請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73676
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊宏(Jiun-Hong Chen) | |
dc.contributor.author | Yao-Hsiang Chang | en |
dc.contributor.author | 張堯翔 | zh_TW |
dc.date.accessioned | 2021-06-17T08:07:52Z | - |
dc.date.available | 2024-08-20 | |
dc.date.copyright | 2019-08-20 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-08-18 | |
dc.identifier.citation | Agata, K., 2003. Regeneration and gene regulation in planarians. Current Opinion in Genetics & Development 13, 492-496.
Akimenko, M.-A., Marí-Beffa, M., Becerra, J., Géraudie, J., 2003. Old questions, new tools, and some answers to the mystery of fin regeneration. Developmental Dynamics 226, 190-201. Ambros, V., Horvitz, H.R., 1984. Heterochronic mutants of the nematode Caenorhabditis elegans. Science 226, 409. Bely, A.E., Sikes, J.M., 2010. Latent regeneration abilities persist following recent evolutionary loss in asexual annelids. Proceedings of the National Academy of Sciences 107, 1464. Bely, A.E., Wray, G.A., 2001. Evolution of regeneration and fission in annelids: insights from engrailed- and orthodenticle-class gene expression. Development 128, 2781. Bosch, T.C.G., 2007. Why polyps regenerate and we don't: Towards a cellular and molecular framework for Hydra regeneration. Developmental Biology 303, 421-433. Chen, C.-F., Sung, T.-L., Chen, L.-Y., Chen, J.-H., 2018. Telomere maintenance during anterior regeneration and aging in the freshwater annelid Aeolosoma viride. Scientific Reports 8, 18078. Conboy, I.M., Conboy, M.J., Wagers, A.J., Girma, E.R., Weissman, I.L., Rando, T.A., 2005. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760-764. Faas, L., Warrander, F.C., Maguire, R., Ramsbottom, S.A., Quinn, D., Genever, P., Isaacs, H.V., 2013. Lin28 proteins are required for germ layer specification in Xenopus. Development 140, 976. Falconi, R., Gugnali, A., Zaccanti, F., 2015. Quantitative observations on asexual reproduction of Aeolosoma viride (Annelida, Aphanoneura). Invertebrate Biology 134, 151-161. Falconi, R., Renzulli, T., Zaccanti, F., 2006. Survival and Reproduction in Aeolosoma viride (Annelida, Aphanoneura). Hydrobiologia 564, 95-99. Galliot, B., Schmid, V., 2002. Cnidarians as a model system for under-standing evolution and regeneration. The International Journal of Developmental Biology 46, 39–48 Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C.J., Creyghton, M.P., van Oudenaarden, A., Jaenisch, R., 2009. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595. Heo, I., Joo, C., Kim, Y.-K., Ha, M., Yoon, M.-J., Cho, J., Yeom, K.-H., Han, J., Kim, V.N., 2009. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696-708. Huang, Y., 2012. A mirror of two faces: Lin28 as a master regulator of both miRNA and mRNA. Wiley Interdisciplinary Reviews: RNA 3, 483-494. Itou, J., Kawakami, H., Burgoyne, T., Kawakami, Y., 2012. Life-long preservation of the regenerative capacity in the fin and heart in zebrafish. Biology Open 1, 739. Jopling, C., Sleep, E., Raya, M., Martí, M., Raya, A., Belmonte, J.C.I., 2010. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 464, 606. Jun-Hao, E.T., Gupta, R.R., Shyh-Chang, N., 2016. Lin28 and let-7 in the metabolic physiology of aging. Trends in Endocrinology & Metabolism 27, 132-141. Kikuchi, K., Gupta, V., Wang, J., Holdway, J.E., Wills, A.A., Fang, Y., Poss, K.D., 2011. tcf21+ epicardial cells adopt non-myocardial fates during zebrafish heart development and regeneration. Development 138, 2895. Kragl, M., Knapp, D., Nacu, E., Khattak, S., Maden, M., Epperlein, H.H., Tanaka, E.M., 2009. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460, 60. Lenhoff, S.G., Lenhoff, H.M., 1986. Hydra and the Birth of Experimental Biology, 1744: Abraham Trembley’s Memoirs Concerning the Natural History of a Type of Freshwater Polyp with Arms Shaped like Horns (Pacific Grove,California: Boxwood Press). López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M., Kroemer, G., 2013. The hallmarks of aging. Cell 153, 1194-1217. Melton, C., Judson, R.L., Blelloch, R., 2010. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463, 621. Montgomery, J.R., Coward, S.J., 1974. On the minimal size of a planarian capable of regeneration. Transactions of the American Microscopical Society 93, 386-391. Morgan, T.H., 1898. Experimental studies of the regeneration of planaria maculata. Roux's archives of developmental biology 7, 364-397. Moss, E.G., Lee, R.C., Ambros, V., 1997. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637-646. Moss, E.G., Tang, L., 2003. Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites. Developmental Biology 258, 432-442. Newman, M.A., Thomson, J.M., Hammond, S.M., 2008. Lin-28 interaction with the let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539-1549. Nishimura, T., Kaneko, S., Kawana-Tachikawa, A., Tajima, Y., Goto, H., Zhu, D., Nakayama-Hosoya, K., Iriguchi, S., Uemura, Y., Shimizu, T., Takayama, N., Yamada, D., Nishimura, K., Ohtaka, M., Watanabe, N., Takahashi, S., Iwamoto, A., Koseki, H., Nakanishi, M., Eto, K., Nakauchi, H., 2013. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12, 114-126. Ouchi, Y., Yamamoto, J., Iwamoto, T., 2014. The heterochronic genes lin-28a and lin-28b play an essential and evolutionarily conserved role in early zebrafish development. PLoS One 9, e88086. Özpolat, B.D., Bely, A.E., 2016. Developmental and molecular biology of annelid regeneration: a comparative review of recent studies. Current Opinion in Genetics & Development 40, 144-153. Piskounova, E., Viswanathan, S.R., Janas, M., LaPierre, R.J., Daley, G.Q., Sliz, P., Gregory, R.I., 2008. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. Journal of Biological Chemistry 283, 21310-21314. Qiu, C., Ma, Y., Wang, J., Peng, S., Huang, Y., 2009. Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. Nucleic Acids Research 38, 1240-1248. Ramachandran, R., Fausett, B.V., Goldman, D., 2010. Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nature cell biology 12, 1101-1107. Randolph, H., 1897. Observations and experiments on regeneration in planarians. Archiv für Entwicklungsmechanik der Organismen 5, 352–372 Roos, M., Pradère, U., Ngondo, R.P., Behera, A., Allegrini, S., Civenni, G., Zagalak, J.A., Marchand, J.-R., Menzi, M., Towbin, H., Scheuermann, J., Neri, D., Caflisch, A., Catapano, C.V., Ciaudo, C., Hall, J., 2016. A small-molecule inhibitor of Lin28. ACS Chemical Biology 11, 2773-2781. Rybak, A., Fuchs, H., Smirnova, L., Brandt, C., Pohl, E.E., Nitsch, R., Wulczyn, F.G., 2008. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biology 10, 987. Sánchez Alvarado, A., 2006. Planarian regeneration: its end is its beginning. Cell 124, 241-245. Seifert, A.W., Voss, S.R., 2013. Revisiting the relationship between regenerative ability and aging. BMC Biology 11, 2. Shyh-Chang, N., Zhu, H., Yvanka de Soysa, T., Shinoda, G., Seligson, M.T., Tsanov, K.M., Nguyen, L., Asara, J.M., Cantley, L.C., Daley, G.Q., 2013. Lin28 enhances tissue repair by reprogramming cellular metabolism. Cell 155, 778-792. Tanaka, E.M., Reddien, P.W., 2011. The cellular basis for animal regeneration. Developmental Cell 21, 172-185. Tsialikas, J., Romer-Seibert, J., 2015. LIN28: roles and regulation in development and beyond. Development 142, 2397. Vadla, B., Kemper, K., Alaimo, J., Heine, C., Moss, E.G., 2012. Lin-28 controls the succession of cell fate choices via two distinct activities. PLOS Genetics 8, e1002588. Viswanathan, S.R., Daley, G.Q., Gregory, R.I., 2008. Selective blockade of microRNA processing by Lin28. Science 320, 97. Vizcardo, R., Masuda, K., Yamada, D., Ikawa, T., Shimizu, K., Fujii, S.-i., Koseki, H., Kawamoto, H., 2013. Regeneration of human tumor antigen-specific T Cells from iPSCs derived from mature CD8+ T Cells. Cell Stem Cell 12, 31-36. Wang, D., Hou, L., Nakamura, S., Su, M., Li, F., Chen, W., Yan, Y., Green, C.D., Chen, D., Zhang, H., Antebi, A., Han, J.-D.J., 2017. LIN-28 balances longevity and germline stem cell number in Caenorhabditis elegans through let-7/AKT/DAF-16 axis. Aging Cell 16, 113-124. Wang, X.-W., Li, Q., Liu, C.-M., Hall, P.A., Jiang, J.-J., Katchis, C.D., Kang, S., Dong, B.C., Li, S., Zhou, F.-Q., 2018. Lin28 signaling supports mammalian PNS and CNS axon regeneration. Cell Reports 24, 2540-2552.e2546. Wendler, S., Hartmann, N., Hoppe, B., Englert, C., 2015. Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri. Aging Cell 14, 857-866. Wenemoser, D., Reddien, P.W., 2010. Planarian regeneration involves distinct stem cell responses to wounds and tissue absence. Developmental Biology 344, 979-991. Wong, C., Jones, D.L., 2012. Efficiency of spermatogonial dedifferentiation during aging. PLoS One 7, e33635-e33635. Yang, D.-H., Moss, E.G., 2003. Temporally regulated expression of Lin-28 in diverse tissues of the developing mouse. Gene Expression Patterns 3, 719-726. Yao, K., Qiu, S., Tian, L., Snider, W.D., Flannery, J.G., Schaffer, D.V., Chen, B., 2016. Wnt regulates proliferation and neurogenic potential of müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas. Cell Reports 17, 165-178. Yermalovich, A.V., Osborne, J.K., Sousa, P., Han, A., Kinney, M.A., Chen, M.J., Robinton, D.A., Montie, H., Pearson, D.S., Wilson, S.B., Combes, A.N., Little, M.H., Daley, G.Q., 2019. Lin28 and let-7 regulate the timing of cessation of murine nephrogenesis. Nature Communications 10, 168. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., Slukvin, I.I., Thomson, J.A., 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917. Yun, M.H., 2015. Changes in regenerative capacity through lifespan. International Journal of Molecular Sciences 16, 25392-25432. Zheng, P., Shao, Q., Diao, X., Li, Z., Han, Q., 2016. Expression of stem cell pluripotency factors during regeneration in the earthworm Eisenia foetida. Gene 575, 58-65. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73676 | - |
dc.description.abstract | 在動物界中,許多動物都能透過再生修補受損部位。然而對於多數動物而言,再生能力是會隨著年紀增長而隨之下降的。比較年輕與年長的生物,許多異時性基因,因為會在特定時間表現並隨著年紀的增加而隨之下降而被視為可能造成此現象的候選目標。Lin28,是一個 RNA 的結合蛋白,最早在線蟲體內發現的。在多數的動物中,lin28 也是在成體之前大量表現,進入成體之後快速下降。不僅如此,前人研究中也發現高度表現lin28 能夠增加斑馬魚以及成體老鼠的再生能力。而為了要了解再生與老化之間的關係以及 Lin28 所扮演的角色,我們引進了瓢體蟲作為我們的實驗動物。瓢體蟲是一種淡水生的環節動物,具有很強的再生能力以及很短的壽命。將它頭部切除後,瓢體蟲能在五天的時間內完成再生。另一方面,前人研究也指出它的平均壽命約 40 天,是非常適合作為再生與老化的研究。本篇研究中,我們選殖瓢體蟲的lin28 序列,並且確認 Lin28 可透過促進細胞的重新規劃以及增生來幫助前端再生的進行。而與年輕蟲體前端進行再生時比較,發現在年長蟲體中lin28 的基因表現量依舊會上升,且 Lin28 所調控的細胞重新規劃以及增生都無看到顯著的差異,由此可知在瓢體蟲中年長蟲體再生能力下降的現象,可能不是由再生前期的相關事件如細胞重新規劃以及增生所造成的,可能是與後期的組織成型有較大的關係。 | zh_TW |
dc.description.abstract | In animal kingdom, many animals can regenerate or repair the lost parts after injury. However, the regeneration capacity of most animals declines in aging. The expression levels of many heterochronic genes decline sharply in older animals, and these genes are regarded as the candidates to study the decline of regenerative ability in aging. Lin28 (cell lineage abnormal 28) is an RNA binding protein first identified in C. elegans. In many animals, lin28 highly expresses before adulthood, and its expression decreases dramatically in the adult. Nevertheless, previous studies have shown that upregulation of lin28 could enhance the regeneration capacity in zebra fish and adult mice. To characterize the relationship between aging and regeneration, as well as the roles of Lin28 in this process, a new animal model, Aeolosoma viride was introduced. A. viride is a fresh annelid with an outstanding regenerative ability and short lifespan. After anterior amputation, the worm can completely regenerate within five days. On the other hand, previous studies had shown that the mean lifespan of the worm is around 40 days. Thus, it is suitable for the study of regeneration and aging. In this study, I found that Avi-lin28, an ortholog of lin28 in A. viride, increased significantly in the regenerating tissues. Also, Avi-Lin28 was confirmed to participate in anterior regeneration through promoting cell reprogramming and proliferation. However, compared to the young worms, Avi-lin28 expression level did not decrease during anterior regeneration in the old worms. In addition, cell de-differentiated and cell proliferation did not decline significantly during anterior regeneration in the old worms. Thus, based on the results above, it is inferred that the decline of regeneration capacity in aged A. viride is not due to down regulation of cell de-differentiation and proliferation. Rather, it results from abbreviated tissue patterning, which occurs during a later stage of regeneration in A. viride. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T08:07:52Z (GMT). No. of bitstreams: 1 ntu-108-R06b21044-1.pdf: 3294330 bytes, checksum: 5a09cd1162e131b6bbe3209f8adc3ea2 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 致謝 ii
Abstract iv 中文摘要 vi Introduction 1 Regeneration 1 Regeneration capacity through lifespan 2 Mechanism of Lin28 3 Roles of Lin28 in the processes of regeneration and aging 4 Experimental animal model- Aeolosoma viride 5 Aims: 6 Material and method 7 Experimental animals and sample preparation 7 Regeneration experiment 7 Gene cloning and sequence analysis 8 RNA exaction and quantitative real-time RT-PCR (qRT-PCR) 8 EdU labeling 9 Whole-mount in situ hybridization (WISH) 9 Northern blotting 11 Statistical analysis 12 Results 13 Identification of lin28 sequence in A. viride 13 Relative gene expression of Avi-lin28 at anterior regeneration tissues during anterior regeneration 13 Spatial distribution of Avi-lin28 mRNAduring anterior regeneration 14 Change of matureAvi-let-7 expression at 48 hpa during anterior regeneration 14 The inhibitory influence of Lin28 1632 for A. viride during anterior regeneration 15 Inhibitory effect of Lin28 1632 on signal of Avi-PIWI and cell proliferation during anterior regeneration 17 Lifespan of A. viride 17 Gene expression of Avi-lin28 during different stages of aging in A. viride 18 Signal of Avi-PIWI and cell proliferation at 48 hpa during anterior regeneration in worm of different ages 19 Discussion 21 Reference 26 Tables 35 Table 1. primers used for cloning Avi-lin28 35 Table 2. primers used for the synthesis RNA probe 35 Table 3. primers used for qRT-PCR 35 Table 4. primers used for synthesis of oligo probe for Northern blotting 35 Figure 36 Figure 1. External morphology of Aeolosoma viride and sequence of Avi-lin28. 37 Figure 2. Phylogenetic tree of Lin28. 39 Figure 3. Relative gene expression of Avi-lin28 during anterior regeneration. 41 Figure 4. Spatial distribution of Avi-lin28 during anterior regeneration. 43 Figure 5. Change of Avi-let-7 expression at 48 hpa during anterior regeneration. 46 Figure 6. The inhibitory influence of Lin28 1632 on anterior regeneration of A. viride. 48 Figure 7. The inhibitory effect of Lin28 1632 on Avi-PIWI gene expression and cell proliferation during anterior regeneration in A. viride. 50 Figure 8. Lifespan of A. viride. 52 Figure 9. Avi-lin28 expression level of different age worms. 54 Figure 10. Relative Avi-lin28 expression level at 48 hpa in 2 week, 4 week, 6 week and 8 week worms. 56 Figure 11. The signal of Avi-PIWI at 48 hpa during anterior regeneration in different age of worms. 58 Figure 12. The comparison in signal of cell proliferation at 48 hpa during anterior regeneration in different ages of worms. 60 | |
dc.language.iso | en | |
dc.title | Avi-lin28 調控淡水生環節動物瓢體蟲的前端再生 | zh_TW |
dc.title | Avi-lin28 regulates anterior regeneration in aquatic annelid A. viride | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭典翰(Dian-Han Kuo),詹世鵬(Shih-Peng Chan) | |
dc.subject.keyword | 瓢體蟲,再生,老化,Lin28,細胞重新規劃,細胞增生, | zh_TW |
dc.subject.keyword | Aeolosoma viride,regeneration,aging,Lin28,cell reprogramming,cell proliferation, | en |
dc.relation.page | 60 | |
dc.identifier.doi | 10.6342/NTU201903927 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-08-18 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生命科學系 | zh_TW |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 3.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。