Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73605
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳耀銘(Yaow-Ming Chen)
dc.contributor.authorTerng-Wei Tsaien
dc.contributor.author蔡騰緯zh_TW
dc.date.accessioned2021-06-17T08:06:41Z-
dc.date.available2026-01-31
dc.date.copyright2021-03-11
dc.date.issued2021
dc.date.submitted2021-01-31
dc.identifier.citation[1]S. V. Araujo, P. Zacharias, and R. Mallwitz, 'Highly efficient single-phase transformerless inverters for grid-connected photovoltaic systems,' IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3118-3128, Sept. 2010.
[2]P. Khamphakdi, K. Sekiguchi, M. Hagiwara, and H. Akagi, 'A transformerless back-to-back (BTB) system using modular multilevel cascade converters for power distribution systems,' IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1866-1875, April 2015.
[3]P. Khamphakdi, M. Nitta, M. Hagiwara, and H. Akagi, 'Zero-voltage ride-through capability of a transformerless back-to-back system using modular multilevel cascade converters for power distribution systems,' IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2730-2741, April 2016.
[4]L. Zhang, K. Sun, Y. W. Li, X. Lu, and J. Zhao, 'A distributed power control of series-connected module-integrated inverters for PV grid-tied applications,' IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7698-7707, Sept. 2018.
[5]X. Guo, Y. Yang, B. Wang, and F. Blaabjerg, 'Leakage current reduction of three-phase Z-source three-level four-leg inverter for transformerless PV system,' IEEE Trans. Power Electron., vol. 34, no. 7, pp. 6299-6308, July 2019.
[6]M. M. Bijaieh, W. W. Weaver, and R. D. Robinett, 'Energy storage requirements for inverter-based microgrids under droop control in d-q coordinates,' IEEE Trans. Energy Convers., vol. 35, no. 2, pp. 611-620, June 2020.
[7]Q. Liu, T. Caldognetto, and S. Buso, 'Review and comparison of grid-tied inverter controllers in microgrids,' IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7624-7639, July 2020.
[8]Grid Code: High and Extra High Voltage, E.ON Netz GmbH, Bayeuth, Germany, April 2006.
[9]C. H. Benz, W. T. Franke, and F. W. Fuchs, “Low voltage ride through capability of a 5-kVA grid-tied solar inverter,” in Proc. IEEE PEMC, 2010, pp. 13–20.
[10]Y. Yang, F. Blaabjerg, and Z. Zou, 'Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems,' IEEE Trans. Ind. Appl., vol. 49, no. 5, pp. 2167-2176, Sept.-Oct. 2013.
[11]C. Tang, Y. Chen, and Y. Chen, 'PV power system with multi-mode operation and low-voltage ride-through capability,' IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7524-7533, Dec. 2015.
[12]Y. Yang, F. Blaabjerg, and H. Wang, 'Low-voltage ride-through of single-phase transformerless photovoltaic inverters,' IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 1942-1952, May-June 2014.
[13]Y. Yang, H. Wang, and F. Blaabjerg, 'Reactive power injection strategies for single-phase photovoltaic systems considering grid requirements,' IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 4065-4076, Nov.-Dec. 2014.
[14]Z. Zhang, Y. Yang, F. Blaabjerg, and R. Ma, 'Challenges to grid synchronization of single-phase grid-connected inverters in zero-voltage ride-through operation,' in Proc. IEEE SPEC, 2016, pp. 1-6.
[15]Y. Yang, K. Zhou, and F. Blaabjerg, 'Current harmonics from single-phase grid-connected inverters—examination and suppression,' IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 1, pp. 221-233, March 2016.
[16]M. Ebrahimi, S. A. Khajehoddin, and M. Karimi-Ghartemani, 'Fast and robust single-phase DQ current controller for smart inverter applications,' IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3968-3976, May 2016.
[17]M. Rajeev and V. Agarwal, 'Low voltage ride-through capability of a novel grid connected inverter suitable for transformer-less solar PV–grid interface,' IEEE Trans. Ind. Appl., vol. 56, no. 3, pp. 2799-2806, May-June 2020.
[18]P. Rodriguez, A. V. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, 'Flexible active power control of distributed power generation systems during grid faults,' IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2583-2592, Oct. 2007.
[19]F. Wang, J. L. Duarte, and M. A. M. Hendrix, 'Pliant active and reactive power control for grid-interactive converters under unbalanced voltage dips,' IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1511-1521, May 2011.
[20]A. Junyent-Ferre, O. Gomis-Bellmunt, T. C. Green, and D. E. Soto-Sanchez, 'Current control reference calculation issues for the operation of renewable source grid interface VSCs under unbalanced voltage sags,' IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3744-3753, Dec. 2011.
[21]J. Miret, M. Castilla, A. Camacho, L. G. d. Vicuña, and J. Matas, 'Control scheme for photovoltaic three-phase inverters to minimize peak currents during unbalanced grid-voltage sags,' IEEE Trans. Power Electron., vol. 27, no. 10, pp. 4262-4271, Oct. 2012.
[22]A. Camacho, M. Castilla, J. Miret, R. Guzman, and A. Borrell, 'Reactive power control for distributed generation power plants to comply with voltage limits during grid faults,' IEEE Trans. Power Electron., vol. 29, no. 11, pp. 6224-6234, Nov. 2014.
[23]Z. Shao, X. Zhang, F. Wang, R. Cao, and H. Ni, 'Analysis and control of neutral-point voltage for transformerless three-level PV inverter in LVRT operation,' IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2347-2359, March 2017.
[24]X. Guo, W. Liu, and Z. Lu, 'Flexible power regulation and current-limited control of the grid-connected inverter under unbalanced grid voltage faults,' IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 7425-7432, Sept. 2017.
[25]M. M. Shabestary and Y. A. I. Mohamed, 'Advanced voltage support and active power flow control in grid-connected converters under unbalanced conditions,' IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1855-1864, Feb. 2018.
[26]M. A. Garnica López, J. L. García de Vicuña, J. Miret, M. Castilla, and R. Guzmán, 'Control strategy for grid-connected three-phase inverters during voltage sags to meet grid codes and to maximize power delivery capability,' IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9360-9374, Nov. 2018.
[27]Y. Li, X. Yang, W. Chen, T. Liu, and F. Zhang, 'Neutral-point voltage analysis and suppression for NPC three-level photovoltaic converter in LVRT operation under imbalanced grid faults with selective hybrid SVPWM strategy,' IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1334-1355, Feb. 2019.
[28]H. Akagi, Y. Kanazawa, and A. Nabae, 'Instantaneous reactive power compensators comprising switching devices without energy storage components,' IEEE Trans. Ind. Appl., vol. IA-20, no. 3, pp. 625-630, May 1984.
[29]C. D. Townsend, Y. Yu, G. Konstantinou, and V. G. Agelidis, 'Cascaded H-bridge multilevel PV topology for alleviation of per-phase power imbalances and reduction of second harmonic voltage ripple,' IEEE Trans. Power Electron., vol. 31, no. 8, pp. 5574-5586, Aug. 2016.
[30]P. H. I. Hayashi and L. Matakas, 'Decoupled stationary ABC frame current control of three-phase four-leg four-wire converters,' in Proc. COBEP, 2017, pp. 1-6.
[31]C. Yang, W. Tsai, Y. Li, C. Tang, Y. Chen, and Y. Chang, 'Smart PV inverters for smart grid applications,' in Proc. IEEE ECCE Asia, 2018, pp. 639-644.
[32]Y. Li, T. Tsai, C. Yang, Y. Chen, and Y. Chang, 'Per-phase control strategy of the three-phase four-wire inverter,' in Proc. IEEE ECCE Asia, 2018, pp. 883-888.
[33]D. I. Brandao, F. E. G. Mendes, R. V. Ferreira, S. M. Silva, and I. A. Pires, 'Active and reactive power injection strategies for three-phase four-wire inverters during symmetrical/asymmetrical voltage sags,' IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2347-2355, May-June 2019.
[34]T. D. C. Busarello, K. Zeb, M. A. Sarwar, and H. J. Kim, 'Three-phase D-STATCOM with digital current control strategy in abc-reference frame,' in Proc. iCoMET, 2020, pp. 1-6.
[35]K. Ma, W. Chen, M. Liserre, and F. Blaabjerg, 'Power controllability of a three-phase converter with an unbalanced AC source,' IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1591-1604, March 2015.
[36]T. Wu, H. Hsieh, C. Hsu, and Y. Chang, 'Three-phase three-wire active power filter with D–Σ digital control to accommodate filter-inductance variation,' IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 1, pp. 44-53, March 2016.
[37]Z. Liu, J. Liu, and J. Li, 'Modeling, analysis, and mitigation of load neutral point voltage for three-phase four-leg inverter,' IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 2010-2021, May 2013.
[38]M. Zhang, D. J. Atkinson, B. Ji, M. Armstrong, and M. Ma, 'A near-state three-dimensional space vector modulation for a three-phase four-leg voltage source inverter,' IEEE Trans. Power Electron., vol. 29, no. 11, pp. 5715-5726, Nov. 2014.
[39]M. Aredes, J. Hafner, and K. Heumann, 'Three-phase four-wire shunt active filter control strategies,' IEEE Trans. Power Electron., vol. 12, no. 2, pp. 311-318, March 1997.
[40]G. Escobar, A. A. Valdez, R. E. Torres-Olguin, and M. F. Martinez-Montejano, 'A model-based controller for a three-phase four-wire shunt active filter with compensation of the neutral line current,' IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2261-2270, Nov. 2007.
[41]M. Dai, M. N. Marwali, J. Jung, and A. Keyhani, 'A three-phase four-wire inverter control technique for a single distributed generation unit in island mode,' IEEE Trans. Power Electron., vol. 23, no. 1, pp. 322-331, Jan. 2008.
[42]O. Vodyakho and T. Kim, 'Shunt active filter based on three-level inverter for three-phase four-wire systems,' IET Power Electron., vol. 2, no. 3, pp. 216-226, May 2009.
[43]L. Li and K. M. Smedley, 'A new analog controller for three-phase four-wire voltage generation inverters,' IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1711-1721, July 2009.
[44]C. S. Lam, X. X. Cui, W. H. Choi, M. C. Wong, and Y. D. Han, 'Minimum inverter capacity design for LC-hybrid active power filters in three-phase four-wire distribution systems,' IET Power Electron., vol. 5, no. 7, pp. 956-968, August 2012.
[45]X. Li, B. Zhang, and D. Qiu, 'Three-mode pulse-width modulation of a three-phase four-wire inverter,' IET Power Electron., vol. 8, no. 8, pp. 1483-1489, 8 2015.
[46]Y. He, H. S. Chung, C. N. Ho, W. Wu, and W. Fan, 'DC bus splitting voltage feedforward injection method for virtually-grounded three-phase inverter,' in Proc. IEEE ECCE, 2016, pp. 1-6.
[47]N. He, Y. Zhu, A. Zhao, and D. Xu, 'Zero-voltage-switching sinusoidal pulsewidth modulation method for three-phase four-wire inverter,' IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7192-7205, Aug. 2019.
[48]G. O. Kalcon, G. P. Adam, O. Anaya-Lara, S. Lo, and K. Uhlen, 'Small-signal stability analysis of multi-terminal VSC-based DC transmission systems,' IEEE Trans. Power Syst., vol. 27, no. 4, pp. 1818-1830, Nov. 2012.
[49]M. Amin and M. Molinas, 'Small-signal stability assessment of power electronics based power systems: a discussion of impedance- and eigenvalue-based methods,' IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 5014-5030, Sept.-Oct. 2017.
[50]Y. Wang, X. Wang, F. Blaabjerg, and Z. Chen, 'Harmonic instability assessment using state-space modeling and participation analysis in inverter-fed power systems,' IEEE Trans. Ind. Electron., vol. 64, no. 1, pp. 806-816, Jan. 2017.
[51]Math H. Bollen, 'Voltage Sags Characterization,' in Understanding Power Quality Problems: Voltage Sags and Interruptions, IEEE, 2000, pp.139-251.
[52]H. Jiang, J. J. Zhang, W. Gao, and Z. Wu, 'Fault detection, identification, and location in smart grid based on data-driven computational methods,' IEEE Trans. Smart Grid, vol. 5, no. 6, pp. 2947-2956, Nov. 2014.
[53]Z. Lini, L. Yongliang, S. Yong, X. Yongduan, L. Lisheng, and J. Xin, 'Fault type recognition of over-head lines of distribution networks based on fault indicator waveform data,' in Proc. IEEE CICED, 2018, pp. 1444-1448.
[54]J. M. Guerrero, J. Matas, L. Garcia De Vicunagarcia De Vicuna, M. Castilla, and J. Miret, 'Wireless-control strategy for parallel operation of distributed-generation inverters,' IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1461-1470, Oct. 2006.
[55]J. M. Guerrero, L. Hang, and J. Uceda, 'Control of distributed uninterruptible power supply systems,' IEEE Trans. Ind. Electron., vol. 55, no. 8, pp. 2845-2859, Aug. 2008.
[56]X. Meng, J. Liu, and Z. Liu, 'A generalized droop control for grid-supporting inverter based on comparison between traditional droop control and virtual synchronous generator control,' IEEE Trans. Power Electron., vol. 34, no. 6, pp. 5416-5438, June 2019.
[57]J. Ho, T. R. Jow, and S. Boggs, 'Historical introduction to capacitor technology,' IEEE Electric. Insulation Magazine, vol. 26, no. 1, pp. 20-25, Jan.-Feb. 2010.
[58]B. Karanayil, V. G. Agelidis, and J. Pou, 'Evaluation of DC-link decoupling using electrolytic or polypropylene film capacitors in three-phase grid-connected photovoltaic inverters,' in Proc. IEEE IECON, 2013, pp. 6980-6986.
[59]H. Wang and F. Blaabjerg, 'Reliability of capacitors for DC-link applications in power electronic converters—an overview,' IEEE Trans. Ind. Appl., vol. 50, no. 5, pp. 3569-3578, Sept.-Oct. 2014.
[60]K. Nishizawa, J. Itoh, A. Odaka, A. Toba, and H. Umida, 'Current harmonic reduction based on space vector PWM for DC-link capacitors in three-phase VSIs operating over a wide range of power factor,' IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4853-4867, May 2019.
[61]M. S. Bilgin, G. Poyrazoglu, M. Aktem, and E. Er, 'DC-link capacitor lifetime under various operating conditions,' in Proc. IEEE CPE-POWERENG, 2019, pp. 1-6.
[62]C. Liu, D. Xu, N. Zhu, F. Blaabjerg, and M. Chen, 'DC-voltage fluctuation elimination through a DC-capacitor current control for DFIG converters under unbalanced grid voltage conditions,' IEEE Trans. Power Electron., vol. 28, no. 7, pp. 3206-3218, July 2013.
[63]H. Wang, P. Davari, H. Wang, D. Kumar, F. Zare, and F. Blaabjerg, 'Lifetime estimation of DC-link capacitors in adjustable speed drives under grid voltage unbalances,' IEEE Trans. Power Electron., vol. 34, no. 5, pp. 4064-4078, May 2019.
[64]H. Song and K. Nam, 'Dual current control scheme for PWM converter under unbalanced input voltage conditions,' IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 953-959, Oct. 1999.
[65]T. Yueh, T. Tsai, Y. Chen, Y. Lee, and Y. Chang, 'The reverse zero-sequence current compensation strategy for back-to-back active power conditioners,' in Proc. IEEE ECCE, 2016, pp. 1-6.
[66]F. Fassinou, H. Wang, L. Devarakonda, and T. Hu, 'Observer-based method for reduction of dc-link voltage ripple in two-stage boost inverters,' in Proc. IEEE ACC, 2014, pp. 4348-4353.
[67]T. Chen, S. Li, and B. Fahimi, 'Analysis of DC-link voltage ripple in voltage source inverters without electrolytic capacitor,' in Proc. IEEE IECON, 2018, pp. 1041-1048.
[68]Y. Zhang, J. Jiao, J. Liu, and J. Gao, 'Direct power control of PWM rectifier with feedforward compensation of DC-bus voltage ripple under unbalanced grid conditions,' IEEE Trans. Ind. Appl., vol. 55, no. 3, pp. 2890-2901, May-June 2019.
[69]C. Tang, L. Kao, Y. Chen, and S. Ou, 'Dynamic power decoupling strategy for three-phase PV power systems under unbalanced grid voltages,' IEEE Trans. Sustain. Energy, vol. 10, no. 2, pp. 540-548, April 2019.
[70]X. Zhang, X. Ruan, H. Kim, and C. K. Tse, “Adaptive active capacitor for improving stability of cascaded DC power supply system,” IEEE Trans. Power Electron., vol.28, no.4, pp.1807-1816, Apr. 2013.
[71]Y. Yang, X. Ruan, L. Zhang, J. He, and Z. Ye, “Feed-forward scheme for an electrolytic capacitor-less AC-DC LED driver to reduce output current ripple,” IEEE Trans. Power Electron., vol. 29, no 10, pp. 5508-5517, Jun, 2014.
[72]C. Yang, Y. Chen, and Y. Chen, 'Active capacitor with ripple-based duty cycle modulation for AC-DC applications,' in Proc. IEEE APEC, 2016, pp. 558-563.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73605-
dc.description.abstract本論文旨在提出一些適用於三相四線市電併聯換流器的分相實功率分配策略。市電併聯換流器已被廣泛地應用於將直流電源,如太陽能陣列或儲能系統的能量傳輸至交流電網中。當電網故障時,根據低電壓穿越之規範,市電併聯換流器應傳輸虛功以進行補償。於不平衡之電壓驟降情況下,基於傳統實虛功率理論發展之分相控制法,可用來傳送不同的虛功至電網的每一相當中。而因為轉換器有其功率規格,在許多文獻中探討了實功率限制的策略。然而,對三相系統來說,不僅實功率的限制是重要的,實功率的分配抑是不可或缺的。
首先,本論文探討了兩個簡單的實功率分配策略,包括平均功率分配策略與依相連續功率分配策略。但這兩個策略皆有明顯且嚴重的缺陷存在。於不平衡情形下,平均功率分配策略受到嚴格的實功率限制;而依相連續功率分配策略則易導致三相電流不平衡的問題。因此,本論文提出兩個先進的策略,其一是比例權重分配策略,可依照各相實功傳輸之能力,適當地分配實功率。此一策略可以解決平均功率分配策略與依相連續功率分配策略所造成之問題。然而,比例權重分配策略並未考慮到直流鏈分離式電容之電壓漣波可能對換流器的壽命及可靠度帶來負面之影響。因此,本論文提出了電壓漣波最小化策略,並對其進行仔細地探討。此外,也引進了實功率限制域的概念,可更深入地呈現功率之限制。本論文也從不同的角度,針對比例權重分配策略及電壓漣波最小化策略進行比較。
本論文用電腦模擬了不同的電壓驟降情境,且建立與實測6kVA三相四線市電併聯換流器之原型機,以驗證兩個先進實功率分配策略之效能。
zh_TW
dc.description.abstractThe objective of this dissertation is to propose various per-phase active power distribution strategies for three-phase four-wire grid-tied inverters. Grid-tied inverters have been widely used to transfer power from dc sources, such as photovoltaic (PV) arrays or energy storage systems (ESS), into the ac utility grid. When grid-fault occurs, grid-tied inverters are required to supply reactive power to satisfy the low-voltage ride-through (LVRT) code. Under an unbalanced voltage-sag condition, a per-phase control method (PPCM) based on conventional PQ power theory can be applied to deliver different amounts of reactive power for each phase of the grid. Due to the power rating of converters, active power limitation strategies have been explored in the literature. However, for the three-phase power system, not only the active power limitation is important, but also the active power distribution for each phase is essential.
In this dissertation, two simple active power distribution strategies, average power distribution strategy (APDS) and sequential phase power distribution strategy (SPDS), are discussed first. Nevertheless, these two strategies have some severe drawbacks. The APDS has strict active power limitation under unbalanced condition, while the SPDS can cause current imbalance among three phases. Therefore, two advanced strategies are proposed. One is the proportional weighting distribution strategy (PWDS), which can properly distribute active power according to the power delivery capability of each phase. The PWDS is able to solve the problems caused by the APDS and SPDS. However, the voltage ripples on dc-link split-capacitors, which may bring a negative impact on the lifetime and reliability of inverters, are not considered. Hence, the voltage ripple minimization strategy (VRMS) is proposed and illustrated in detail. The concept of active power limitation domain (APLD) is also introduced to provide a clear and in-depth understanding of the power limitation. The PWDS and VRMS are compared with each other from different points of view.
To verify the performance of the proposed two advanced active power distribution strategies, PWDS and VRMS, computer simulations are carried out under different voltage-sag conditions. In addition, a 6kVA prototype circuit of the three-phase four-wire grid-tied inverter is built and tested. The experimental results are presented to verify the performance of the proposed PWDS and VRMS.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:06:41Z (GMT). No. of bitstreams: 1
U0001-3001202123253700.pdf: 7538173 bytes, checksum: f53a2b3304c6f26ed442c062f8a70b39 (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
中文摘要 III
Abstract IV
Table of Contents VI
List of Figures VIII
List of Tables XII
Abbreviations XIII
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Dissertation Outline 3
Chapter 2 Per-Phase Control Method and Power Compensation Principle for Three-Phase Grid-Tied Inverters 5
2.1 Three-Phase Grid-Tied Inverters 5
2.2 Per-Phase Control Method 7
2.3 Power Compensation and Limitation Under Grid Faults 12
2.3.1 Types of Grid Faults 13
2.3.2 Low-Voltage Ride-Through Code 14
2.3.3 Active Power Limitation 15
2.4 Simple Per-Phase Active Power Distribution Strategies 17
2.4.1 Average Power Distribution Strategy 17
2.4.2 Sequential Phase Power Distribution Strategy 18
Chapter 3 Advanced Per-Phase Active Power Distribution Strategies 20
3.1 Proportional Weighting Distribution Strategy 21
3.1.1 Basic Concept 21
3.1.2 Computer Simulation 22
3.2 Analysis of Voltage Ripple on Each Split-Capacitor 29
3.2.1 Mathematical Derivation 29
3.2.2 Computer Simulation 32
3.3 Voltage Ripple Minimization Strategy 36
3.3.1 The Minimum of Voltage Ripple on Each Split-Capacitor 36
3.3.2 Active Power Limitation Domain 39
3.3.3 Complete Procedure 48
3.3.4 Computer Simulation 50
3.4 Comparisons Between Two Advanced Strategies 59
3.5 The 120Hz Voltage Ripple on the DC-Link 68
Chapter 4 Hardware Experimental Verifications 71
4.1 Circuit Diagram and Specifications 71
4.2 Per-Phase Power Flow Control 72
4.2.1 Balanced Power Flow Control 73
4.2.2 Unbalanced Power Flow Control 75
4.3 Advanced Per-Phase Active Power Distribution Strategies 77
4.3.1 Proportional Weighting Distribution Strategy 77
4.3.2 Voltage Ripple Minimization Strategy 82
Chapter 5 Conclusions and Suggested Future Research 87
5.1 Summary and Major Contributions 87
5.2 Suggestions for Future Research 88
Reference 89
Vita 98
dc.language.isoen
dc.title三相四線市電併聯換流器之分相實功率分配策略zh_TW
dc.titlePer-Phase Active Power Distribution Strategies for Three-Phase Four-Wire Grid-Tied Invertersen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree博士
dc.contributor.oralexamcommittee賴炎生(Yen-Shin Lai),邱煌仁(Huang-Jen Chiu),鄭博泰(Po-tai Cheng),梁從主(Tsorng-Juu Liang),張永瑞(Yung-Ruei Chang)
dc.subject.keyword三相四線市電併聯換流器,低電壓穿越,不平衡電力系統,分相控制,實功率限制,分相式實功率分配策略,zh_TW
dc.subject.keywordthree-phase four-wire grid-tied inverter,low-voltage ride-through,unbalanced power system,per-phase control,active power limitation,per-phase active power distribution strategy,en
dc.relation.page99
dc.identifier.doi10.6342/NTU202100278
dc.rights.note有償授權
dc.date.accepted2021-02-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
U0001-3001202123253700.pdf
  目前未授權公開取用
7.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved