Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73654
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳為堅(Wei-J. Chen)
dc.contributor.authorJia-Bei Chenen
dc.contributor.author陳佳蓓zh_TW
dc.date.accessioned2021-06-17T08:07:29Z-
dc.date.available2022-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-17
dc.identifier.citationAlabdali, A., Al-Ayadhi, L., & El-Ansary, A. (2014). Association of social and cognitive impairment and biomarkers in autism spectrum disorders. Journal of Neuroinflammation, 11, 4. doi:10.1186/1742-2094-11-4
Allardyce, J., Leonenko, G., Hamshere, M., Pardinas, A. F., Forty, L., Knott, S., et al. (2018). Association Between Schizophrenia-Related Polygenic Liability and the Occurrence and Level of Mood-Incongruent Psychotic Symptoms in Bipolar Disorder. JAMA Psychiatry, 75(1), 28-35. doi:10.1001/jamapsychiatry.2017.3485
Allswede, D. M., & Cannon, T. D. (2018). Prenatal inflammation and risk for schizophrenia: A role for immune proteins in neurodevelopment. Development and Psychopathology, 30(3), 1157-1178. doi:10.1017/s0954579418000317
Bansal, V., Mitjans, M., Burik, C. A. P., Linner, R. K., Okbay, A., Rietveld, C. A., et al. (2018). Genome-wide association study results for educational attainment aid in identifying genetic heterogeneity of schizophrenia. Nat Commun, 9(1), 3078. doi:10.1038/s41467-018-05510-z
Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Statistical Methodology, 57(1), 289-300.
Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29(4), 1165-1188.
Biederman, J., & Faraone, S. V. (2006). The effects of attention-deficit/hyperactivity disorder on employment and household income. MedGenMed: Medscape General Medicine, 8(3), 12.
Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2018). Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 173(7), 1705-1715.e1716. doi:10.1016/j.cell.2018.05.046
Birkett, P., Sigmundsson, T., Sharma, T., Toulopoulou, T., Griffiths, T. D., Reveley, A., et al. (2008). Executive function and genetic predisposition to schizophrenia--the Maudsley family study. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 147(3), 285-293. doi:10.1002/ajmg.b.30594
Blokland, G. A. M., Mesholam-Gately, R. I., Toulopoulou, T., Del Re, E. C., Lam, M., DeLisi, L. E., et al. (2017). Heritability of Neuropsychological Measures in Schizophrenia and Nonpsychiatric Populations: A Systematic Review and Meta-analysis. Schizophrenia Bulletin, 43(4), 788-800. doi:10.1093/schbul/sbw146
Bustamante, M. L., Herrera, L., Gaspar, P. A., Nieto, R., Maturana, A., Villar, M. J., et al. (2017). Shifting the focus toward rare variants in schizophrenia to close the gap from genotype to phenotype. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 174(7), 663-670. doi:10.1002/ajmg.b.32550
Cardno, A. G., Rijsdijk, F. V., Sham, P. C., Murray, R. M., & McGuffin, P. (2002). A twin study of genetic relationships between psychotic symptoms. American Journal of Psychiatry, 159(4), 539-545. doi:10.1176/appi.ajp.159.4.539
Chandler, D., Dragovic, M., Cooper, M., Badcock, J. C., Mullin, B. H., Faulkner, D., et al. (2010). Impact of Neuritin 1 (NRN1) polymorphisms on fluid intelligence in schizophrenia. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 153b(2), 428-437. doi:10.1002/ajmg.b.30996
Chen, W. J. (2013). Taiwan Schizophrenia Linkage Study: lessons learned from endophenotype-based genome-wide linkage scans and perspective. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 162b(7), 636-647. doi:10.1002/ajmg.b.32166
Chen, W. J., Chang, C. H., Liu, S. K., Hwang, T. J., Hwu, H. G., & Multidimensional Psychopathology Group Research, P. (2004). Sustained attention deficits in nonpsychotic relatives of schizophrenic patients: a recurrence risk ratio analysis. Biological Psychiatry, 55(10), 995-1000. doi:10.1016/j.biopsych.2004.01.010
Chen, W. J., Hsiao, C. K., Hsiao, L. L., & Hwu, H. G. (1998a). Performance of the Continuous Performance Test among community samples. Schizophrenia Bulletin, 24(1), 163-174.
Chen, W. J., Liu, S. K., Chang, C. J., Lien, Y. J., Chang, Y. H., & Hwu, H. G. (1998b). Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. American Journal of Psychiatry, 155(9), 1214-1220. doi:10.1176/ajp.155.9.1214
Cordova-Palomera, A., Kaufmann, T., Bettella, F., Wang, Y., Doan, N. T., van der Meer, D., et al. (2018). Effects of autozygosity and schizophrenia polygenic risk on cognitive and brain developmental trajectories. European Journal of Human Genetics, 26(7), 1049-1059. doi:10.1038/s41431-018-0134-2
Cornblatt, B., Obuchowski, M., Roberts, S., Pollack, S., & Erlenmeyer-Kimling, L. (1999). Cognitive and behavioral precursors of schizophrenia. Development and Psychopathology, 11(3), 487-508.
Cornblatt, B. A., & Malhotra, A. K. (2001). Impaired attention as an endophenotype for molecular genetic studies of schizophrenia. American Journal of Medical Genetics, 105(1), 11-15.
Cross-Disorder Group of the Psychiatric Genomics Consortium. (2013). Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet, 381(9875), 1371-1379. doi:10.1016/s0140-6736(12)62129-1
Das, S., Forer, L., Schonherr, S., Sidore, C., Locke, A. E., Kwong, A., et al. (2016). Next-generation genotype imputation service and methods. Nature Genetics, 48(10), 1284-1287. doi:10.1038/ng.3656
Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D., et al. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nat Commun, 9(1), 2098. doi:10.1038/s41467-018-04362-x
Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., et al. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16(10), 996-1005. doi:10.1038/mp.2011.85
Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., et al. (2019). Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nature Genetics, 51(1), 63-75. doi:10.1038/s41588-018-0269-7
Erol, A., Bayram, S., Kosger, F., & Mete, L. (2012). Executive functions in patients with familial versus sporadic schizophrenia and their parents. Neuropsychobiology, 66(2), 93-99. doi:10.1159/000337738
Esterberg, M. L., Trotman, H. D., Holtzman, C., Compton, M. T., & Walker, E. F. (2010). The impact of a family history of psychosis on age-at-onset and positive and negative symptoms of schizophrenia: a meta-analysis. Schizophrenia Research, 120(1-3), 121-130. doi:10.1016/j.schres.2010.01.011
Fanous, A. H., & Kendler, K. S. (2005). Genetic heterogeneity, modifier genes, and quantitative phenotypes in psychiatric illness: searching for a framework. Molecular Psychiatry, 10(1), 6-13. doi:10.1038/sj.mp.4001571
Faraone, S. V., Seidman, L. J., Kremen, W. S., Toomey, R., Pepple, J. R., & Tsuang, M. T. (2000). Neuropsychologic functioning among the nonpsychotic relatives of schizophrenic patients: the effect of genetic loading. Biological Psychiatry, 48(2), 120-126.
Goldberg Hermo, X., Lemos Giraldez, S., & Fananas Saura, L. (2014). A systematic review of the complex organization of human cognitive domains and their heritability. Psicothema, 26(1), 1-9. doi:10.7334/psicothema2012.210
Gottesman, II, & Gould, T. D. (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry, 160(4), 636-645. doi:10.1176/appi.ajp.160.4.636
Gratten, J. (2016). Rare variants are common in schizophrenia. Nature Neuroscience, 19(11), 1426-1428. doi:10.1038/nn.4422
Green, M. F., & Harvey, P. D. (2014). Cognition in schizophrenia: Past, present, and future. Schizophr Res Cogn, 1(1), e1-e9. doi:10.1016/j.scog.2014.02.001
Greve, K. W., Stickle, T. R., Love, J. M., Bianchini, K. J., & Stanford, M. S. (2005). Latent structure of the Wisconsin Card Sorting Test: a confirmatory factor analytic study. Archives of Clinical Neuropsychology, 20(3), 355-364. doi:10.1016/j.acn.2004.09.004
Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R. K., Won, H., et al. (2019). Identification of common genetic risk variants for autism spectrum disorder. Nature Genetics, 51(3), 431-444. doi:10.1038/s41588-019-0344-8
Hatzimanolis, A., Bhatnagar, P., Moes, A., Wang, R., Roussos, P., Bitsios, P., et al. (2015). Common genetic variation and schizophrenia polygenic risk influence neurocognitive performance in young adulthood. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 168b(5), 392-401. doi:10.1002/ajmg.b.32323
Hubbard, L., Tansey, K. E., Rai, D., Jones, P., Ripke, S., Chambert, K. D., et al. (2016). Evidence of Common Genetic Overlap Between Schizophrenia and Cognition. Schizophrenia Bulletin, 42(3), 832-842. doi:10.1093/schbul/sbv168
Hwu, H. G., Faraone, S. V., Liu, C. M., Chen, W. J., Liu, S. K., Shieh, M. H., et al. (2005). Taiwan schizophrenia linkage study: the field study. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics, 134b(1), 30-36. doi:10.1002/ajmg.b.30139
International Schizophrenia Consortium. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748-752. doi:10.1038/nature08185
John, J., Sharma, A., Kukshal, P., Bhatia, T., Nimgaonkar, V. L., Deshpande, S. N., et al. (2019). Rare Variants in Tissue Inhibitor of Metalloproteinase 2 as a Risk Factor for Schizophrenia: Evidence From Familial and Cohort Analysis. Schizophrenia Bulletin, 45(1), 256-263. doi:10.1093/schbul/sbx196
Kahn, R. S., & Keefe, R. S. (2013). Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry, 70(10), 1107-1112. doi:10.1001/jamapsychiatry.2013.155
Kakela, J., Panula, J., Oinas, E., Hirvonen, N., Jaaskelainen, E., & Miettunen, J. (2014). Family history of psychosis and social, occupational and global outcome in schizophrenia: a meta-analysis. Acta Psychiatrica Scandinavica, 130(4), 269-278. doi:10.1111/acps.12317
Kaneda, Y., Jayathilak, K., & Meltzer, H. (2010). Determinants of work outcome in neuroleptic-resistant schizophrenia and schizoaffective disorder: cognitive impairment and clozapine treatment. Psychiatry Research, 178(1), 57-62. doi:10.1016/j.psychres.2009.04.001
Karlsson, H., & Dalman, C. (2019). Epidemiological Studies of Prenatal and Childhood Infection and Schizophrenia. Current Topics in Behavioral Neurosciences. doi:10.1007/7854_2018_87
Keefe, R. S., & Fenton, W. S. (2007). How should DSM-V criteria for schizophrenia include cognitive impairment? Schizophrenia Bulletin, 33(4), 912-920. doi:10.1093/schbul/sbm046
Kurtz, M. M., & Gerraty, R. T. (2009). A meta-analytic investigation of neurocognitive deficits in bipolar illness: profile and effects of clinical state. Neuropsychology, 23(5), 551-562. doi:10.1037/a0016277
Lam, M., Collinson, S. L., Eng, G. K., Rapisarda, A., Kraus, M., Lee, J., et al. (2014). Refining the latent structure of neuropsychological performance in schizophrenia. Psychological Medicine, 44(16), 3557-3570. doi:10.1017/s0033291714001020
Lambert, J. C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., et al. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 45(12), 1452-1458. doi:10.1038/ng.2802
Lee, J. J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., et al. (2018). Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics, 50(8), 1112-1121. doi:10.1038/s41588-018-0147-3
Lee, S. H., Ripke, S., Neale, B. M., Faraone, S. V., Purcell, S. M., Perlis, R. H., et al. (2013). Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 45(9), 984-994. doi:10.1038/ng.2711
Lencz, T., Knowles, E., Davies, G., Guha, S., Liewald, D. C., Starr, J. M., et al. (2014). Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT). Molecular Psychiatry, 19(2), 168-174. doi:10.1038/mp.2013.166
Lichtenstein, P., Yip, B. H., Bjork, C., Pawitan, Y., Cannon, T. D., Sullivan, P. F., et al. (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet, 373(9659), 234-239. doi:10.1016/s0140-6736(09)60072-6
Liebers, D. T., Pirooznia, M., Seiffudin, F., Musliner, K. L., Zandi, P. P., & Goes, F. S. (2016). Polygenic Risk of Schizophrenia and Cognition in a Population-Based Survey of Older Adults. Schizophrenia Bulletin, 42(4), 984-991. doi:10.1093/schbul/sbw001
Lin, C. C., Chen, W. J., Yang, H. J., Hsiao, C. K., & Tien, A. Y. (2000). Performance on the Wisconsin Card Sorting Test among adolescents in Taiwan: norms, factorial structure, and relation to schizotypy. Journal of Clinical and Experimental Neuropsychology, 22(1), 69-79. doi:10.1076/1380-3395(200002)22:1;1-8;ft069
Lin, S. H., Liu, C. M., Hwang, T. J., Hsieh, M. H., Hsiao, P. C., Faraone, S. V., et al. (2013). Performance on the Wisconsin Card Sorting Test in families of schizophrenia patients with different familial loadings. Schizophrenia Bulletin, 39(3), 537-546. doi:10.1093/schbul/sbs141
Liu, S. K., Chen, W. J., Chang, C. J., & Lin, H. N. (2000). Effects of atypical neuroleptics on sustained attention deficits in schizophrenia: a trial of risperidone versus haloperidol. Neuropsychopharmacology, 22(3), 311-319. doi:10.1016/s0893-133x(99)00137-2
Liu, S. K., Chiu, C. H., Chang, C. J., Hwang, T. J., Hwu, H. G., & Chen, W. J. (2002). Deficits in sustained attention in schizophrenia and affective disorders: stable versus state-dependent markers. American Journal of Psychiatry, 159(6), 975-982. doi:10.1176/appi.ajp.159.6.975
Liu, S. K., Hsieh, M. H., Hwang, T. J., Hwu, H. G., Liao, S. C., Lin, S. H., et al. (2006). Re-examining sustained attention deficits as vulnerability indicators for schizophrenia: stability in the long term course. Journal of Psychiatric Research, 40(7), 613-621. doi:10.1016/j.jpsychires.2006.06.010
Lu, Y., Pouget, J. G., Andreassen, O. A., Djurovic, S., Esko, T., Hultman, C. M., et al. (2018). Genetic risk scores and family history as predictors of schizophrenia in Nordic registers. Psychological Medicine, 48(7), 1201-1208. doi:10.1017/s0033291717002665
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747-753. doi:10.1038/nature08494
McCarthy, S., Das, S., Kretzschmar, W., Delaneau, O., Wood, A. R., Teumer, A., et al. (2016). A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics, 48(10), 1279-1283. doi:10.1038/ng.3643
McIntosh, A. M., Forrester, A., Lawrie, S. M., Byrne, M., Harper, A., Kestelman, J. N., et al. (2001). A factor model of the functional psychoses and the relationship of factors to clinical variables and brain morphology. Psychological Medicine, 31(1), 159-171.
McIntosh, A. M., Gow, A., Luciano, M., Davies, G., Liewald, D. C., Harris, S. E., et al. (2013). Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biological Psychiatry, 73(10), 938-943. doi:10.1016/j.biopsych.2013.01.011
Mistry, S., Harrison, J. R., Smith, D. J., Escott-Price, V., & Zammit, S. (2017). The use of polygenic risk scores to identify phenotypes associated with genetic risk of schizophrenia: Systematic review. Schizophrenia Research. doi:10.1016/j.schres.2017.10.037
Mortensen, P. B., Pedersen, C. B., Westergaard, T., Wohlfahrt, J., Ewald, H., Mors, O., et al. (1999). Effects of family history and place and season of birth on the risk of schizophrenia. New England Journal of Medicine, 340(8), 603-608. doi:10.1056/nejm199902253400803
Mucci, A., Galderisi, S., Green, M. F., Nuechterlein, K., Rucci, P., Gibertoni, D., et al. (2018). Familial aggregation of MATRICS Consensus Cognitive Battery scores in a large sample of outpatients with schizophrenia and their unaffected relatives. Psychological Medicine, 48(8), 1359-1366. doi:10.1017/s0033291717002902
Nagelkerke, N. J., Hoebee, B., Teunis, P., & Kimman, T. G. (2004). Combining the transmission disequilibrium test and case-control methodology using generalized logistic regression. European Journal of Human Genetics, 12(11), 964-970. doi:10.1038/sj.ejhg.5201255
Nakahara, S., Medland, S., Turner, J. A., Calhoun, V. D., Lim, K. O., Mueller, B. A., et al. (2018). Polygenic risk score, genome-wide association, and gene set analyses of cognitive domain deficits in schizophrenia. Schizophrenia Research. doi:10.1016/j.schres.2018.05.041
Nurnberger, J. I., Jr., Blehar, M. C., Kaufmann, C. A., York-Cooler, C., Simpson, S. G., Harkavy-Friedman, J., et al. (1994). Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Archives of General Psychiatry, 51(11), 849-859; discussion 863-844. doi:10.1001/archpsyc.1994.03950110009002
Palmer, B. W., Heaton, R. K., Paulsen, J. S., Kuck, J., Braff, D., Harris, M. J., et al. (1997). Is it possible to be schizophrenic yet neuropsychologically normal? Neuropsychology, 11(3), 437-446.
Polderman, T. J., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., et al. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702-709. doi:10.1038/ng.3285
Polgar, P., Rethelyi, J. M., Balint, S., Komlosi, S., Czobor, P., & Bitter, I. (2010). Executive function in deficit schizophrenia: what do the dimensions of the Wisconsin Card Sorting Test tell us? Schizophrenia Research, 122(1-3), 85-93. doi:10.1016/j.schres.2010.06.007
Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., et al. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18(7), 953-955. doi:10.1038/nn.4040
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., et al. (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559-575. doi:10.1086/519795
R Core Team. (2013). R: A language and environment for statistical computing. 3, 201.
Rampino, A., Taurisano, P., Fanelli, G., Attrotto, M., Torretta, S., Antonucci, L. A., et al. (2017). A Polygenic Risk Score of glutamatergic SNPs associated with schizophrenia predicts attentional behavior and related brain activity in healthy humans. European Neuropsychopharmacology, 27(9), 928-939. doi:10.1016/j.euroneuro.2017.06.005
Rees, E., Kirov, G., Walters, J. T., Richards, A. L., Howrigan, D., Kavanagh, D. H., et al. (2015). Analysis of exome sequence in 604 trios for recessive genotypes in schizophrenia. Transl Psychiatry, 5, e607. doi:10.1038/tp.2015.99
Riglin, L., Collishaw, S., Richards, A., Thapar, A. K., Maughan, B., O'Donovan, M. C., et al. (2017). Schizophrenia risk alleles and neurodevelopmental outcomes in childhood: a population-based cohort study. Lancet Psychiatry, 4(1), 57-62. doi:10.1016/S2215-0366(16)30406-0
Saha, S., Chant, D., Welham, J., & McGrath, J. (2005). A systematic review of the prevalence of schizophrenia. PLoS Medicine, 2(5), e141. doi:10.1371/journal.pmed.0020141
Salleh, M. R. (2004). The genetics of schizophrenia. Malaysian Journal of Medical Sciences, 11(2), 3-11.
Salvoro, C., Bortoluzzi, S., Coppe, A., Valle, G., Feltrin, E., Mostacciuolo, M. L., et al. (2018). Rare Risk Variants Identification by Identity-by-Descent Mapping and Whole-Exome Sequencing Implicates Neuronal Development Pathways in Schizophrenia and Bipolar Disorder. Molecular Neurobiology, 55(9), 7366-7376. doi:10.1007/s12035-018-0922-2
Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421-427. doi:10.1038/nature13595
Seidman, L. J., & Mirsky, A. F. (2017). Evolving Notions of Schizophrenia as a Developmental Neurocognitive Disorder. Journal of the International Neuropsychological Society, 23(9-10), 881-892. doi:10.1017/s1355617717001114
Serretti, A., & Olgiati, P. (2004). Dimensions of major psychoses: a confirmatory factor analysis of six competing models. Psychiatry Research, 127(1-2), 101-109. doi:10.1016/j.psychres.2003.07.005
Shafee, R., Nanda, P., Padmanabhan, J. L., Tandon, N., Alliey-Rodriguez, N., Kalapurakkel, S., et al. (2018). Polygenic risk for schizophrenia and measured domains of cognition in individuals with psychosis and controls. Transl Psychiatry, 8(1), 78. doi:10.1038/s41398-018-0124-8
Singh, T., Walters, J. T. R., Johnstone, M., Curtis, D., Suvisaari, J., Torniainen, M., et al. (2017). The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nature Genetics, 49(8), 1167-+. doi:10.1038/ng.3903
Smeland, O. B., & Andreassen, O. A. (2018). How can genetics help understand the relationship between cognitive dysfunction and schizophrenia? Scandinavian Journal of Psychology, 59(1), 26-31. doi:10.1111/sjop.12407
Smeland, O. B., Frei, O., Kauppi, K., Hill, W. D., Li, W., Wang, Y., et al. (2017). Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function. JAMA Psychiatry, 74(10), 1065-1075. doi:10.1001/jamapsychiatry.2017.1986
Stepniak, B., Papiol, S., Hammer, C., Ramin, A., Everts, S., Hennig, L., et al. (2014). Accumulated environmental risk determining age at schizophrenia onset: a deep phenotyping-based study. Lancet Psychiatry, 1(6), 444-453. doi:10.1016/s2215-0366(14)70379-7
Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Archives of General Psychiatry, 60(12), 1187-1192. doi:10.1001/archpsyc.60.12.1187
The Brainstorm Consortium, Anttila, V., Bulik-Sullivan, B., Finucane, H. K., Walters, R. K., Bras, J., et al. (2018). Analysis of shared heritability in common disorders of the brain. Science, 360(6395). doi:10.1126/science.aap8757
Tsuang, H. C., Lin, S. H., Liu, S. K., Hsieh, M. H., Hwang, T. J., Liu, C. M., et al. (2006). More severe sustained attention deficits in nonpsychotic siblings of multiplex schizophrenia families than in those of simplex ones. Schizophrenia Research, 87(1-3), 172-180. doi:10.1016/j.schres.2006.03.045
Ucok, A., Direk, N., Koyuncu, A., Keskin-Ergen, Y., Yuksel, C., Guler, J., et al. (2013). Cognitive deficits in clinical and familial high risk groups for psychosis are common as in first episode schizophrenia. Schizophrenia Research, 151(1-3), 265-269. doi:10.1016/j.schres.2013.10.030
van Os, J., Kenis, G., & Rutten, B. P. (2010). The environment and schizophrenia. Nature, 468(7321), 203-212. doi:10.1038/nature09563
Wang, S. H., Hsiao, P. C., Yeh, L. L., Liu, C. M., Liu, C. C., Hwang, T. J., et al. (2018). Polygenic risk for schizophrenia and neurocognitive performance in patients with schizophrenia. Genes Brain Behav, 17(1), 49-55. doi:10.1111/gbb.12401
Wedenoja, J., Tuulio-Henriksson, A., Suvisaari, J., Loukola, A., Paunio, T., Partonen, T., et al. (2010). Replication of association between working memory and Reelin, a potential modifier gene in schizophrenia. Biological Psychiatry, 67(10), 983-991. doi:10.1016/j.biopsych.2009.09.026
Weintraub, S., Wicklund, A. H., & Salmon, D. P. (2012). The neuropsychological profile of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(4), a006171. doi:10.1101/cshperspect.a006171
Whiteford, H. A., Degenhardt, L., Rehm, J., Baxter, A. J., Ferrari, A. J., Erskine, H. E., et al. (2013). Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet, 382(9904), 1575-1586. doi:10.1016/s0140-6736(13)61611-6
Wray, N. R., Lee, S. H., Mehta, D., Vinkhuyzen, A. A., Dudbridge, F., & Middeldorp, C. M. (2014). Research review: Polygenic methods and their application to psychiatric traits. Journal of Child Psychology and Psychiatry and Allied Disciplines, 55(10), 1068-1087. doi:10.1111/jcpp.12295
Xavier, R. M., Dungan, J. R., Keefe, R. S. E., & Vorderstrasse, A. (2018). Polygenic signal for symptom dimensions and cognitive performance in patients with chronic schizophrenia. Schizophr Res Cogn, 12, 11-19. doi:10.1016/j.scog.2018.01.001
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88(1), 76-82. doi:10.1016/j.ajhg.2010.11.011
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73654-
dc.description.abstract背景與目的
認知功能障礙是思覺失調症的一個重要特徵,全基因組關聯研究發現有少數的基因位點同時和思覺失調症和認知功能顯著相關,但這些位點僅能解釋遺傳率的一小部分,思覺失調症患者之認知功能表現的基因架構目前仍不清楚。首先,此研究想探討思覺失調症患者的認知功能是否可以被思覺失調症、其他同樣有認知功能障礙的神經精神疾病相關的疾病位點,抑或是來自一般人和認知功能相關的位點所組成的基因分數解釋,並比較在不同家族負載之思覺失調症病患此相關性的強度;再者,分別在單發性家庭和多發性家庭比較不同程度持續注意力表現的思覺思調症患者之多基因分數。
方法
單發性家庭的樣本來自台灣思覺失調症三元體基因體計畫 (Schizophrenia Trio Genomics Research in Taiwan, S-TOGET),其中納入1,649位思覺失調症患者與3,298位無思覺失調症的雙親,而多發性家庭的樣本來自台灣思覺失調症連鎖分析研究 (Taiwan Schizophrenia Linkage Study, TSLS),此研究的收案條件為一個家庭中至少要有兩個患有思覺失調症的手足,從中納入581位患病手足及479位無病雙親。利用精神疾病微陣列晶片 (PsychChip) 做基因定型,且病患會接受神經認知功能測驗,分別為柯能氏持續表現作業 (Continuous Performance Test, CPT) 及威斯康辛卡片分類測驗 (Wisconsin Card Sorting Test, WCST)。利用柯能氏持續表現作業的表現將病患分成三組,分別為沒有認知功能障礙組、中度認知功能障礙組,以及重度認知功能障礙組,並比較他們的多基因分數之負載,之後,我們將神經功能測驗的多個指標利用驗證性因素分析集合成四個潛在變項 (CPT、WCST1、WCST2、Neurocognitive Performance)。最後,思覺失調症、其他神經精神疾病 (躁鬱症、阿茲海默症、泛自閉症障礙、注意力不足過動症),以及一般認知能力 (教育程度、一般認知能力) 多基因分數的權重從相應的全基因組關聯研究之統合分析而來。
結果
多發性家庭的思覺失調症患者在柯能氏持續表現作業和威斯康辛卡片分類測驗的表現都較單發性家庭的患者差。在七種多基因分數下,思覺失調症的疾病狀態在單發性家庭中可以被思覺失調症、躁鬱症、泛自閉症障礙、教育程度、一般認知能力的多基因分數解釋;在多發性家庭中則可被思覺失調症的多基因分數解釋。在單發性家庭的病人中,只有教育程度和一般認知能力的多基因分數和WCST2潛在變數正相關。再者,單發性家庭中沒有認知功能障礙這組病患有最高的思覺失調症以及一般認知能力多基因分數。
結論
思覺失調症的神經認知表現最能被來自一般人和教育程度及一般認知能力之相關位點所組成的多基因分數解釋,而不是來自思覺失調症病人及其他神經精神疾病和疾病相關位點的多基因分數解釋。而病人的認知功能可能受修飾基因影響,且多發性家庭的認知表現可能涉及更多罕見遺傳變異,思覺失調症認知障礙的基因架構未來仍需進一步的研究。
zh_TW
dc.description.abstractBackground
Despite a few genetic variants overlap between neurocognitive deficits and schizophrenia (SZ) revealed by genome-wide association studies (GWAS), the genetic architecture influencing patients’ neurocognitive performance remains unclear. This study aimed to (1) examine whether the neurocognitive performance in SZ patients could be explained by the polygenic risk score (PRS) derived from schizophrenia versus that derived from other neuropsychiatric disorders or neurocognitive traits; (2) to examine the magnitude of the association of the PRS with the neurocognitive performance in schizophrenia patients from different familial loadings; and (3) to compare the PRS among three subgroups of schizophrenia patients classified by their magnitude of impairment in sustained attention.
Methods
Participants were 1649 sporadic cases and 3298 parents without SZ in simplex families from Schizophrenia Trio Genomics Research in Taiwan. For multiplex families with at least two SZ siblings, there were 581 co-affected probands and 479 parents without SZ from Taiwan Schizophrenia Linkage Study. All were genotyped using PsychChip and only patients underwent Continuous Performance Test (CPT) and Wisconsin Card Sorting Test (WCST). Patients was categorized into three groups based on their magnitude of impairment in sustained attention to compare their PRS. Confirmatory factor analysis of a four-latent model structure was performed to capture patients’ performance on CPT and WCST. Meta-analyses GWAS data of SZ, bipolar disorder (BD), Alzheimer's disease (AD), autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), educational attainment (EA), and general cognitive ability (GCA) were used to derive corresponding PRS.
Results
SZ patients in multiplex families had worse scores than simplex ones on most CPT and WCST indices. Among the seven PRS, the phenotype of schizophrenia could be predicted by SZ-PRS, BD-PRS, ASD-PRS, EA-PRS, and GCA-PRS in simplex families and by SZ-PRS in multiplex families. Only EA-PRS and GCA-PRS were significantly associated with higher WCST2 factors among patients with schizophrenia in simplex families. Furthermore, no impairment group in simplex families had the highest GCA-PRS and SZ-PRS.
Conclusions
The neurocognitive performance of schizophrenia patients was best explained by the general cognitive abilities PRS derived from healthy individuals rather than the schizophrenia and other neuropsychiatric disorders PRS derived from patients with neuropsychiatric disorders. Neurocognitive deficits in schizophrenia patients may involve modifier genes. Other genetic architecture underlying schizophrenia’s cognitive impairment warrants further investigation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:07:29Z (GMT). No. of bitstreams: 1
ntu-108-R06849006-1.pdf: 3010736 bytes, checksum: 0f187004d2a2ab6c8a127d8c5f2d0a35 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Contents vi
List of tables vii
List of figures ix
List of Appendices x
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 7
2.1 Subjects 7
2.2 Genotyping, quality control, and imputation 8
2.3 Assessment of neurocognitive performance 9
2.4 Subgrouping in sustained attention 10
2.5 Confirmatory factor analyses of neurocognitive performance 10
2.6 SNP-based heritability of neurocognitive factors 11
2.7 Polygenic risk score 11
2.8 Statistical analysis 13
Chapter 3 Results 15
3.1 Demographic features 15
3.2 Performance on the WCST and CPT 15
3.3 Association between schizophrenia disease status and PRS 16
3.4 Association between neurocognitive latent variables and PRS 17
3.5 Different sustained attention groups 17
3.6 Correlations between PRS 18
Chapter 4 Discussion 20
Acknowledgements 28
References 30
Tables 40
Figures 53
Appendices 59
dc.language.isoen
dc.subject認知表現zh_TW
dc.subject多基因分數zh_TW
dc.subject思覺失調症zh_TW
dc.subject神經精神疾病zh_TW
dc.subject一般認知能力zh_TW
dc.subjectgeneral cognitive abilityen
dc.subjectneurocognitive performanceen
dc.subjectPolygenic risk scoreen
dc.subjectschizophreniaen
dc.subjectneuropsychiatric diseaseen
dc.title不同家庭負載之思覺失調症病患的神經認知表現:
比較不同神經精神疾病或一般認知能力之多基因分數的預測
zh_TW
dc.titleNeurocognitive performance in schizophrenia patients with different familial loadings:
Comparing predictions using polygenic scores derived from different neuropsychiatric disorders or general cognitive abilities
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭柏秀(Po-Hsiu Kuo),劉智民,王世亨(Shi-Heng Wang)
dc.subject.keyword多基因分數,思覺失調症,神經精神疾病,一般認知能力,認知表現,zh_TW
dc.subject.keywordPolygenic risk score,schizophrenia,neuropsychiatric disease,general cognitive ability,neurocognitive performance,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201903961
dc.rights.note有償授權
dc.date.accepted2019-08-19
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved