Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73601
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃升龍
dc.contributor.authorCheng-Hung Shihen
dc.contributor.author施承宏zh_TW
dc.date.accessioned2021-06-17T08:06:38Z-
dc.date.available2020-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citation[1] D. V. Patel and C. N. McGhee, “In vivo confocal microscopy of human corneal nerves in health, in ocular and following corneal surgery: a review,” Br. J. Ophthalmol., vol. 93, no. 7, pp. 853—860, 2009.
[2] L. S. Neil, A. Stephan, G. Pedro, et al. “Reduced corneal nerve fiber density in type 2 diabetes by wide-area Mosaic analysis,” Invest. Ophthalmol. Vis. Sci., vol. 58, no. 14, pp. 6318—6327, 2017.
[3] L. Ora, L. Antoine, B. Vincent, et al. “Increased corneal sub-basal nerve density in patients with Sjögren syndrome treated with topical cyclosporine A,” Clin. Exp. Ophthalmol., vol. 45, pp. 455—43, 2017.
[4] M. L. Stuti, K. M. Hannah, R. H. Richard, et al. “Corneal nerve microstructure in Parkinson’s disease,” J. Clin. Neurosci., vol. 39, pp. 53—58, 2017.
[5] T. Timo, H. Juha, B. Carlos, “Confocal microscopy of corneal nerves—a limited but still useful technique to evaluate peripheral neuropathies,” JAMA Ophthalmol., vol. 134, no. 9, pp. 990—991, 2016.
[6] B. Hatim, S. Nabeel, J. Madhura, et al. “Sub-basal corneal nerve plexus analysis using a new software technology,” Eye Cont. Lens, vol. 44, pp. S199—S205 , 2018.
[7] M. F. Carl, C. Jeremiah, D. Sylvia, et al. “Anatomy of human corneal innervation,” Exp. Eye Res., vol. 90, no. 4, pp. 478—492, 2010.
[8] P. Mijeong, R. Alexander, P. Elvis, et al. “Visualizing the contribution of Keratin-14+ limbal epithelial precursors in corneal wound healing,” Stem Cell Reports, vol. 12, no. 1, pp. 14—28, 2019.
[9] S. Mehrnosh, K. A. Andrei, S. N. Clive, “Concise review: stem cells for corneal wound healing,” Stem Cells, vol. 35, pp. 2105—2114, 2017.
[10] “Wiener-Khinchin Theorem.” [Online]. Available: https://mathworld.wolfram.com/Wiener-KhinchinTheorem.html
[11] 吳政育, “Full-field optical coherence tomography combined with raman spectroscopy for biological sample characterization,” 國立臺灣大學, 2017.
[12] Y. Dong, et al., “Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation,” Mater. Res. Bull., vol. 41, no. 10, pp. 1959—1963, 2006.
[13] 吳東憶, “In-vivo skin measurement using high definition Mirau-based full-field optical coherence tomography,” 國立臺灣大學, 2015.
[14] 林彥宏, “Skin measurements and analysis on dynamic properties using Mirau-based full-field optical coherence tomography,” 國立臺灣大學, 2016.
[15] A. V. D. Ziel, “Noise: sources, characterization, measurement,” Prentice-Hall, 1971.
[16] “角膜生理學.” [Online]. Available:https://doctor.get.com.tw/m/Journal/detail.aspx?no=407039
[17] “角膜生理學.” [Online]. Available: https://doctor.get.com.tw/m/Journal /detail.aspx?no=407039
[18] D. W. DelMonte and T. Kim, “Anatomy and physiology of the cornea,” J Cataract Refract Surg, vol. 37, no. 3, pp. 588—598, 2011.
[19] H. Shuichiro, O. Tokuji, and T. Koujiro, “Comparative observations on corneas, with special reference to Bowman’s layer and Descemet’s membrane in mammals and amphibians.” J. Morphol., vol. 254, no. 3, pp. 247—258, 2002.
[20] “Anatomy and Physiology of cornea.” [Online]. Available: https://www.slideshare.net/Lhacha/anatomy-and-physiology-of-cornea
[21] B. S. Kowtharapu, K. Winter, C. Marfurt, et al., “Comparative quantitative assessment of the human corneal sub-basal nerve plexus by in vivo confocal microscopy and histological staining,” Eye, vol. 31, pp. 481—490, 2017.
[22] D. E. Laura, G. Cecilia Naranjo, C. Merry, et al. “Recovery of sub-basal nerve plexus and superficial nerve terminals after corneal epithelial injury in mice,” Exp. Eye. Res, vol. 171, pp. 92—100, 2018.
[23] “Sub-basal Nerve Plexus.” [Online]. Available: https://aibolita.com/eye-diseases/38894-subbasal-nerve-plexus.html
[24] 陳昱彤, “Animal eye models using full-field optical coherence tomography,” 國立臺灣大學, 2018.
[25] C. Si, L. Xinyu, W. Nanshuo, et al., “Visualizing micro-anatomical structures of the posterior cornea with micro-optical coherence tomography,” Sci. Rep., vol. 7, no. 1, pp. 10752, 2017.
[26] G. Kate, G. Djida, G. Cristina, et al. “Stromal striae: a new insight into corneal physiology and mechanics,” Sci. Rep., vol. 7, no. 1, pp. 13584, 2017.
[27] B. Michael, C. A. Daniel, F. Maryam, et al., “Corneal nerve fiber size adds utility to the diagnosis and assessment of therapeutic response in patients with small fiber neuropathy,” Sci. Rep., vol. 8, no. 1, pp. 4734, 2018.
[28] M. H. Longair, et al. “Simple Neurite Tracer: open source software for reconstruction, visualization and analysis of neuronal processes,” Bioinformatics, vol. 27, pp. 769—773, 2006.
[29] G. Pedro, W. Jeffrey, and R. Alfredo, “A Fast and efficient technique for the automatic tracing of corneal nerves in confocal microscopy,” Transl. Vis. Sci. Technol., vol. 5, no. 5, 2016.
[30] F. Merle, S. S. Mittanamalli, S. S. Virender, et al., “Amniotic membrane transplantation for ocular surface reconstruction,” Cornea, vol. 24, pp. 643—653, 2005.
[31] S. Jun, A. Masayo, G. Eiki, et al., “Transplantation of human limbal epithelium cultivated on amniotic membrane for the treatment of severe ocular surface disorder,” Opthalmol., vol. 109, pp. 1285—1290, 2002.
[32] D. Lauren, M. F. Carl, “Age-related changes in rat corneal epithelial nerve density,” Invest. Ophthalmol. Vis, Sci., vol. 49, pp. 910—916, 2008.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73601-
dc.description.abstract在角膜的研究上,建構高解析三維影像,能為診斷角膜疾病、辨識不同角膜組織細胞形態提供更完整的資訊,像是由準確分層的角膜縱平面來計算各層厚度,以提供角膜水腫診斷參數。此外,角膜為高密度神經支配組織,角膜神經形態的改變與多種神經疾病有關,像是糖尿病在早期階段會出現外圍神經數量的減少,因此定量角膜神經形態參數為早期診斷提供重大的幫助。
在本研究中,以等向性之微米級空間解析度的可見光Ce3+:YAG自發輻射與近紅外光Ti:sapphire放大自發輻射兩套光源之全域式光學同調斷層掃描術來展示二維平面及三維立體空間中角膜各層及體外培養細胞的結構,且比較角膜各層組織在不同中心波長下的光學特性。此外,本系統具備大面積掃描能力,藉由拼接相鄰三維影像來重建大範圍的可視區域。
利用高空間解析度的優勢提出以立體影像來解決基質神經斜向生長在定量上的爭議,並且將其應用在可見光系統活體大鼠基質神經定量上,而神經形態參數定量結果為: 寬度 、厚度 且可得知基質神經為具有0.87橢圓率似皮帶狀(belt-like)結構。此外藉由可見光與近紅外光系統檢體小鼠角膜實驗,驗證兩系統在定量亞基底神經形態參數的可行性,而神經形態參數定量結果分別為: 神經密度 、直徑 、扭曲度 ;神經密度 、直徑 、扭曲度 。
在探討角膜上皮細胞的癒合、眼輪部上皮細胞與神經三者之間的關係,藉由OCT非侵入掃描、快速成像的特性,提供神經母細胞瘤細胞株(Neuro-2A cell line)與眼輪部上皮細胞共同培養實驗的高空間解析度的立體影像,且辨識多面相的細胞團塊以及和眼輪部上皮細胞結構明顯不同的神經細胞,也在Neuro-2A細胞與眼輪部上皮細胞培養於羊膜基底實驗,利用高解析度的縱平面分別辨識出Neuro-2A細胞向外延伸的神經突觸及眼輪部上皮細胞的三層細胞結構。
zh_TW
dc.description.abstractConstruct clear delineation of corneal three-dimensional, en-face and cross sectional imaging provide more complete information to accurate diagnosis of corneal pathology and morphological identification of different corneal layers. Changes in corneal neuromorphic parameters are associated with ocular diseases. Thus, more precise technologies for analyzing innervation architecture of the cornea will be required.
Here we develop Ce3+:YAG and Ti:sapphire light source full-field optical coherence tomography (FF-OCT) systems with isotropic micron spatial resolution in en-face and cross sectional views. Our systems also provide wide area scanning to reconstruct large field of view by stitching tomograms side by side. We think of a new three-dimensional concept to deal with wide range quantitative results of oblique stromal nerve. Otherwise, we applied this method on in vivo rat stromal image and got quantitative results in corneal nerve width and thickness of 17.9(2.5) and 2.2(0.2), respectively. With high spatial resolution we could quantify more reliable neuromorphic parameters of sub-basal nerve plexus. Ex vivo mouse quantitative results of corneal nerve density, diameter and tortuosity were 28.85(1.2), 1.29(0.06), 0.029(0.002) and 9.73(2.44), 1.52(0.02), 0.014(0.005), respectively, from Ce3+:YAG and Ti:sapphire system.
OCT as a novel approach to assess cellular activity nondestructively. We observed different types cell colonies and nerve cells from Neuro-2A cell and limbal epithelial cell co-culture system. Moreover, we identify neurite of Neuro-2A cell and three layer structures in limbal epithelium on amniotic substrate.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:06:38Z (GMT). No. of bitstreams: 1
ntu-108-R06941031-1.pdf: 61592056 bytes, checksum: 63187f6082f09cba69d373b0873f1135 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
第二章 Mirau-based 全域式光學同調斷層掃描術及角膜結構介紹 3
2.1 OCT基本原理 3
2.2 Mirau-based 全域式OCT系統 11
2.2.1 系統簡介 11
2.2.2 影像處理 19
2.2.3 系統橫向及縱向解析度 22
2.2.4 系統干涉效率與訊雜比實驗及模擬 25
2.3 角膜結構介紹 32
第三章 Sprague Dawley活體大鼠角膜量測與分析 35
3.1 In vivo正常大鼠角膜量測與分析 35
3.1.1 In vivo大鼠量測方法 35
3.1.2 可見光與近紅外光源掃描大鼠角膜影像結果之分析 36
3.2 大鼠角膜神經影像定量分析 46
第四章 FVB檢體小鼠角膜量測與分析 50
4.1 Ex vivo正常小鼠角膜影像量測與分析 50
4.1.1 Ex vivo小鼠樣本製備與量測方法 50
4.1.2 可見光與近紅外光源掃描小鼠角膜影像結果之分析 51
4.2 小鼠角膜神經影像定量分析 61
第五章 In vitro細胞三維高解析度影像量測 73
5.1 Neuro-2A與眼輪部上皮細胞共同培養之量測 73
5.1.1 樣本製備及量測方法 73
5.1.2 Neuro-2A與眼輪部上皮細胞共同培養影像量測結果 74
5.2 Neuro-2A細胞與羊膜基底之量測 81
5.2.1 樣本製備及量測方法 81
5.2.2 Neuro-2A細胞與羊膜基底影像量測結果 81
5.3 眼輪部上皮細胞與羊膜基底之量測 85
5.3.1 樣本製備及量測方法 85
5.3.2 眼輪部上皮細胞與羊膜基底影像量測結果 85
第六章 結論與未來展望 88
6.1 結論 88
6.2 未來展望 92
參考文獻 93
附錄 97
dc.language.isozh-TW
dc.subject細胞團塊zh_TW
dc.subject全域式光學同調斷層掃描術zh_TW
dc.subject角膜zh_TW
dc.subject神經疾病zh_TW
dc.subject神經形態參數zh_TW
dc.subject共同培養zh_TW
dc.subject神經母細胞瘤細胞株zh_TW
dc.subject眼輪部上皮細胞層zh_TW
dc.subjectnerve diseaseen
dc.subjectcell colonyen
dc.subjectNeuro-2Aen
dc.subjectco-cultureen
dc.subjectneuromorphic parametersen
dc.subjectfull-field optical coherence tomographyen
dc.subjectcorneaen
dc.subjectlimbal epitheliumen
dc.title全域式光學同調斷層掃描術用於角膜神經影像分析zh_TW
dc.titleAnalysis of Corneal Nerve Image by Using Full-field Optical Coherence Tomographyen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳偉勵,王致恬,蔡佳穎
dc.subject.keyword全域式光學同調斷層掃描術,角膜,神經疾病,神經形態參數,共同培養,神經母細胞瘤細胞株,眼輪部上皮細胞層,細胞團塊,zh_TW
dc.subject.keywordfull-field optical coherence tomography,cornea,nerve disease,neuromorphic parameters,co-culture,Neuro-2A,limbal epithelium,cell colony,en
dc.relation.page99
dc.identifier.doi10.6342/NTU201903899
dc.rights.note有償授權
dc.date.accepted2019-08-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
60.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved