請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73650完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武(Shiu-Wu Chau) | |
| dc.contributor.author | Sai-Kiu Wong | en |
| dc.contributor.author | 黃世翹 | zh_TW |
| dc.date.accessioned | 2021-06-17T08:07:25Z | - |
| dc.date.available | 2024-08-20 | |
| dc.date.copyright | 2019-08-20 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-18 | |
| dc.identifier.citation | [1] B.N. Matveev, “PSW Technology – A Revolution in Seamless Tube Production”, Metallurgist, Vol.39, No.3, pp.32-33, 1995.
[2] M. Horihata and M. Motomura, “Transition and Decreasing of the Material Surface Defects in 3-Roll Rolling”, Journal of the Japan Institute of Light Metals, Vol.38, No.5, pp.133-140, 1988. [3] K. Komori, “Simulation of Deformation and Temperature in Multi-Pass Three-Roll Rolling”, Journal of Material Processing Technology, Vol.92, pp.450-457, 1999. [4] H. Overstam, S. Lundberg and M. Jarl, “Finite Element Modelling and Laboratory Simulation of High Speed Wire Rod Rolling in 3-Roll Stands”, Steel Research, Vol.74, No.7, pp.431-443, 2003. [5] Z. Pater and J. Tomczak, “Fem Modelling of a Helical Wedge Rolling Process for Axisymmetric Parts”, Advances in Science and Technology Research Journal, Vol.12, Issue 1, pp.115-126, 2018. [6] K. Aoyagi and K. Ohta, “Material Deformation, Rolling Load and Torque in 3-roll Planetary Mill”, Journal of Japan Society for Technology of Plasticity, Vol.24, pp.1039-1047, 1983. [7] T. Nishio, T. Noma, S. Karashige, H. Hino, T. Tsuta and K. Kadota, “Development of Three-Roll Planetary Mill PSW”, Kawasaki Steel Technology, Rep.84, pp.81-90, 1995. [8] R. Lapovok, S. Smirnov and V. Solomein, “Modeling the Helical Rolling of Rods in a Three-High Mill”, Journal of Material Processing Technology, Vol.80, pp.365-369, 1998. [9] Y.J. Li, Elastoplastic Analysis of High Reduction Machine of 3-Roll Planetary Mill by the Finite Element Method, Master Thesis, National Sun Yat-sen University, 1995. [10] M.H. Chang, Three-Dimensional Finite Element Analysis of Three-Roll Planetary Mill Processes, PhD Thesis, National Sun Yat-sen University, 2001. [11] Y.M. Hwang, H.H. Hsu and G.Y. Tzou, “A Study of PSW Rolling Process Using Stream Functions”, Journal of Material Processing Technology, Vol.80, pp.341-344, 1998. [12] Y.M. Hwang, W.M. Tsai, F.H. Tsai and I. Her, “Analytical and Experimental Study on the Spiral Marks of the Rolled Product during Three-Roll Planetary Rolling Processes”, International Journal of Machine Tools and Manufacture, Vol.46, pp.1555-1562, 2006. [13] C.K. Shih and C. Hung, “The Finite Element Analysis on Planetary Rolling Process”, 23rd National Conference of Theoretical and Applied Mechanics, Taiwan, 1999. [14] C.K. Shih, C. Hung and R.Q. Hsu, “The Finite Element Analysis on Planetary Rolling Process”, Journal of Material Processing Technology, Vol.113, pp.115-123, 2001. [15] C.K. Shih, R.Q. Hsu and C. Hung, “A Study on Seamless Tube in the Planetary Rolling Process”, Journal of Material Processing Technology, Vol.121, pp.273-284, 2002. [16] C.K. Shih, A Study on Three-Roll Planetary Rolling Process, PhD Thesis, National Chiao Tung University, 2002. [17] C.K. Shih and C. Hung, “Experimental and numerical analyses on three-roll planetary rolling process”, Journal of Material Processing Technology, Vol.142, pp.702-709, 2003. [18] W. Yasuhiro, K. Yamada, S. Hamauzu and S. Uchida, “Three-Dimensional Analysis of Helical Rolling Using Rigid-Plastic Finite Element Method”, The 7th International Conference on Steel Rolling, Japan, 1998. [19] T.Y. Chen, The Design and Production of the Planetary Three-Roll Experimental Machine, Master Thesis, National Sun Yat-sen University, 2000. [20] S.H. Zhang, B.D. Wang, S.G. Zhu, B. Li, H.Q. Zhang and J.S. Liu, “Study on Designing of a New Type Three-roll Rotary Experimental Mill”, China Metal Forming Equipment and Manufacturing Technology, Vol.42, No.2, pp.40-42, 2007. [21] F.H. Tsai, Finite Element Analysis on Planetary Three-Roll Rolling, Master Thesis, National Sun Yat-sen University, 2000. [22] S.J. Wu, Y.M. Hwang and M.H. Chang, “A Three-Dimensional Finite Element Analysis of the Three-Roll Planetary Mill”, Journal of Material Processing Technology, Vol.123, pp.336-345, 2002. [23] C.H. Wu, Simulation and Analysis of Process Parameters for High Reduction Mill, Master Thesis, National Cheng Kung University, 2002. [24] J.K. Lee, K.B. Han, K.W. Kim, J.W. Choe, J.H. Kim and H.Y. Cho, “FEA of Copper Tube Rolling Process Using the Planetary Rolling Mill”, Journal of the Korean Society of Marine Engineering, Vol.34, No.2, pp.303-309, 2010. [25] Z. Yang, S.H. Zhang, Y. Xu, W.Q. Zhang, H.F. Shi and J.L. Zhang, “Models of Finite Element Simulation on Three-Roll Planetary Rolling Process of Cast Copper Tubes”, Journal of Plasticity Engineering, Vol.10, pp.70-73, 2003. [26] M. Diez, H.E. Kim, V. Serebryany, S. Dobatkin, Y. Estrin, “Improving the Mechanical Properties of Pure Magnesium by Three-Roll Planetary Milling”, Materials Science and Engineering A, Vol.612, pp.287-292, 2014. [27] Y.L. Wang, A. Molotnikov, M. Diez, R. Lapovok, H.E. Kim, J.T. Wang and Y. Estrin, “Gradient Structure Produced by Three Roll Planetary Milling: Numerical Simulation and Microstructural Observations”, Materials Science and Engineering A, Vol.639, pp.165-172, 2015. [28] Y.W. Zhou, Z.N. Mao, Y. Liu and J.T. Wang, “Microstructure Evolution of Copper by Three Roll Planetary Mill”, Solid State Phenomena, Vol.279, pp.44-48, 2018. [29] D.H. Liu, Y.C. Su, Q.P. Hu and Z.Y. Pan, “Microstructure and Properties of ACR Copper Tube during Three-Roll Planetary Milling Process”, The Chinese Journal of Nonferrous Metals, Vol. 16, No.5, pp.881-886. [30] S. Dobatkin, S. Galkin, Y. Estrin, V. Serebryany, M. Diez, N. Martynenko, E. Lukyanova and V. Perezhogin, “Grain Refinement, Texture, and Mechanical Properties of a Magnesium Alloy After Radial-Shear Rolling”, Journal of Alloys and Compounds, Vol. 774, pp. 969-979, 2019. [31] B. Li., S.H. Li, G.L. Zhang and H.Q. Zhang, “Prediction of 3-D Temperature Field of TP2 Copper Tubes in Three-Roll Planetary Rolling Process”, Journal of Material Processing Technology, Vol. 205, pp. 370-375, 2008. [32] Q.L. Zeng, Y. Zang and Q. Qin, “The Effect of Roll with Passive Segment on the Planetary Rolling Process”, Advance in Mechanical Engineering, Vol.7, pp.1-7, 2015. [33] L.M. Li, Y. Zang and H.Z. Yao, “The Effect of Friction State on the Planetary Rolling Process of Copper Tube”, Journal of Plasticity Engineering, Vol.16, No.1, pp.115-119, 2009. [34] Abdullatif Al-Salmi and P. Hartley, “The Influence of Roll Inclination Angle in Three-Roll Planetary Rolling of Bi-Metallic Rod”, Proceedings of 13th International Conference on Metal Forming, Japan, 2010 [35] C. Binotsch, A. Feuerhack, B. Awiszus and H. Potthof, “FEM Simulation of Planetary Cross Rolling Process for Production of Seamless tubes of Steel and Copper”, Proceedings of 13th International Conference on Metal Forming, Japan, 2010 [36] S. Kobayashi, S.I Oh and T. Altan, Metal Forming and Finite Method, Oxford University Press, pp.170-182, 1989. [37] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-Hill, pp.159-177, 2004. [38] Walsin Lihwa Corporation Yenshui Plant, private communication, June 2018. [39] T.H. Chuang and Walsin Lihwa Corporation Yenshui Plant, Metallography of Stainless Steel Sample and Precipitate Analysis Report, 2019. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73650 | - |
| dc.description.abstract | 本研究主要以有限元素數值模型模擬探討行星式三輥輪高縮減壓延機的熱作過程。基於暫態過程及在剛黏塑性及等密度材料的假設下,進行對S209不銹鋼在熱加工的三維模型有限元素分析。本文利用有限元素套裝軟體 DEFORM 3D分析行星式三輥輪高縮減壓延機在不同條件的加工參數,如鋼胚起始溫度、鋼胚直徑、摩擦係數下,對製程產品的影響。透過觀察壓出成品的外觀特徵與有效應變率、有效應變、有效應力、溫度等物理量,進行分析和探討。從結果得知,鋼胚初始溫度對於壓延成品螺紋影響不顯著,兩端縮孔長度隨溫度降低而縮短;而鋼胚直徑縮短能夠縮短兩端縮孔長度,並讓螺紋間距變寬。從鋼胚物理量徑向分佈得知,有效應力及有效應變率則在壓延材料和輥輪的接觸面達到最高值,在中心處最低。有效應變隨著壓延而累積,在完結加工後達到最大值。溫度分佈方面,鋼胚咬入軋延後,在表皮下5 mm處產生高溫區域,超過S209的熔點溫度1350°C,推測是黑帶破壞處起始點,令材料表面與中心分離。 | zh_TW |
| dc.description.abstract | This research is to study the hot working process in a three rolls planetary high reduction mill (HRM) via a finite element method, where unsteady, three-dimensional model is adopted in the study under the assumption of a rigid-viscoplastic and constant-density workpiece. The commercial software, DEFORM 3D is employed for the numerical simulation of the plastic deformation of hot working process in HRM. Different process parameters, such as temperature, friction coefficient, diameter, are studied for S209 stainless steel in hot working process. Product characteristics and physical quantities, such as effective strain rate, effective strain, effective stress and temperature, are analyzed to identify the influence of processing parameter on the hot working process. The numerical result, indicates that the product characteristics are affected by processing parameters. A lower initial billet temperature results in products with shorter cavity at both ends. A billet with smaller initial diameter leads to products with less significant spiral marks along with shorter cavity at both ends. The effective stress and effective strain rate reach to peak values at the contact surface between the rolls and stay low in the middle part of workpiece. The effective strain grows through the rolling process and achieves the maximum at the end of the process. And a temperature peak is found at 5 mm below the surface of the workpiece, which the peak exceeds the melting point of working material. And it is deduced to be the outset of black zone as well as the material detachment inside the product. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T08:07:25Z (GMT). No. of bitstreams: 1 ntu-108-R06525090-1.pdf: 6989085 bytes, checksum: 861edfd5a9cf2443246190ca01a2c6c5 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1. Overview 1 1.2. Literature Reviews 4 Chapter 2 Mathematical Model 8 2.1 Hypothesis 8 2.2 Governing Equations 9 2.3 Material Properties 11 2.4 Friction Model 15 2.5 Numerical Method 16 Chapter 3 Geometry, Meshing and Boundary Condition 17 3.1 Geometry 17 3.2 Boundary and Operation Condition 19 3.3 Meshing 21 3.4 Mesh Quality 23 Chapter 4 Parallel Performance Analysis 28 4.1 Speedup and Efficiency 28 4.2 Serial Fraction of Parallel Computation 33 Chapter 5 Numerical Results 36 5.1 Case Description 36 5.2 Product Characteristics 37 5.3 Profile of Radial Physical Quantities 50 5.4 Verification and Validation 83 Chapter 6 Conclusion 89 Reference 91 | |
| dc.language.iso | en | |
| dc.subject | 剛黏塑性 | zh_TW |
| dc.subject | 行星式三輥輥壓 | zh_TW |
| dc.subject | 熱壓延 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | S209不銹鋼 | zh_TW |
| dc.subject | Rigid-Viscoplastic | en |
| dc.subject | High Reduction Mill | en |
| dc.subject | HRM | en |
| dc.subject | Hot Rolling | en |
| dc.subject | Finite Element Method | en |
| dc.subject | DEFORM 3D | en |
| dc.subject | S209 Stainless Steel | en |
| dc.title | 三維有限元素分析行星式三輥輥壓製程 | zh_TW |
| dc.title | Three-Dimensional Finite Element Analysis of Hot Rolling Process in High Reduction Mill | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳夏宗(Shia-Chung Chen),王世明(Shih-Ming Wang),莊東漢(Tung-Han Chuang),江茂雄(Mao-Hsiung Chiang) | |
| dc.subject.keyword | 行星式三輥輥壓,熱壓延,有限元素法,S209不銹鋼,剛黏塑性, | zh_TW |
| dc.subject.keyword | High Reduction Mill,HRM,Hot Rolling,Finite Element Method,DEFORM 3D,S209 Stainless Steel,Rigid-Viscoplastic, | en |
| dc.relation.page | 95 | |
| dc.identifier.doi | 10.6342/NTU201903992 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-08-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 6.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
