacearum. PloS One 3: e2589.
Huang, J., Gu, L., Zhang, Y., Yan, T., Kong, G., Kong, L., Guo, B., Qiu, M., Wang, Y., Jing, M., Xing, W., Ye, W., Wu, Z., Zhang, Z., Zheng, X., Gijzen, M., Wang, Y., and Dong, S. (2017). An oomycete plant pathogen reprograms host pre-mRNA splicing to subvert immunity. Nat Commun 8, 2051.
Huang, J., Zhang, T., Linstroth, L., Tillman, Z., Otegui, M.S., Owen, H.A., and Zhao, D. (2016). Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis. PLoS Genet. 12, e1006147.
Huet, G. (2014). Breeding for resistances to Ralstonia solanacearum. Front. Plant Sci. 5: 715.
Ifnan Khan, M., Zhang, Y., Liu, Z., Hu, J., Liu, C., Yang, S., Hussain, A., Furqan Ashraf, M., Noman, A., Shen, L., Xia, X., Yang, F., Guan, D., and He, S. (2018). CaWRKY40b in Pepper Acts as a Negative Regulator in Response to Ralstonia solanacearum by Directly Modulating Defense Genes Including CaWRKY40. Int J Mol Sci 19.
Ishihara, T., Mitsuhara, I., Takahashi, H., and Nakaho, K. (2012). Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS ONE 7: e46763.
Jamieson, P.A., Shan, L., and He, P. (2018). Plant cell surface molecular cypher: Receptor-like proteins and their roles in immunity and development. Plant Sci. 274, 242-251.
Jiang, Y., Huang, M., Zhang, M., Lan, J., Wang, W., Tao, X., and Liu, Y. (2018). Transcriptome analysis provides novel insights into high-soil-moisture-elevated susceptibility to Ralstonia solanacearum infection in ginger (Zingiber officinale Roscoe cv. Southwest). Plant Physiol. Biochem. 132, 547-556.
Joshi, J.R., Burdman, S., Lipsky, A., Yariv, S., and Yedidia, I. (2016). Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation. Mol. Plant Pathol. 17, 487-500.
Katagiri, F. (2004). A global view of defense gene expression regulation--a highly interconnected signaling network. Curr. Opin. Plant Biol. 7: 506–511.
Kim, B., Hwang, I.S., Lee, H.J., Lee, J.M., Seo, E., Choi, D., and Oh, C.S. (2018). Identification of a molecular marker tightly linked to bacterial wilt resistance in tomato by genome-wide SNP analysis. Theor. Appl. Genet. 131, 1017-1030.
Koornneef, A. and Pieterse, C.M.J. (2008). Cross talk in defense signaling. Plant Physiol. 146: 839–844.
Kunwar, S., Iriarte, F., Fan, Q., Evaristo da Silva, E., Ritchie, L., Nguyen, N.S., Freeman, J.H., Stall, R.E., Jones, J.B., Minsavage, G.V., Colee, J., Scott, J.W., Vallad, G.E., Zipfel, C., Horvath, D., Westwood, J., Hutton, S.F., and Paret, M.L. (2018). Transgenic Expression of EFR and Bs2 Genes for Field Management of Bacterial Wilt and Bacterial Spot of Tomato. Phytopathology 108, 1402-1411.
Le Roux, C. et al. (2015). A receptor pair with an integrated decoy converts pathogen
Lecompte, F., Nicot, P.C., Ripoll, J., Abro, M.A., Raimbault, A.K., Lopez-Lauri, F., and Bertin, N. (2017). Reduced susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific adjustment of fructose content in the host sugar pool. Ann. Bot. 119, 931-943.
Letunic, I. and Bork, P. (2017). 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 46: D493–D496.
Li, S., Liu, Y., Wang, J., Yang, L., Zhang, S., Xu, C., and Ding, W. (2017). Soil Acidification Aggravates the Occurrence of Bacterial Wilt in South China. Front Microbiol 8, 703.
Liebrand, T.W., van den Burg, H.A., and Joosten, M.H. (2014). Two for all: receptor-associated kinases SOBIR1 and BAK1. Trends Plant Sci. 19, 123-132.
Lin, W.-C., Lu, C.-F., Wu, J.-W., Cheng, M.-L., Lin, Y.-M., Yang, N.-S., Black, L., Green, S.K., Wang, J.-F., and Cheng, C.-P. (2004). Transgenic tomato plants expressing the Arabidopsis NPR1 gene display enhanced resistance to a spectrum of fungal and bacterial diseases. Transgenic Res. 13: 567–581.
Lin, Y.-M., Chou, I.-C., Wang, J.-F., Ho, F.-I., Chu, Y.-J., Huang, P.-C., Lu, D.-K., Shen, H.-L., Elbaz, M., Huang, S.-M., and Cheng, C.-P. (2008). Transposon mutagenesis reveals differential pathogenesis of Ralstonia solanacearum on tomato and Arabidopsis. Mol. Plant-Microbe Interact. 21: 1261–1270.
Liu, Y., Liu, Q., Tang, Y., and Ding, W. (2019). NtPR1a regulates resistance to Ralstonia solanacearum in Nicotiana tabacum via activating the defense-related genes. Biochem. Biophys. Res. Commun. 508, 940-945.
Lori, M., van Verk, M.C., Hander, T., Schatowitz, H., Klauser, D., Flury, P., Gehring, C.A., Boller, T., and Bartels, S. (2015). Evolutionary divergence of the plant elicitor peptides (Peps) and their receptors: interfamily incompatibility of perception but compatibility of downstream signalling. J. Exp. Bot. 66, 5315-5325.
Lowe-Power, T.M., Khokhani, D., and Allen, C. (2018). How Ralstonia solanacearum Exploits and Thrives in the Flowing Plant Xylem Environment. Trends Microbiol. 26, 929-942.
Lowe-Power, T.M., Jacobs, J.M., Ailloud, F., Fochs, B., Prior, P., and Allen, C. (2016). Degradation of the Plant Defense Signal Salicylic Acid Protects Ralstonia solanacearum from Toxicity and Enhances Virulence on Tobacco. MBio 7.
Lozano-Duran, R., and Zipfel, C. (2015). Trade-off between growth and immunity: role of brassinosteroids. Trends Plant Sci. 20, 12-19.
Maekawa, T., Kufer, T.A., and Schulze-Lefert, P. (2011). NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 12, 817-826.
Mandal, S., Das, R.K., and Mishra, S. (2011). Differential occurrence of oxidative burst and antioxidative mechanism in compatible and incompatible interactions of Solanum lycopersicum and Ralstonia solanacearum. Plant Physiol. Biochem. 49: 117–123.
Marquez, Y., Brown, J.W., Simpson, C., Barta, A., and Kalyna, M. (2012). Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res. 22, 1184-1195.
Matsushima, N. and Miyashita, H. (2012). Leucine-Rich Repeat (LRR) domains containing intervening motifs in plants. Biomolecules 2: 288–311.
Matsushima, N., Miyashita, H., Mikami, T., and Kuroki, Y. (2010). A nested leucine rich repeat (LRR) domain: the precursor of LRRs is a ten or eleven residue motif. BMC Microbiol. 10: 235.
Mazzeo, M.F., Cacace, G., Ferriello, F., Puopolo, G., Zoina, A., Ercolano, M.R., and Siciliano, R.A. (2014). Proteomic investigation of response to FORL infection in tomato roots. Plant Physiol. Biochem. 74, 42-49.
Meng, F. (2013). Ralstonia solanacearum species complex and bacterial wilt disease. J. Bacteriol. Parasitol. 4: e119.
Milling, A., Babujee, L., and Allen, C. (2011). Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants. PLoS One 6, e15853.
Mithoe, S.C., and Menke, F.L. (2018). Regulation of pattern recognition receptor signalling by phosphorylation and ubiquitination. Curr. Opin. Plant Biol. 45, 162-170.
Morel, A., Guinard, J., Lonjon, F., Sujeeun, L., Barberis, P., Genin, S., Vailleau, F., Daunay, M.C., Dintinger, J., Poussier, S., Peeters, N., and Wicker, E. (2018). The eggplant AG91-25 recognizes the Type III-secreted effector RipAX2 to trigger resistance to bacterial wilt (Ralstonia solanacearum species complex). Mol. Plant Pathol. 19, 2459-2472.
Mueller, K., Bittel, P., Chinchilla, D., Jehle, A.K., Albert, M., Boller, T., and Felix, G. (2012). Chimeric FLS2 receptors reveal the basis for differential flagellin perception in Arabidopsis and tomato. Plant Cell 24: 2213–2224.
Najera, V.A., Gonzalez, M.C., Perez-Ruiz, J.M., and Cejudo, F.J. (2017). An event of alternative splicing affects the expression of the NTRC gene, encoding NADPH-thioredoxin reductase C, in seed plants. Plant Sci. 258, 21-28.
Nakano, M., Nishihara, M., Yoshioka, H., Takahashi, H., Sawasaki, T., Ohnishi, K., Hikichi, Y., and Kiba, A. (2013). Suppression of DS1 phosphatidic acid phosphatase confirms resistance to Ralstonia solanacearum in Nicotiana benthamiana. PloS One 8: e75124.
Narancio, R., Zorrilla, P., Robello, C., Gonzalez, M., Vilaró, F., Pritsch, C., and Rizza, M.D. (2013). Insights on gene expression response of a characterized resistant genotype of Solanum commersonii Dun. against Ralstonia solanacearum. Eur. J. Plant Pathol. 136: 823–835.
Nejat, N., Rookes, J., Mantri, N.L., and Cahill, D.M. (2017). Plant-pathogen interactions: toward development of next-generation disease-resistant plants. Crit. Rev. Biotechnol. 37, 229-237.
Peeters, N., Guidot, A., Vailleau, F., and Valls, M. (2013). Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 14, 651-662.
Peng, Y., van Wersch, R., and Zhang, Y. (2018). Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity. Mol Plant Microbe Interact 31, 403-409.
Pieterse, C.M., Van der Does, D., Zamioudis, C., Leon-Reyes, A., and Van Wees, S.C. (2012). Hormonal modulation of plant immunity. Annu. Rev. Cell. Dev. Biol. 28, 489-521.
Pruitt, R.N. et al. (2015). The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Sci. Adv. 1: e1500245.
Qi, J., Wang, J., Gong, Z., and Zhou, J.M. (2017). Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 38, 92-100.
Qi, J., Song, C.P., Wang, B., Zhou, J., Kangasjarvi, J., Zhu, J.K., and Gong, Z. (2018). Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol 60, 805-826.
Qiu, A., Wu, J., Lei, Y., Cai, Y., Wang, S., Liu, Z., Guan, D., and He, S. (2018). CaSK23, a Putative GSK3/SHAGGY-Like Kinase of Capsicum annuum, Acts as a Negative Regulator of Pepper's Response to Ralstonia solanacearum Attack. Int J Mol Sci 19.
Qulsum, U., and Tsukahara, T. (2019). Tissue-specific alternative splicing of pentatricopeptide repeat (PPR) family genes in Arabidopsis thaliana. Biosci Trends 12, 569-579.
Robert-Seilaniantz, A., Grant, M., and Jones, J.D. (2011). Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 49, 317-343.
Rahman, T.A., Oirdi, M.E., Gonzalez-Lamothe, R., and Bouarab, K. (2012). Necrotrophic pathogens use the salicylic acid signaling pathway to promote disease development in tomato. Mol Plant Microbe Interact 25, 1584-1593.
Ramirez-Prado, J.S., Abulfaraj, A.A., Rayapuram, N., Benhamed, M., and Hirt, H. (2018). Plant Immunity: From Signaling to Epigenetic Control of Defense. Trends Plant Sci. 23, 833-844.
Roos, J., Bejai, S., Oide, S., and Dixelius, C. (2014). RabGAP22 is required for defense to the vascular pathogen Verticillium longisporum and contributes to stomata immunity. PLoS One 9, e88187.
Roux, F., Voisin, D., Badet, T., Balagué, C., Barlet, X., Huard-Chauveau, C., Roby, D., and Raffaele, S. (2014). Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol. Plant Pathol. 15: 427–432.
Salgon, S., Jourda, C., Sauvage, C., Daunay, M.C., Reynaud, B., Wicker, E., and Dintinger, J. (2017). Eggplant Resistance to the Ralstonia solanacearum Species Complex Involves Both Broad-Spectrum and Strain-Specific Quantitative Trait Loci. Front Plant Sci 8, 828.
Salgon, S., Raynal, M., Lebon, S., Baptiste, J.M., Daunay, M.C., Dintinger, J., and Jourda, C. (2018). Genotyping by Sequencing Highlights a Polygenic Resistance to Ralstonia pseudosolanacearum in Eggplant (Solanum melongena L.). Int J Mol Sci 19.
Sánchez-Vallet, A., López, G., Ramos, B., Delgado-Cerezo, M., Riviere, M.-P., Llorente, F., Fernández, P.V., Miedes, E., Estevez, J.M., Grant, M., and Molina, A. (2012). Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina.
Sarris, P.F. et al. (2015). A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161: 1089–1100.
Sharma, M., and Bhatt, D. (2015). The circadian clock and defence signalling in plants. Mol. Plant Pathol. 16, 210-218.
Shen, Y., Zhou, Z., Wang, Z., Li, W., Fang, C., Wu, M., Ma, Y., Liu, T., Kong, L.A., Peng, D.L., and Tian, Z. (2014). Global dissection of alternative splicing in paleopolyploid soybean. Plant Cell 26, 996-1008.
Shi, M., Zhang, H., Wang, L., Zhu, C., Sheng, K., Du, Y., Wang, K., Dias, A., Chen, S., Whitman, M., Wang, E., Reed, R., and Cheng, H. (2015). Premature Termination Codons Are Recognized in the Nucleus in A Reading-Frame Dependent Manner. Cell Discov 1.
Song, G.C., Ryu, S.Y., Kim, Y.S., Lee, J.Y., Choi, J.S., and Ryu, C.M. (2013). Elicitation of induced resistance against Pectobacterium carotovorum and Pseudomonas syringae by specific individual compounds derived from native Korean plant species. Molecules 18, 12877-12895.
Song, S., Qi, T., Wasternack, C., and Xie, D. (2014). Jasmonate signaling and crosstalk with gibberellin and ethylene. Curr. Opin. Plant Biol. 21, 112-119.
Tang, D., Wang, G., and Zhou, J.M. (2017). Receptor Kinases in Plant-Pathogen Interactions: More Than Pattern Recognition. Plant Cell 29, 618-637.
Tao, Y. (2003). Quantitative Nature of Arabidopsis Responses during Compatible and Incompatible Interactions with the Bacterial Pathogen Pseudomonas syringae. The Plant Cell Online 15, 317-330.
Thoquet, P. (1996). Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii 7996. Mol. Plant. Microbe Interact. 9: 826.
Ton, J., Flors, V., and Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends Plant Sci. 14: 310–317.
Wang, G., Fiers, M., Ellendorff, U., Wang, Z., de Wit, P.J.G.M., Angenent, G.C., and Thomma, B.P.H.J. (2010). The Diverse Roles of Extracellular Leucine-rich Repeat-containing Receptor-like Proteins in Plants. Crit. Rev. Plant Sci. 29, 285-299.
Wang, H., Hutton, S.F., Robbins, M.D., Sim, S.-C., Scott, J.W., Yang, W., Jones, J.B., and Francis, D.M. (2011). Molecular Mapping of Hypersensitive Resistance from Tomato 'Hawaii 7981' to Xanthomonas perforans Race T3. Phytopathology 101, 1217-1223.
Wang, J.-F., Hanson, P., and Barnes, J.A. (1998). Worldwide evaluation of an international set of resistance sources to bacterial wilt in tomato. In Bacterial Wilt Disease (Springer, Berlin, Heidelberg), pp. 269–275.
Wang, J.-F., Ho, F.-I., Truong, H.T.H., Huang, S.-M., Balatero, C.H., Dittapongpitch, V., and Hidayati, N. (2013). Identification of major QTLs associated with stable resistance of tomato cultivar ‘Hawaii 7996’ to Ralstonia solanacearum. Euphytica 190: 241–252.
Wei, Z., Huang, J., Yang, T., Jousset, A., Xu, Y., Shen, Q., and Friman, V.-P. (2017). Seasonal variation in the biocontrol efficiency of bacterial wilt is driven by temperature-mediated changes in bacterial competitive interactions. J. Appl. Ecol. 54: 1440–1448.
Wrzaczek, M., Brosché, M., and Kangasjärvi, J. (2013). ROS signaling loops - production, perception, regulation. Curr. Opin. Plant Biol. 16: 575–582.
Wu, S., Shan, L., and He, P. (2014). Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Sci. 228, 118-126.
Xiao, X., Lin, W., Li, K., Li, W., Gao, X., and Lv, L. (2017). Early burst of reactive oxygen species positively regulates resistance of eggplant against bacterial wilt. J. Phytopathol. 165: 652–661.
Yamchi, A. (2017). Proteomics analysis of Medicago truncatula response to infection by the phytopathogenic bacterium Ralstonia solanacearum points to jasmonate and salicylate defence pathways. Cell. Microbiol. doi: 10.1111/cmi.12796.
Yang, S., Tang, F., and Zhu, H. (2014). Alternative splicing in plant immunity. Int J Mol Sci 15, 10424-10445.
Yewdell, J.W., and David, A. (2013). Nuclear translation for immunosurveillance. Proc Natl Acad Sci U S A 110, 17612-17613.
Yoshioka, H., Adachi, H., Nakano, T., Miyagawa, N., Asai, S., Ishihama, N., and Yoshioka, M. (2016). Hierarchical regulation of NADPH oxidase by protein kinases in plant immunity. Physiol. Mol. Plant Pathol. 95, 20-26.
Yu, X., Feng, B., He, P., and Shan, L. (2017). From chaos to harmony: responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 55: 109–137.
Yue, J.X., Meyers, B.C., Chen, J.Q., Tian, D., and Yang, S. (2012). Tracing the origin and evolutionary history of plant nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes. New Phytol. 193, 1049-1063.
Zhang, C., Chen, H., Cai, T., Deng, Y., Zhuang, R., Zhang, N., Zeng, Y., Zheng, Y., Tang, R., Pan, R., and Zhuang, W. (2017). Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnol. J. 15, 39-55.
Zhang, W., Zhao, F., Jiang, L., Chen, C., Wu, L., and Liu, Z. (2018). Different Pathogen Defense Strategies in Arabidopsis: More than Pathogen Recognition. Cells 7.
Zhang, X.C., and Gassmann, W. (2003). RPS4-mediated disease resistance requires the combined presence of RPS4 transcripts with full-length and truncated open reading frames. Plant Cell 15, 2333-2342.
Zhang, Z., Liu, Y., Ding, P., Li, Y., Kong, Q., and Zhang, Y. (2014). Splicing of receptor-like kinase-encoding SNC4 and CERK1 is regulated by two conserved splicing factors that are required for plant immunity. Mol Plant 7, 1766-1775.
Zhang, Z., Wu, Y., Gao, M., Zhang, J., Kong, Q., Liu, Y., Ba, H., Zhou, J., and Zhang, Y. (2012). Disruption of PAMP-induced MAP kinase cascade by a Pseudomonas syringae effector activates plant immunity mediated by the NB-LRR protein SUMM2. Cell Host Microbe 11: 253–263.
Ziemann, S., van der Linde, K., Lahrmann, U., Acar, B., Kaschani, F., Colby, T., Kaiser, M., Ding, Y., Schmelz, E., Huffaker, A., Holton, N., Zipfel, C., and Doehlemann, G. (2018). An apoplastic peptide activates salicylic acid signalling in maize. Nat Plants 4, 172-180.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7367-
dc.description.abstract青枯病是由病原細菌 Ralstonia solanacearum (Rs) 引起之土壤傳播性病害,對眾多重要經濟作物造成嚴重危害,因此其抗病育種工作急迫且重要。在抗青枯病之番茄品系Hawaii 7996 (H7996) 中主導抗第一型 Rs 菌系之量化性狀基因座 (quantitative trait locus,簡稱QTL) 為Bwr12;我們先前研究顯示,位於此區之 12g690 可能會透過調控水楊酸 (salicylic acid, SA) 與茉莉酸 (jasmoic acid, JA) 訊息傳遞而在番茄抵抗青枯病中扮演負向調控者角色。此外, Hawaii 7998 (H7998) 為另一青枯病抗病番茄品系,但其抗病特性與防禦機制尚未闡明。本研究之第一部份為針對 12g690 在多種重要病害之角色與其基因特性進行進一步探討。以轉殖菸草驗證 12g690 在茄科植物抵抗青枯病反應中扮演負向調控者,但12g690 之轉錄表現在番茄莖基部與根部可能未受 Rs 感染調控,且在抗病 H7996 與感病 WVa700 番茄品系中之表現亦無明顯差異。此外,利用短暫基因過量表現、短暫基因靜默及基因轉殖植物等策略所得之分析結果指出 12g690 在番茄與菸草防禦 Pseudomonas syringae pv. tomato (Pst)、 Pectobacterium carotovorum subsp. carotovorum (Pcc) 及 Botrytis cinerea (Bc) 的反應中可能並非主要調控者。分析 H7996 與 WVa700 之 12g690之 genomic DNA 與 cDNA序列發現,H7996 序列中有數個非同義差異 (non-synonymous SNPs) 與一個24-bp insertion,在此兩種品系番茄之莖基部與根部中 12g690 mRNA 主要是以保留兩個內含子 (intron) 形式存在,且剪切情況並未因感染 Rs 而有明顯改變;在植體中表現重組蛋白質所得結果也一致指出,因 12g690 RNA 之第一個 intron 被保留而導致轉譯時造成 early termination 以致於產生僅有36個胺基酸之蛋白質產物 (12g6901-36)。蛋白質定位結果顯示 12g6901-36-GFP 座落於細胞膜,而全長之12g690 (12g690FL)-GFP 則無法被表現出來。本研究之第二部份分析 H7998抗病範圍所得結果顯示,H7998 不僅對 Pcc、 Pst 及 Bc 都有良好抗性,且對 Pcc與 Pst之抗性較 H7996 更佳,且其 H2O2 累積與 callose deposition等初級免疫反應也比 H7996 稍強。以上研究結果提供了番茄防禦相關之重要訊息。zh_TW
dc.description.abstractBacterial wilt (BW) caused by Ralstonia solanacearum (Rs) is a devastating soil-borne disease of many crops, and breeding for durable resistance is urgent and important for disease control. The major QTL associated with tomato cultivar Hawaii 7996 (H7996) resistance against Rs phylotype I strains is named Bwr12. Our previous studies suggested that 12g690 may have a negative role in tomato resistance to BW via regulating SA and JA pathways. In addition, the disease responses and defense nature of another BW-resistant tomato cultivar Hawaii 7998 (H7998) are not characterized. The first part of this study aimed to further determine the roles of 12g690 in several important diseases and its molecular characteristics. Characterization of transgenic tobacco plants confirmed the negative role of 12g690 in BW-defense. However, 12g690 transcription in tomato root and stem-base might not be regulated by Rs infection nor differentially regulated in H7996 and susceptible cultivar WVa700. In addition, results of transient and transgenic functional genetic analyses suggested that 12g690 may not have a major role in tomato and tobacco against Pseudomonas syringae pv. tomato (Pst), Pectobacterium carotovorum subsp. carotovorum (Pcc) and Botrytis cinerea (Bc). Furthermore, sequence analysis of 12g690 genomic DNA in H7996 and WVa700 revealed non-synonymous SNPs and a 24-bp insertion are present in H7996. Analyses of 12g690 transcripts showed that most transcripts retain both introns in both cultivars and this intron-retention phenomenon is not altered by Rs infection. Intron retention in 12g690 transcripts would lead to early termination with a predicted protein product of 36 amino acids (12g6901-36) and in planta expression of 12g690 recombinant protein showed consistent results. Protein subcellular localization assay further showed that 12g6901-36-GFP localizes on plasma membrane, while 12g690FL-GFP was not detectable. The second part of this study aimed to determine the disease responses and defense nature. The results showed that H7998 confers similar or higher degrees of resistance to Pcc, Pst and Bc compared to H7996. Moreover, H7998 confers slightly higher levels in H2O2 accumulation and callose deposition, two key characteristics of innate immunity. Together, these results provide important information regarding the nature of tomato defense.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:42:17Z (GMT). No. of bitstreams: 1
ntu-108-R05b42006-1.pdf: 10008172 bytes, checksum: 4b61cfb175f51dab1ae0d43d0010be3a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
口試委員會審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
常用縮寫與全名對照表 v
目錄 vii
表目錄 xi
圖目錄 xii
附錄目錄 xii
第一章 前言 1
1. 植物病害防禦機制 1
1.1植物抗病反應 1
1.2植物抗病訊息傳遞 2
1.3 PTI訊息傳遞與其下游相關反應 3
1.4植物信使 RNA (mRNA)前驅物之剪切與免疫反應 4
2. 植物白胺酸重覆 (Leucine rich repeat, LRR)蛋白質的特性 5
2.1 LRR receptors結構與功能 5
2.2 LRR receptors與病原菌之交互作用 6
3.青枯病 (Bacterial wilt, BW) 7
3.1番茄之青枯病反應相關研究 7
3.2阿拉伯芥之青枯病反應相關研究 8
3.3其他作物之青枯病反應相關研究 9
4. 前人研究與研究動機 10
第二章材料與方法 12
1. 植物材料與栽培條件 12
2. 微生物材料與培養條件 12
3. 序列分析與統計分析 12
4. 選殖技術 (Cloning) 13
4.1聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 13
4.2 DNA瓊脂糖凝膠電泳(agarose gel electrophoresis) 13
4.3 DNA片段純化 (DNA purification) 14
4.4 DNA限制酶消化水解 (DNA digestion) 14
4.5 DNA片段結合 (DNA ligation) 14
4.6 TOPO ®質體構築 (TOPO® cloning) 14
4.7 LR重組互換反應 (LR recombination) 15
4.8大腸桿菌勝任細胞熱休克轉型作用 (Heat shock transformation) 15
4.9電穿孔轉型作用之勝任細胞製備 (Competent cell preparation for electroporation) 15
4.10 電穿孔轉型作用 (Electroporation transformation) 16
4.11 質體萃取 (Plasmid purification) 16
5. 植物 DNA 萃取 (Plant DNA extraction) 17
6. 植物 RNA 萃取 (Plant RNA extraction) 17
6.1植物RNA萃取 (Plant RNA extraction) 17
6.2 RNA 樣本 genomic DNA殘留檢測 17
7. 反轉錄反應 (Reverse transcription) 18
8. 定量聚合酶連鎖反應 (Quantitative polymerase chain reaction) 18
8.1 半定量PCR (Semi-quantitative PCR, sqPCR) 18
8.2 定量 PCR (Quantitative PCR, qPCR) 19
9. 病毒誘導短暫性基因靜默與大量表現 (Virus-induced gene silencing [VIGS] and virus-mediated gene overexpression [VMGO]) 19
9.1病毒誘導短暫性基因靜默 (Virus-induced gene silencing, VIGS) 19
9.2病毒誘導短暫性大量表現 (Virus mediated gene overexpression, VMGO) 20
10. 植物病原菌處理與病害反應分析 20
10.1 青枯病接種試驗 20
10.2 細菌性軟腐病菌接種試驗 20
10.3 細菌性斑點病接種試驗 21
10.4灰黴病接種試驗 21
11. 番茄葉部 PTI 反應 22
11.1 病原菌處理 22
11.2 癒傷葡聚醣累積分析 (Callose deposition assay) 22
11.3 H2O2累積檢測 (H2O2 accumulation assay) 22
12. 接種青枯病菌後番茄基因轉錄之檢測 22
13. 蛋白質在菸草葉片細胞之定位分析 23
13.1 基因短暫表現載體構築 23
13.2 蛋白質定位分析與細胞質壁分離 23
14. 培育基因轉殖植物 (Generation of transgenic plants) 23
14.1 基因過量表現構築 23
14.2 菸草基因轉殖 24
14.3 番茄基因轉殖 24
14.4 基因轉殖植物之檢驗 25
15. 蛋白質轉譯表現 (Transgenic tobacco protein translation) 25
15.1 植物膜蛋白質萃取 (Plant protein extraction) 25
15.2 蛋白質定量 (Protein quantification) 25
15.3 蛋白質電泳 (SDS-PAGE) 26
15.4 西方墨點法 (Western blot) 26
第三章結果 27
1. 接種青枯病菌後番茄 12g690之基因轉錄表現 27
2. 抗病與感病番茄品系中 12g690 之 DNA序列分析 27
3. 抗病與感病番茄品系中 12g690 RNA 之剪切與蛋白質表現 27
4. 培育大量表現 12g690FL與 12g6901-36 之轉殖菸草 28
5. 12g690蛋白質在植物細胞中之座落位置 29
6. 12g690 在茄科青枯病之角色 29
7. 12g690 在其他茄科重要病害反應之角色 30
8. 接種青枯病菌後12g520之基因轉錄表現 30
9. 12g550蛋白質在植物細胞之座落位置 31
10. 不同番茄品系對病害反應與 PTI反應之比較 31
第四章 討論 33
1. 番茄基因 12g690 在青枯病防禦反應中為負向調控者 33
2. Rs 感染可能並未影響 H7996與 WVa700 中 12g690 之轉錄表現 33
3. 12g690 在茄科植物對 Pcc、 Pst 及 Bc 之病害反應中可能並非主要調控者 34
4. 12g690 genomic DNA序列 在 H7996、H1706 及 WVa700 具一定之差異性 35
5. 番茄基因 12g690 之 mRNA 可能保留其 intron 36
6. 番茄品系 H7998 具強 PTI 反應與廣效抗病力 38
7. 結語 39
第五章 參考文獻 40
第六章 附錄 53
 
表目錄
表一、統整大量表現 12g520與 12g550轉殖菸草之培育、PTI反應及病害反應 53
表二、大量表現 12g690FL轉殖菸草培育 54
表三、大量表現 12g6901-36轉殖菸草培育 55
圖目錄
圖一、接種青枯病菌後番茄莖基部之12g690 轉錄表現 56
圖二、接種青枯病菌後番茄根部之12g690 轉錄表現 58
圖三、12g690之genomic DNA序列分析 60
圖四、12g690之cDNA基因序列分析 62
圖五、以西方點墨法檢測12g690剪切狀況 64
圖六、大量表現 12g690FL與 12g6901-36之轉殖菸草的培育 65
圖七、12g690FL-GFP與 12g6901-36重組蛋白質在菸草葉片之座落位置 66
圖八、大量表現 12g690FL之轉殖菸草接種中毒力青枯病菌 Pss4之反應 67
圖九、大量表現 12g6901-36之轉殖菸草接種中毒力青枯病菌 Pss4之反應 68
圖十、番茄H7996中短暫過量表現12g690FL與12g6901-36後接種 Pst之反應 69
圖十一、番茄WVa700中靜默12g690後接種接種 Pst之反應 70
圖十二、番茄 H7996中短暫過量表現 12g690FL與 12g6901-36後接種 Pcc 之反應 71
圖十三、番茄 WVa700中靜默 12g690後接種 Pcc 之反應 72
圖十四、大量表現 35S::12g690FL-GFP之轉殖菸草接種 Pcc 之反應 73
圖十五、番茄H7996中短暫過量表現 12g690FL與 12g6901-36後接種 Bc 之反應 74
圖十六、番茄WVa700中靜默 12g690後接種灰黴病菌 Bc 後之反應 75
圖十七、大量表現 35S::12g690FL-GFP轉殖菸草接種灰黴病菌 Bc 之反應 76
圖十八、接種青枯病菌後番茄 12g520之轉錄表現 78
圖十九、12g550-GFP重組蛋白質在菸草葉片之座落位置 80
圖二十、不同番茄品種接種細菌性軟腐病菌 Pcc 之反應 81
圖二十一、不同番茄品種接種細菌性斑點病菌 Pst 之反應 82
圖二十二、不同番茄品種接種灰黴病菌 Bc 之反應 83
圖二十三、青枯病抗病番茄品系之葉部過氧化氫累積反應 84
圖二十四、青枯病抗病番茄品系之葉部PTI反應callose deposition分析 85
圖二十五、番茄 H7996 Bwr12之 12g520、 12g550及 12g690參與抵抗青枯病之模式圖 86
附錄目錄
附表一、統整大量表現 12g690FL與 12g6901-36轉殖菸草之病害反應 87
附表二、整合 Bwr12基因在植物防禦之研究 88
附表三、番茄 Bwr12相關 RLKs 與訊息傳遞相關基因之 VIGS 分析中使用之構築 89
附表四、本研究所使用之質體與菌株特性 90
附表五、培養基與藥品配方 92
附表六、抗生素濃度與配方 99
附表七、本研究中所使用之引子 100
附圖一、位於Bwr12區段LRR (Leucine rich repeat)蛋白質之序列分析 102
附圖二、在H7996中短暫過量表現12g690後之青枯病反應 103
附圖三、在WVa700中短暫過量表現或靜默12g690後之青枯病反應 104
附圖四、接種青枯病菌後之12g690 轉錄表現 105
附圖五、番茄品系H7996之12g690 genomic DNA 與 cDNA 之部份片段序列與其胺基酸序列比較 106
附圖六、12g690與12g6901-36重組蛋白質在菸草葉片之座落位置 107
附圖七、在H7996中短暫過量表現12g690對防禦相關荷爾蒙之標誌基因的影響 108
附圖八、12g550 蛋白質在菸草葉片中之表現位置 109
附圖九、12g550-GFP重組蛋白質在轉殖菸草葉片之座落位置 110
附圖十、12g690蛋白質功能性區段預測分析 111
附圖十一、12g690蛋白質表現位置預測分析 112
附圖十二、12g6901-36蛋白質表現位置預測分析 113
附圖十三、12g690FL-GFP與 12g6901-36重組蛋白質在轉殖菸草葉片之座落位置 114
附圖十四、12g690FL-GFP重組蛋白質在轉殖菸草葉片之座落位置 115
附圖十五、以西方點墨法檢測大量表現12g690FL 轉殖菸草之蛋白表現 116
附圖十六、接種青枯病菌後12g520與12g550之表現 117
附圖十七、接種青枯病菌後12g520與12g550之表現 118
附圖十八、12g5501-93蛋白質表現位置預測分析 119
附圖十九、12g550-GFP重組蛋白質在轉殖菸草葉片之座落位置 120
附圖二十、12g690 基因轉錄表現引子設計示意圖 121
附圖二十一、在H7996中短暫過量表現12g690後接種 Pcc 之反應 122
附圖二十二、番茄進行 VMGO 後之基因大量表現效力檢測 123
附圖二十三、番茄進行VIGS後之基因靜默效力檢測 124
附圖二十四、在WVa700中短暫過量表現 12g6901-36 後之青枯病反應 125
附圖二十五、青枯病抗病與感病番茄品系之葉部過氧化氫累積反應 126
附圖二十六、pCR®II/GW/TOPO®與pCR®8⁄GW⁄TOPO®載體 127
附圖二十七、TRV-based VIGS vectors 與 PVX-based VMGO vector 128
附圖二十八、綠色螢光GFP重組蛋白所使用之載體 129
附圖二十九、黃色螢光YFP重組蛋白所使用之載體 130
附圖三十、菸草葉片表現N端 YFP 重組蛋白所使用之載體 131
附圖三十一、菸草葉片表現N端 GFP 重組蛋白所使用之載體 132
dc.language.isozh-TW
dc.title探討番茄 12g690 調控之病害反應與抗青枯病番茄 Hawaii 7998 之特性zh_TW
dc.titleStudy on tomato disease responses mediated by 12g690 and Hawaii 7998en
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee謝旭亮,王肇芬,陳逸然,林盈仲
dc.subject.keyword青枯病,青枯病菌,H7996,內含子保留,H7998,初級免疫,zh_TW
dc.subject.keywordBacterial wilt,Ralstonia solanacearum,H7996,intron retention,H7998,innate immunity,en
dc.relation.page133
dc.identifier.doi10.6342/NTU201900610
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-02-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
dc.date.embargo-lift2029-12-31-
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  此日期後於網路公開 2029-12-31
9.77 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved