Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73626
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫啟光(Chi-Kuang Sun)
dc.contributor.authorSheng-Tse Chenen
dc.contributor.author陳勝澤zh_TW
dc.date.accessioned2021-06-17T08:07:01Z-
dc.date.available2024-08-22
dc.date.copyright2019-08-22
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citation[1] E. Warrick, C. Duval, S. Nouveau, P. Bastien, V. Piffaut, B. Chalmond, J. P. Ortonne, O. Lacharrière, and F. Bernerd, 'Morphological and molecular characterization of actinic lentigos reveals alterations of the dermal extracellular matrix,' British Journal of Dermatology, vol. 177, no. 6, pp. 1619-1632, 2017.
[2] S. BerRahman and J. Bhawan, 'Lentigo,' International Journal of Dermatology, vol. 35, no. 4, pp. 229-239, Apr 1996.
[3] J. Nip, S. B. Potterf, S. Rocha, S. Vora, and C. Bosko, 'The New Face of Pigmentation and Aging,' in Textbook of Aging Skin, M. A. Farage, K. W. Miller, and H. I. Maibach, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 509-521.
[4] H. Ji Kang, J. Hee Lee, M. Ryung Roh, J.-I. Na, J. Ko, and S. Eun Chang, Postinflammatory Hyperpigmentation Associated with Treatment of Solar Lentigines using a Q-Switched 532-nm Nd: YAG Laser: A Multicenter Survey. 2016, pp. 1-24.
[5] Y. Tanaka, Y. Tsunemi, M. Kawashima, N. Tatewaki, and H. Nishida, 'Objective assessment of skin tightening in Asians using a water-filtered near-infrared (1,000-1,800 nm) device with contact-cooling and freezer-stored gel,' (in eng), Clinical, cosmetic and investigational dermatology, vol. 6, pp. 167-176, 2013 2013.
[6] S. Chen, S. Chen, H. Wu, W. Lee, Y. Liao, and C. Sun, 'In Vivo Virtual Biopsy of Human Skin by Using Noninvasive Higher Harmonic Generation Microscopy,' IEEE Journal of Selected Topics in Quantum Electronics, vol. 16, no. 3, pp. 478-492, 2010.
[7] E. P. Cawley and A. C. Curtis, 'LENTIGO SENILIS,' Ama Archives of Dermatology and Syphilology, vol. 62, no. 5, pp. 635-641, 1950.
[8] C. Hodgson, 'Senile lentigo,' Archives of Dermatology, vol. 87, no. 2, pp. 197-207, 1963.
[9] A. H. Mehregan, 'Lentigo Senilis And Its Evolutions,' Journal of Investigative Dermatology, vol. 65, no. 5, pp. 429-433, 1975/11/01/ 1975.
[10] W. K. Andersen, R. R. Labadie, and J. Bhawan, 'Histopathology of solar lentigines of the face: A quantitative study,' Journal of the American Academy of Dermatology, vol. 36, no. 3, pp. 444-447, Mar 1997.
[11] M. Cario‐Andre, S. Lepreux, C. Pain, C. Nizard, E. Noblesse, and A. Taïeb, 'Perilesional vs. lesional skin changes in senile lentigo,' Journal of Cutaneous Pathology, vol. 31, no. 6, pp. 441-447, 2004.
[12] E. Noblesse, C. Nizard, M. Cario-Andre, S. Lepreux, C. Pain, S. Schnebert, A. Taieb, and R. Kurfurst, 'Skin ultrastructure in senile lentigo,' Skin Pharmacology and Physiology, vol. 19, no. 2, pp. 95-100, 2006.
[13] N. Unver, P. Freyschmidt-Paul, S. Horster, H. Wenck, F. Stab, T. Blatt, and H. P. Elsasser, 'Alterations in the epidermal-dermal melanin axis and factor XIIIa melanophages in senile lentigo and ageing skin,' British Journal of Dermatology, vol. 155, no. 1, pp. 119-128, Jul 2006.
[14] H. Aoki, O. Moro, H. Tagami, and J. Kishimoto, 'Gene expression profiling analysis of solar lentigo in relation to immunohistochemical characteristics,' British Journal of Dermatology, vol. 156, no. 6, pp. 1214-1223, 2007.
[15] W. Montagna, F. Hu, and K. Carlisle, 'A reinvestigation of solar lentigines,' Archives of Dermatology, vol. 116, no. 10, pp. 1151-1154, 1980.
[16] N. Yonei, C. Kaminaka, A. Kimura, F. Furukawa, and Y. Yamamoto, 'Two patterns of solar lentigines: A histopathological analysis of 40 Japanese women,' Journal of Dermatology, vol. 39, no. 10, pp. 829-832, Oct 2012.
[17] J. Shin, J. Y. Park, S. J. Kim, and H. Y. Kang, 'Characteristics of keratinocytes in facial solar lentigo with flattened rete ridges: comparison with melasma,' Clinical and Experimental Dermatology, vol. 40, no. 5, pp. 489-494, 2015.
[18] K. Maeda, 'Large Melanosome Complex Is Increased in Keratinocytes of Solar Lentigo,' Cosmetics, vol. 4, no. 4, p. 49, 2017.
[19] W. Choi, L. L. Yin, C. Smuda, J. Batzer, V. J. Hearing, and L. Kolbe, 'Molecular and histological characterization of age spots,' Experimental Dermatology, vol. 26, no. 3, pp. 242-248, Mar 2017.
[20] E. S. Lee, J. H. Kim, S. Im, K. B. Lee, S. Sohn, and W. H. Kang, 'Application of computerized image analysis in pigmentary skin diseases,' International Journal of Dermatology, vol. 40, no. 1, pp. 45-49, 2001.
[21] M. Rajadhyaksha, M. Grossman, D. Esterowitz, and R. H. Webb, 'IN-VIVO CONFOCAL SCANNING LASER MICROSCOPY OF HUMAN SKIN - MELANIN PROVIDES STRONG CONTRAST,' Journal of Investigative Dermatology, vol. 104, no. 6, pp. 946-952, Jun 1995.
[22] R. G. B. Langley, E. Burton, N. Walsh, I. Propperova, and S. J. Murray, 'In vivo confocal scanning laser microscopy of benign lentigines: Comparison to conventional histology and in vivo characteristics of lentigo maligna,' Journal of the American Academy of Dermatology, vol. 55, no. 1, pp. 88-97, Jul 2006.
[23] T. Yamashita, K. Negishi, T. Hariya, N. Kunizawa, K. Ikuta, M. Yanai, and S. Wakamatsu, 'Intense pulsed light therapy for superficial pigmented lesions evaluated by reflectance-mode confocal microscopy and optical coherence tomography,' Journal of Investigative Dermatology, vol. 126, no. 10, pp. 2281-2286, Oct 2006.
[24] T. Yamashita, K. Negishi, T. Hariya, M. Yanai, T. Iikura, and S. Wakamatsu, 'In Vivo Microscopic Approaches for Facial Melanocytic Lesions after Quality-Switched Ruby Laser Therapy: Time-Sequential Imaging of Melanin and Melanocytes of Solar Lentigo in Asian Skin,' Dermatologic Surgery, vol. 36, no. 7, pp. 1138-1147, Jul 2010.
[25] E. Richtig, R. Hofmann-Wellenhof, D. Kopera, L. El-Shabrawi-Caelen, and V. Ahlgrimm-Siess, 'In vivo Analysis of Solar Lentigines by Reflectance Confocal Microscopy Before and After Q-switched Ruby Laser Treatment,' Acta Dermato-Venereologica, vol. 91, no. 2, pp. 164-168, 2011.
[26] T. Yamashita, T. Kuwahara, S. Gonzalez, and M. Takahashi, 'Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy,' Journal of Investigative Dermatology, vol. 124, no. 1, pp. 235-240, Jan 2005.
[27] A. Nakajima, Y. Funasaka, and S. Kawana, 'Investigation by in vivo reflectance confocal microscopy: melanocytes at the edges of solar lentigines,' Experimental Dermatology, vol. 21, pp. 18-21, Jul 2012.
[28] C. Pollefliet, H. Corstjens, S. Gonzalez, L. Hellemans, L. Declercq, and D. Yarosh, 'Morphological characterization of solar lentigines by in vivo reflectance confocal microscopy: a longitudinal approach,' International Journal of Cosmetic Science, vol. 35, no. 2, pp. 149-155, Apr 2013.
[29] T. Motokawa, T. Kato, T. Katagiri, I. Suzuki, J. Matsunaga, and Y. Tomita, 'Messenger RNA levels of melanogenesisassociated genes in lentigo senilis lesions,' Journal of Dermatological Science, vol. 37, no. 2, pp. 120-123, Feb 2005.
[30] C. B. Lin, Y. P. Hu, D. Rossetti, N. N. Chen, C. David, A. Slominski, and M. Seiberg, 'Immuno-histochemical evaluation of solar lentigines: The association of KGF/KGFR and other factors with lesion development,' Journal of Dermatological Science, vol. 59, no. 2, pp. 91-97, Aug 2010.
[31] S. Kadono, I. Manaka, M. Kawashima, T. Kobayashi, and G. Imokawa, 'The role of the epidermal endothelin cascade in the hyperpigmentation mechanism of lentigo senilis,' Journal of Investigative Dermatology, vol. 116, no. 4, pp. 571-577, Apr 2001.
[32] H. Hattori, M. Kawashima, Y. Ichikawa, and G. Imokawa, 'The epidermal stem cell factor is over-expressed in lentigo senilis: Implication for the mechanism of hyperpigmentation,' Journal of Investigative Dermatology, vol. 122, no. 5, pp. 1256-1265, May 2004.
[33] T. Yamada, S. Hasegawa, Y. Inoue, Y. Date, M. Arima, A. Yagami, Y. Iwata, M. Abe, M. Takahashi, N. Yamamoto, H. Mizutani, S. Nakata, K. Matsunaga, and H. Akamatsu, 'Comprehensive analysis of melanogenesis and proliferation potential of melanocyte lineage in solar lentigines,' Journal of Dermatological Science, vol. 73, no. 3, pp. 251-257, 2014.
[34] T. Yamada, S. Hasegawa, Y. Inoue, Y. Date, M. Arima, A. Yagami, Y. Iwata, M. Takahashi, N. Yamamoto, H. Mizutani, S. Nakata, K. Matsunaga, and H. Akamatsu, 'Accelerated differentiation of melanocyte stem cells contributes to the formation of hyperpigmented maculae,' vol. 23, no. 9, pp. 652-658, 2014.
[35] J. E. Yoon, Y. Kim, S. Kwon, M. Kim, Y. H. Kim, J. H. Kim, T. J. Park, and H. Y. Kang, 'Senescent fibroblasts drive ageing pigmentation: A potential therapeutic target for senile lentigo,' Theranostics, vol. 8, no. 17, pp. 4620-4632, 2018.
[36] E. Goyarts, N. Muizzuddin, D. Maes, and P. Giacomoni, Morphological Changes Associated with Aging: Age Spots and the Microinflammatory Model of Skin Aging. 2007, pp. 32-9.
[37] G. Cardinali, S. Ceccarelli, D. Kovacs, N. Aspite, L. V. Lotti, M. R. Torrisi, and M. Picardo, 'Keratinocyte growth factor promotes melanosome transfer to keratinocytes,' Journal of Investigative Dermatology, vol. 125, no. 6, pp. 1190-1199, Dec 2005.
[38] N. N. Chen, Y. P. Hu, W. H. Li, M. Eisinger, M. Seiberg, and C. B. Lin, 'The role of keratinocyte growth factor in melanogenesis: a possible mechanism for the initiation of solar lentigines,' Experimental Dermatology, vol. 19, no. 10, pp. 865-872, Oct 2010.
[39] D. Kovacs, G. Cardinali, N. Aspite, C. Cota, F. Luzi, B. Bellei, S. Briganti, A. Amantea, M. R. Torrisi, and M. Picardo, 'Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo,' British Journal of Dermatology, vol. 163, no. 5, pp. 1020-1027, Nov 2010.
[40] K. Hasegawa, R. Fujiwara, K. Sato, J. Shin, S. J. Kim, M. Kim, and H. Y. Kang, 'Possible Involvement of Keratinocyte Growth Factor in the Persistence of Hyperpigmentation in both Human Facial Solar Lentigines and Melasma,' Annals of Dermatology, vol. 27, no. 5, pp. 626-629, Oct 2015.
[41] S. Iriyama, Y. Matsunaga, K. Takahashi, K. Matsuzaki, N. Kumagai, and S. Amano, 'Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal-epidermal junction in human skin,' Archives of Dermatological Research, vol. 303, no. 4, pp. 253-261, May 2011.
[42] S. Iriyama, T. Ono, H. Aoki, and S. Amano, 'Hyperpigmentation in human solar lentigo is promoted by heparanase-induced loss of heparan sulfate chains at the dermal-epidermal junction,' Journal of Dermatological Science, vol. 64, no. 3, pp. 223-228, Dec 2011.
[43] M. Seiberg, C. Paine, E. Sharlow, P. Andrade-Gordon, M. Costanzo, M. Eisinger, and S. S. Shapiro, 'The protease-activated receptor 2 regulates pigmentation via keratinocyte-melanocyte interactions,' Experimental Cell Research, vol. 254, no. 1, pp. 25-32, Jan 2000.
[44] H. Ando, Y. Niki, M. Yoshida, M. Ito, K. Akiyama, J. H. Kim, T. J. Yoon, J. H. Lee, M. S. Matsui, and M. Ichihashi, 'Keratinocytes in culture accumulate phagocytosed melanosomes in the perinuclear area,' Pigment Cell & Melanoma Research, vol. 23, no. 1, pp. 129-133, Feb 2010.
[45] W. J. Lee, S. Y. Jo, M. H. Lee, C. H. Won, M. W. Lee, J. H. Choi, and S. E. Chang, 'The Effect of MCP-1/CCR2 on the Proliferation and Senescence of Epidermal Constituent Cells in Solar Lentigo,' (in eng), International journal of molecular sciences, vol. 17, no. 6, p. 948, 2016.
[46] M. J. Barysch, R. P. Braun, I. Kolm, V. Ahlgrimm-Siesz, R. Hofmann-Wellenhof, C. Duval, E. Warrick, F. Bernerd, S. Nouveau, and R. Dummer, 'Keratinocytic Malfunction as a Trigger for the Development of Solar Lentigines,' Dermatopathology, vol. 6, no. 1, pp. 1-11, Jan-Mar 2019.
[47] J. P. Ortonne, A. G. Pandya, H. Lui, and D. Hexsel, 'Treatment of solar lentigines,' Journal of the American Academy of Dermatology, vol. 54, no. 5, pp. S262-S271, May 2006.
[48] D. Kopera, U. Hohenleutner, and M. Landthaler, 'Quality-switched ruby laser treatment of solar lentigines and Becker's nevus: A histopathological and immunohistochemical study,' Dermatology, vol. 194, no. 4, pp. 338-343, 1997.
[49] S. A Lamel, M. Rahvar, and H. Maibach, Postinflammatory hyperpigmentation secondary to external insult: An overview of the quantitative analysis of pigmentation. 2012.
[50] G. D. Weinstein, T. P. Nigra, P. E. Pochi, R. C. Savin, A. Allan, K. Benik, E. Jeffes, L. Lufrano, and G. Thorne, 'TOPICAL TRETINOIN FOR TREATMENT OF PHOTODAMAGED SKIN - A MULTICENTER STUDY,' Archives of Dermatology, vol. 127, no. 5, pp. 659-665, May 1991.
[51] E. S. Rafal, C. E. M. Griffiths, C. M. Ditre, L. J. Finkel, T. A. Hamilton, C. N. Ellis, and J. J. Voorhees, 'Topical Tretinoin (Retinoic Acid) Treatment for Liver Spots Associated with Photodamage,' vol. 326, no. 6, pp. 368-374, 1992.
[52] A. B. Fleischer, E. H. Schwartzel, S. I. Colby, and D. Altman, The combination of 2% 4-hydroxyanisole (Mequinol) and 0.01% tretinoin is effective in improving the appearance of solar lentigines and related hyperpigmented lesions in two double-blind multicenter clinical studies. 2000, pp. 459-67.
[53] K. Yoshimura, K. Harii, T. Aoyama, and T. Iga, 'Experience with a strong bleaching treatment for skin hyperpigmentation in orientals,' Plastic and Reconstructive Surgery, vol. 105, no. 3, pp. 1097-1108, Mar 2000.
[54] M. Jarratt, Mequinol 2%/tretinoin 0.01% solution: An effective and safe alternative to hydroquinone 3% in the treatment of solar lentigines. 2004, pp. 319-22.
[55] E. Questel, E. Durbise, A. L. Bardy, A. M. Schmitt, and G. Josse, 'Follow-up of solar lentigo depigmentation with a retinaldehyde-based cream by clinical evaluation and calibrated colour imaging,' Skin Research and Technology, vol. 21, no. 2, pp. 241-246, May 2015.
[56] D. M. Hexsel, R. Mazzuco, J. Bohn, J. Borges, and D. O. Gobbato, 'Clinical comparative study between cryotherapy and local dermabrasion for the treatment of solar lentigo on the back of the hands,' Dermatologic Surgery, vol. 26, no. 5, pp. 457-462, May 2000.
[57] M. Raziee, K. Balighi, H. Shabanzadeh-Dehkordi, and R. M. Robati, 'Efficacy and safety of cryotherapy vs. trichloroacetic acid in the treatment of solar lentigo,' Journal of the European Academy of Dermatology and Venereology, vol. 22, no. 3, pp. 316-319, Mar 2008.
[58] A. Kawada, H. Shiraishi, M. Asai, H. Kameyama, Y. Sangen, Y. Aragane, and T. Tezuka, 'Clinical improvement of solar lentigines and ephelides with an intense pulsed light source,' Dermatologic Surgery, vol. 28, no. 6, pp. 504-508, Jun 2002.
[59] H. Sasaya, A. Kawada, T. Wada, A. Hirao, and N. Oiso, 'Clinical effectiveness of intense pulsed light therapy for solar lentigines of the hands,' Dermatologic Therapy, vol. 24, no. 6, pp. 584-586, 2011.
[60] Y. Tanaka, Y. Tsunemi, and M. Kawashima, 'Objective Assessment of Intensive Targeted Treatment for Solar Lentigines Using Intense Pulsed Light With Wavelengths Between 500 and 635 nm,' Lasers in Surgery and Medicine, vol. 48, no. 1, pp. 30-35, Jan 2016.
[61] K. Negishi, H. Akita, S. Tanaka, Y. Yokoyama, S. Wakamatsu, and K. Matsunaga, 'Comparative study of treatment efficacy and the incidence of post-inflammatory hyperpigmentation with different degrees of irradiation using two different quality-switched lasers for removing solar lentigines on Asian skin,' vol. 27, no. 3, pp. 307-312, 2013.
[62] J. S. Kim, C. H. Nam, J. Y. Kim, J. W. Gye, S. P. Hong, M. H. Kim, and B. C. Park, 'Objective Evaluation of the Effect of Q-Switched Nd:YAG (532 nm) Laser on Solar Lentigo by Using a Colorimeter,' (in eng), Annals of dermatology, vol. 27, no. 3, pp. 326-328, 2015.
[63] V. Vachiramon, W. Panmanee, T. Techapichetvanich, and K. Chanprapaph, 'Comparison of Q‐switched Nd: YAG laser and fractional carbon dioxide laser for the treatment of solar lentigines in Asians,' Lasers in Surgery and Medicine, vol. 48, no. 4, pp. 354-359, 2016.
[64] V. Vachiramon, W. Iamsumang, and K. Triyangkulsri, 'Q-switched double frequency Nd:YAG 532-nm nanosecond laser vs. double frequency Nd:YAG 532-nm picosecond laser for the treatment of solar lentigines in Asians,' Lasers in Medical Science, vol. 33, no. 9, pp. 1941-1947, Dec 2018.
[65] Y. T. Li and K. C. Yang, 'Comparison of the frequency-doubled Q-Switched Nd : YAG laser and 35% trichloroacetic acid for the treatment of face lentigines,' Dermatologic Surgery, vol. 25, no. 3, pp. 202-204, Mar 1999.
[66] H. J. Jun, S. H. Cho, J. D. Lee, and H. S. Kim, 'A split-face, evaluator-blind randomized study on the early effects of Q-switched Nd:YAG laser plus Er:YAG micropeel (combined therapy) versus Q-switched Nd:YAG alone in light solar lentigines in Asians,' Lasers in Medical Science, vol. 29, no. 3, pp. 1153-1158, 2014/05/01 2014.
[67] H. J. Kang, J. I. Na, J. H. Lee, M. R. Roh, J. Y. Ko, and S. E. Chang, 'Postinflammatory hyperpigmentation associated with treatment of solar lentigines using a Q-Switched 532-nm Nd: YAG laser: a multicenter survey,' Journal of Dermatological Treatment, vol. 28, no. 5, pp. 447-451, 2017/07/04 2017.
[68] P. Sirithanabadeekul and R. Srieakpanit, 'Intradermal tranexamic acid injections to prevent post-inflammatory hyperpigmentation after solar lentigo removal with a Q-switched 532-nm Nd:YAG laser,' Journal of Cosmetic and Laser Therapy, vol. 20, no. 7-8, pp. 398-404, Nov 2018.
[69] L. Guss, M. P. Goldman, and D. C. Wu, 'Picosecond 532 nm Neodymium-Doped Yttrium Aluminium Garnet Laser for the Treatment of Solar Lentigines in Darker Skin Types: Safety and Efficacy,' Dermatologic Surgery, vol. 43, no. 3, pp. 456-459, Mar 2017.
[70] K. Negishi, H. Akita, and Y. Matsunaga, 'Prospective study of removing solar lentigines in Asians using a novel dual-wavelength and dual-pulse width picosecond laser,' Lasers in Surgery and Medicine, vol. 50, no. 8, pp. 851-858, Oct 2018.
[71] K. Y. Kung, S. Y. N. Shek, C. K. Yeung, and H. H. L. Chan, 'Evaluation of the safety and efficacy of the dual wavelength picosecond laser for the treatment of benign pigmented lesions in Asians,' Lasers in Surgery and Medicine, vol. 51, no. 1, pp. 14-22, Jan 2019.
[72] T. Kono, D. Manstein, H. Chan, M. Nozaki, and R. Anderson, Q-switched ruby versus long-pulsed dye laser delivered with compression for treatment of facial lentigines in Asians. 2006, pp. 94-7.
[73] A. Sadighha, S. Saatee, and G. Muhaghegh-Zahed, 'Efficacy and Adverse Effects of Q-Switched Ruby Laser on Solar Lentigines: A Prospective Study of 91 Patients with Fitzpatrick Skin Type II, III, and IV,' Dermatologic Surgery, vol. 34, no. 11, pp. 1465-1468, Nov 2008.
[74] A. Rosenbach, S. J. Lee, and R. H. Johr, 'Treatment of medium-brown solar lentigines using an alexandrite laser designed for hair reduction,' Archives of Dermatology, vol. 138, no. 4, pp. 547-548, Apr 2002.
[75] C. C. Wang, Y. M. Sue, C. H. Yang, and C. K. Chen, 'A comparison of Q-switched alexandrite laser and intense pulsed light for the treatment of freckles and lentigines in Asian persons: A randomized, physician-blinded, split-face comparative trial,' Journal of the American Academy of Dermatology, vol. 54, no. 5, pp. 804-810, May 2006.
[76] S. G Y Ho, C. Yeung, N. P Y Chan, S. Shek, and H. Chan, A comparison of Q-switched and long-pulsed alexandrite laser for the treatment of freckles and lentigines in Oriental patients. 2011, pp. 108-13.
[77] C. Kaminaka, F. Furukawa, and Y. Yamamoto, 'The Clinical and Histological Effect of a Low-Fluence Q-Switched 1,064-nm Neodymium: Yttrium-Aluminum-Garnet Laser for the Treatment of Melasma and Solar Lentigenes in Asians: Prospective, Randomized, and Split-Face Comparative Study,' Dermatologic Surgery, vol. 43, no. 9, pp. 1120-1133, Sep 2017.
[78] N. Cameli, E. Abril, M. Agozzino, and M. Mariano, 'Clinical and Instrumental Evaluation of the Efficacy of a New Depigmenting Agent Containing a Combination of a Retinoid, a Phenolic Agent and an Antioxidant for the Treatment of Solar Lentigines,' Dermatology, vol. 230, no. 4, pp. 360-366, 2015.
[79] G. Josse, J. Le Digabel, and E. Questel, 'Protection against summer solar lentigo over-pigmentation with a SPF30 daily cream,' Skin Research and Technology, vol. 24, no. 3, pp. 485-489, Aug 2018.
[80] A. B. Kimball, J. R. Kaczvinsky, J. Li, L. R. Robinson, P. J. Matts, C. A. Berge, K. Miyamoto, and D. L. Bissett, 'Reduction in the appearance of facial hyperpigmentation after use of moisturizers with a combination of topical niacinamide and N‐acetyl glucosamine: results of a randomized, double‐blind, vehicle‐controlled trial,' British Journal of Dermatology, vol. 162, no. 2, pp. 435-441, 2010.
[81] L. Petit and G. E. Pieard, 'Analytic quantification of solar lentigines lightening by a 2% hydroquinone-cyclodextrin formulation,' Journal of the European Academy of Dermatology and Venereology, vol. 17, no. 5, pp. 546-549, Sep 2003.
[82] D. Hexsel, C. Hexsel, M. D. Porto, and C. Siega, 'Triple combination as adjuvant to cryotherapy in the treatment of solar lentigines: investigator-blinded, randomized clinical trial,' Journal of the European Academy of Dermatology and Venereology, vol. 29, no. 1, pp. 128-133, Jan 2015.
[83] K. Negishi, S. Tanaka, and S. Tobita, 'Prospective, randomized, evaluator‐blinded study of the long pulse 532‐nm KTP laser alone or in combination with the long pulse 1064‐nm Nd: YAG laser on facial rejuvenation in Asian skin,' Lasers in Surgery and Medicine, vol. 48, no. 9, pp. 844-851, 2016.
[84] Y. Ishikawa, T. Niwano, S. Hirano, K. Numano, K. Takasima, and G. Imokawa, 'Whitening effect of l-ascorbate-2-phosphate trisodium salt on solar lentigos,' Archives of Dermatological Research, vol. 311, no. 3, pp. 183-191, Apr 2019.
[85] D. P Brown, M. A Walker, A. M Urbas, A. Kildishev, S. Xiao, and V. Drachev, Direct measurement of group delay dispersion in metamagnetics for ultrafast pulse shaping. 2012, pp. 23082-7.
[86] I. H. Malitson, 'Interspecimen Comparison of the Refractive Index of Fused Silica*,†,' Journal of the Optical Society of America, vol. 55, no. 10, pp. 1205-1209, 1965/10/01 1965.
[87] G. M. Hale and M. R. Querry, 'Optical Constants of Water in the 200-nm to 200-μm Wavelength Region,' Applied Optics, vol. 12, no. 3, pp. 555-563, 1973/03/01 1973.
[88] H. Ding, J. Q Lu, W. Wooden, P. Kragel, and X.-H. Hu, Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. 2006, pp. 1479-89.
[89] Y. H. Liao, W. C. Kuo, S. Y. Chou, C. S. Tsai, G. L. Lin, M. R. Tsai, Y. T. Shih, G. G. Lee, and C. K. Sun, 'Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy,' (in English), Biomedical Optics Express, Article vol. 5, no. 9, pp. 3266-3279, Sep 2014.
[90] G. G. Lee, H. Lin, M. Tsai, S. Chou, W. Lee, Y. Liao, C. Sun, and C. Chen, 'Automatic Cell Segmentation and Nuclear-to-Cytoplasmic Ratio Analysis for Third Harmonic Generated Microscopy Medical Images,' IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 2, pp. 158-168, 2013.
[91] Y. H. Su, 'Using Harmonic Generation Biopsy to Characterize Sun-induced Chronic Damage of Skin,' 2017年, 2017.
[92] W. M. Liu, 'In Vivo Quantification of Melanin Mass Density by Using Third Harmonic Generation Microscopy,' 2017年, 2013.
[93] M. Cichorek, M. Wachulska, A. Stasiewicz, and A. Tymińska, 'Skin melanocytes: biology and development,' (in eng), Postepy dermatologii i alergologii, vol. 30, no. 1, pp. 30-41, 2013.
[94] X. F. Wu and J. A. Hammer, 'Melanosome transfer: it is best to give and receive,' Current Opinion in Cell Biology, vol. 29, pp. 1-7, Aug 2014.
[95] H. Ando, Y. Niki, M. Ito, K. Akiyama, M. S. Matsui, D. B. Yarosh, and M. Ichihashi, 'Melanosomes Are Transferred from Melanocytes to Keratinocytes through the Processes of Packaging, Release, Uptake, and Dispersion,' Journal of Investigative Dermatology, vol. 132, no. 4, pp. 1222-1229, Apr 2012.
[96] H. Y. Thong, S. H. Jee, C. C. Sun, and R. E. Boissy, 'The patterns of melanosome distribution in keratinocytes of human skin as one determining factor of skin colour,' British Journal of Dermatology, vol. 149, no. 3, pp. 498-505, Sep 2003.
[97] K. Okazaki, M. Uzuka, F. Morikawa, K. Toda, and M. Seiji, 'TRANSFER MECHANISM OF MELANOSOMES IN EPIDERMAL-CELL CULTURE,' Journal of Investigative Dermatology, vol. 67, no. 4, pp. 541-547, 1976.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73626-
dc.description.abstract在日常生活中,暴露在紫外光的照射下會造成皮膚的病變與慢性傷害,而曬斑就是其中之一,曬斑在亞洲人以及白人有很高的普遍性,又因為其常常長在臉上,因此有很龐大的治療需求。然而,治療過後通常不會完全治好,因此,本論文利用非侵入式活體倍頻顯微術去即時觀察治療對病灶內部帶來的改變。此技術提供即時造影,擁有對細胞病理學診斷非常關鍵的次微米級的解析度。一位亞裔男性與二十四位亞裔女性志願者參與了本研究的臨床試驗,志願者們的年齡分布從四十六至七十八歲並滿足在臉上有曬斑且準備接受治療之條件。本論文進一步將取得的活體倍頻顯微虛擬切片影像進行分析與量化,共計有十種關於曬斑皮膚內黑色素含量或組織結構的參數被量化分析。
論文中揭示了在曬斑病灶區域中,角質層厚度、活表皮層厚度、基底細胞質黑色素濃度(MMD)、基底細胞質黑色素不均勻度、以及基底細胞高度等皆有增加。醫生使用紅寶石雷射以及皮秒雷射來治療曬斑,本文發現基底細胞高度在兩種雷射治療過後依舊偏高,而黑色素不均勻度則在皮秒雷射治療後依舊偏高,而在紅寶石雷射治療後變正常。特別的是,基底細胞的核質比以及黑色素細胞的活性在術後均顯著增加,而噬黑色素細胞數量與游離黑色素顆粒則是在紅寶石雷射治療後增加,但在皮秒雷射治療後維持正常。MMD是代表黑色素的絕對濃度,比起其他量測黑色素的技術,這是一個更精確、客觀的參數,本論文進一步的分析指出MMD與外觀是有關連性的,也發現治療效果較好者,其術前的MMD是比較高的。
最後,由於曬斑在治療過後通常不會完全治好,再加上術後基底細胞的高度依舊偏高的結果,因此我們認為基底細胞的高度反映出曬斑主要的病因,同時也適合做為是其重要的病理特徵,而此特徵可能是因為角質形成細胞的增值與分化平衡的破壞所造成。
zh_TW
dc.description.abstractCumulative ultraviolet exposure can cause chronic damage of the skin. Solar lentigo (SL), also known as solar lentigine, is a major sign of skin photoaging. There is a serious cosmetic concern for SL in Asians. The main treatment option for SL is pigmented laser. However, the risk of post-laser hyperpigmentation and the possibility of recurrence still exist. Noninvasive harmonic generation microscopy (HGM) provides the merits of submicron resolution, enhanced third harmonic generation (THG) signals from melanin and high penetration, which are crucial for in vivo histopathological examination of solar lentigo. The aim of this study is to understand the pathogenesis of solar lentigo from its histopathological changes before and after pigmented laser treatment. One male and 24 female Asian volunteers, aged 46 to 78 years old, having at least 2 lentigines on the cheeks were recruited. We treated one lesion with Q-switched ruby laser (QSRL) and the other with Nd:YAG 532-nm picosecond laser (PL), respectively. HGM was utilized to assess the in vivo histopathological changes of SL before, 3 weeks and 6 weeks after laser treatment. Ten HGM parameters concerning the histopathological features in SL were quantified and analyzed.
At baseline, the thickness of stratum corneum (SC), thickness of viable epidermis (VE), melanin mass density (MMD) of basal cells, inhomogeneity of MMD (IMMD) of basal cells, and height of basal cells (HBC) were increased in SL, comparing to the normal counterpart. After laser treatments, although the thickness of SC and VE resumed to the normal levels, the HBC remained significantly higher. The nuclear-cytoplasmic ratio (NCR) of basal cells also become increased after both laser treatments. Our study showed that MMD of basal cells, an objective parameter measuring absolute melanin amount, became normal after laser treatment and its levels had a positive correlation with the clinical improvement of SL. Furthermore, we found that SL with higher MMD had better therapeutic responses than SL bearing lower MMD. The IMMD of basal cells kept high after PL, but became normal after QSRL treatment. The melanocyte dendriticity score (MDS) and dermal melanophages/free melanin granules (DMM) became significantly higher after laser treatments and persisted till week 6, only the DMM in the PL group resumed to normal at week 6.
Finally, because the HBC remains elevated after laser treatments, we propose that changes in basal keratinocytes are related to the development of SL. The increased HBC might reflect the impairment of the proliferation/differentiation program in keratinocytes and could contribute to the pathogenesis of SL.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:07:01Z (GMT). No. of bitstreams: 1
ntu-108-R06941022-1.pdf: 8975053 bytes, checksum: bb9f47f0c67e7fd814aeebda6d77b6d6 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xxxvi
LIST OF ABBREVIATIONS xxxvii
Chapter 1 Introduction 1
1-1 Motivation 1
1-2 Thesis Scope 2
Chapter 2 Background Knowledge 3
2-1 Histopathological Characteristics of Solar Lentigines 3
2-2 Possible molecular mechanisms and pathogenesis of Solar Lentigines 6
2-3 Depigment methods of Solar Lentigines 11
2-4 Treatment Assessment of Solar Lentigines 14
Chapter 3 Materials and Methods 19
3-1 Strategy of the research 19
3-2 Optical system setup 20
3-3 Protocol of the clinical study 29
3-3-1 IRB Permission 29
3-3-2 Volunteer Enrollment 30
3-3-3 Image Acquisition 30
3-3-4 Treatment Method 33
3-4 Quantification 34
3-4-1 Thickness of Stratum Corneum (SC) 35
3-4-2 Thickness of Dermal Papilla Zone (DPZ) 39
3-4-3 Thickness of Viable Epidermis (VE) 45
3-4-4 Melanin Mass Density (MMD) of Basal Cells 47
3-4-5 Inhomogeneity of MMD (IMMD) 53
3-4-6 Horizontal Cell Size (HCS) of Basal Cells 54
3-4-7 Nuclear-Cytoplasmic Ratio (NCR) of Basal Cells 55
3-4-8 Height of Basal Cells (HBC) 57
3-4-9 Melanocyte Dendriticity Score (MDS) 60
3-4-10 Dermal Melanophages and Free Melanin Granules (DMM) 61
Chapter 4 Results 64
4-1 Characteristics of Solar Lentigines 64
4-2 Laser Treatment Effects on Solar Lentigines 77
4-3 Laser Treatment Improvement Evaluation with further analysis 99
4-3-1 Laser Treatment Improvement Evaluation 99
4-3-2 Relationship between the Appearance and the Parameters 100
4-3-3 Relationship between the PIH and the Parameters 122
4-3-4 Relationship between the HBC and the Other Parameters 124
Chapter 5 Discussion 129
5-1 Explanation of Data and Comparison with Previous Studies 129
5-1-1 Characteristics of Solar Lentigines 129
5-1-2 Laser Treatment Effects on Solar Lentigines 136
5-1-3 Laser Treatment Improvement Evaluation with further analysis 140
5-2 Possible molecular mechanisms and pathogenesis of Solar Lentigines 142
Chapter 6 Conclusion 152
REFERENCES 154
COPY RIGHTS AND PERMISSIONS 174
dc.language.isoen
dc.title利用倍頻顯微術對臉部曬斑之組織病理特徵分析及治療評估zh_TW
dc.titleHarmonic Generation Microscopy for Assessment of the Histopathological Characteristics and Therapeutic Outcome for Facial Solar Lentigoen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖怡華(Yi-Hua Liao),賈世璿(Shih-Hsuan Chia),陳鴻文(Hung-Wen Chen)
dc.subject.keyword倍頻顯微術(HGM),曬斑(solar lentigo),活體光學虛擬切片,醫療美容,治療評估,基底細胞高度,zh_TW
dc.subject.keywordharmonic generation microscopy (HGM),solar lentigo,in vivo optical biospy,aesthetic medicine,treatment assessment,height of basal cells,en
dc.relation.page174
dc.identifier.doi10.6342/NTU201902871
dc.rights.note有償授權
dc.date.accepted2019-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
8.76 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved