Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73597
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姜至剛(Chih-Kang Chiang)
dc.contributor.authorYung-Han Chengen
dc.contributor.author鄭詠翰zh_TW
dc.date.accessioned2021-06-17T08:06:34Z-
dc.date.available2024-08-27
dc.date.copyright2019-08-27
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citation1. Orr, W.C. and Sohal, R.S., Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science, 1994. 263(5150): 1128-1130.
2. Hayflick, L. and Moorhead, P.S., The serial cultivation of human diploid cell strains. Experimental Cell Research, 1961. 25(3): 585-621.
3. Inouye, S.K., Studenski, S., Tinetti, M.E., and Kuchel, G.A., Geriatric syndromes: clinical, research, and policy implications of a core geriatric concept. Journal of the American Geriatrics Society, 2007. 55(5): 780-791.
4. Stenvinkel, P., Carrero, J.J., von Walden, F., Ikizler, T.A., and Nader, G.A., Muscle wasting in end-stage renal disease promulgates premature death: established, emerging and potential novel treatment strategies. Nephrology Dialysis Transplantation, 2015. 31(7): 1070-1077.
5. Souza, V.A., Oliveira, D., Barbosa, S.R., Correa, J., Colugnati, F.A.B., Mansur, H.N., Fernandes, N., and Bastos, M.G., Sarcopenia in patients with chronic kidney disease not yet on dialysis: Analysis of the prevalence and associated factors. PLoS One, 2017. 12(4): e0176230.
6. Shafiee, G., Keshtkar, A., Soltani, A., Ahadi, Z., Larijani, B., and Heshmat, R., Prevalence of sarcopenia in the world: a systematic review and meta- analysis of general population studies. J Diabetes Metab Disord, 2017. 16: 21.
7. Marzetti, E., Calvani, R., Tosato, M., Cesari, M., Di Bari, M., Cherubini, A., Collamati, A., D'Angelo, E., Pahor, M., Bernabei, R., and Landi, F., Sarcopenia: an overview. Aging Clin Exp Res, 2017. 29(1): 11-17.
8. Rosenberg, I.H., Summary comments. The American Journal of Clinical Nutrition, 1989. 50(5): 1231-1233.
9. Morley, J.E., Abbatecola, A.M., Argiles, J.M., Baracos, V., Bauer, J., Bhasin, S., Cederholm, T., Coats, A.J., Cummings, S.R., Evans, W.J., Fearon, K., Ferrucci, L., Fielding, R.A., Guralnik, J.M., Harris, T.B., Inui, A., Kalantar-Zadeh, K., Kirwan, B.A., Mantovani, G., Muscaritoli, M., Newman, A.B., Rossi-Fanelli, F., Rosano, G.M., Roubenoff, R., Schambelan, M., Sokol, G.H., Storer, T.W., Vellas, B., von Haehling, S., Yeh, S.S., and Anker, S.D., Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc, 2011. 12(6): 403-409.
10. Brown, J.C., Harhay, M.O., and Harhay, M.N., Sarcopenia and mortality among a population-based sample of community-dwelling older adults. Journal of cachexia, sarcopenia and muscle, 2016. 7(3): 290-298.
11. Janssen, I., Influence of sarcopenia on the development of physical disability: the Cardiovascular Health Study. J Am Geriatr Soc, 2006. 54(1): 56-62.
12. Welle, S., Thornton, C., Jozefowicz, R., and Statt, M., Myofibrillar protein synthesis in young and old men. Am J Physiol, 1993. 264(5 Pt 1): E693-698.
13. Chondrogianni, N., Petropoulos, I., Franceschi, C., Friguet, B., and Gonos, E.S., Fibroblast cultures from healthy centenarians have an active proteasome. Exp Gerontol, 2000. 35(6-7): 721-728.
14. Sakellariou, G.K., Vasilaki, A., Palomero, J., Kayani, A., Zibrik, L., McArdle, A., and Jackson, M.J., Studies of mitochondrial and nonmitochondrial sources implicate nicotinamide adenine dinucleotide phosphate oxidase(s) in the increased skeletal muscle superoxide generation that occurs during contractile activity. Antioxid Redox Signal, 2013. 18(6): 603-621.
15. Shefer, G., Van de Mark, D.P., Richardson, J.B., and Yablonka-Reuveni, Z., Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol, 2006. 294(1): 50-66.
16. Maggio, M., Lauretani, F., and Ceda, G.P., Sex hormones and sarcopenia in older persons. Curr Opin Clin Nutr Metab Care, 2013. 16(1): 3-13.
17. Fagiolo, U., Cossarizza, A., Scala, E., Fanales-Belasio, E., Ortolani, C., Cozzi, E., Monti, D., Franceschi, C., and Paganelli, R., Increased cytokine production in mononuclear cells of healthy elderly people. Eur J Immunol, 1993. 23(9): 2375-2378.
18. Swallow, E.B., Reyes, D., Hopkinson, N.S., Man, W.D.C., Porcher, R., Cetti, E.J., Moore, A.J., Moxham, J., and Polkey, M.I., Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax, 2007. 62(2): 115-120.
19. Moorthi, R.N. and Avin, K.G., Clinical relevance of sarcopenia in chronic kidney disease. Current opinion in nephrology and hypertension, 2017. 26(3): 219-228.
20. Enoki, Y., Watanabe, H., Arake, R., Sugimoto, R., Imafuku, T., Tominaga, Y., Ishima, Y., Kotani, S., Nakajima, M., Tanaka, M., Matsushita, K., Fukagawa, M., Otagiri, M., and Maruyama, T., Indoxyl sulfate potentiates skeletal muscle atrophy by inducing the oxidative stress-mediated expression of myostatin and atrogin-1. Scientific Reports, 2016. 6: 32084.
21. Jheng, J.R., Chen, Y.S., Ao, U.I., Chan, D.C., Huang, J.W., Hung, K.Y., Tarng, D.C., and Chiang, C.K., The double-edged sword of endoplasmic reticulum stress in uremic sarcopenia through myogenesis perturbation. J Cachexia Sarcopenia Muscle, 2018. 9(3): 570-584.
22. Kaasik, P., Umnova, M., Pehme, A., Alev, K., Aru, M., Selart, A., and Seene, T., Ageing and dexamethasone associated sarcopenia: peculiarities of regeneration. J Steroid Biochem Mol Biol, 2007. 105(1-5): 85-90.
23. Nguyen, N.-U.-N. and Wang, H.-V., Dual roles of palladin protein in in vitro myogenesis: inhibition of early induction but promotion of myotube maturation. PloS one, 2015. 10(4): e0124762-e0124762.
24. Chal, J. and Pourquié, O., Making muscle: skeletal myogenesis in vivo and in vitro. Development, 2017. 144(12): 2104-2122.
25. Kim, K.M., Jang, H.C., and Lim, S., Differences among skeletal muscle mass indices derived from height-, weight-, and body mass index-adjusted models in assessing sarcopenia. The Korean journal of internal medicine, 2016. 31(4): 643-650.
26. Jespersen, J.G., Nedergaard, A., Reitelseder, S., Mikkelsen, U.R., Dideriksen, K.J., Agergaard, J., Kreiner, F., Pott, F.C., Schjerling, P., and Kjaer, M., Activated Protein Synthesis and Suppressed Protein Breakdown Signaling in Skeletal Muscle of Critically Ill Patients. PLOS ONE, 2011. 6(3): e18090.
27. Anthony, T.G., Mechanisms of protein balance in skeletal muscle. Domestic animal endocrinology, 2016. 56 Suppl(Suppl): S23-S32.
28. Velloso, C.P., Regulation of muscle mass by growth hormone and IGF-I. British journal of pharmacology, 2008. 154(3): 557-568.
29. Sandri, M., Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol, 2013. 45(10): 2121-2129.
30. Bodine, S.C. and Baehr, L.M., Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab, 2014. 307(6): E469-484.
31. Fry, C.S., Lee, J.D., Mula, J., Kirby, T.J., Jackson, J.R., Liu, F., Yang, L., Mendias, C.L., Dupont-Versteegden, E.E., McCarthy, J.J., and Peterson, C.A., Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med, 2015. 21(1): 76-80.
32. Brack, A.S., Conboy, M.J., Roy, S., Lee, M., Kuo, C.J., Keller, C., and Rando, T.A., Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science, 2007. 317(5839): 807-810.
33. Roberts, A.B., McCune, B.K., and Sporn, M.B., TGF-beta: regulation of extracellular matrix. Kidney Int, 1992. 41(3): 557-559.
34. Mendias, C.L., Gumucio, J.P., Davis, M.E., Bromley, C.W., Davis, C.S., and Brooks, S.V., Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle & nerve, 2012. 45(1): 55-59.
35. Branton, M.H. and Kopp, J.B., TGF-beta and fibrosis. Microbes Infect, 1999. 1(15): 1349-1365.
36. Travis, M.A. and Sheppard, D., TGF-β activation and function in immunity. Annual review of immunology, 2014. 32: 51-82.
37. Roberts, A.B., Anzano, M.A., Wakefield, L.M., Roche, N.S., Stern, D.F., and Sporn, M.B., Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci U S A, 1985. 82(1): 119-123.
38. Watabe, T. and Miyazono, K., Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res, 2009. 19(1): 103-115.
39. Travis, M.A. and Sheppard, D., TGF-beta activation and function in immunity. Annu Rev Immunol, 2014. 32: 51-82.
40. Massague, J., TGFbeta in Cancer. Cell, 2008. 134(2): 215-230.
41. Yadav, H., Quijano, C., Kamaraju, A.K., Gavrilova, O., Malek, R., Chen, W., Zerfas, P., Zhigang, D., Wright, E.C., Stuelten, C., Sun, P., Lonning, S., Skarulis, M., Sumner, A.E., Finkel, T., and Rane, S.G., Protection from obesity and diabetes by blockade of TGF-beta/Smad3 signaling. Cell Metab, 2011. 14(1): 67-79.
42. Yamada, Y., Miyauchi, A., Goto, J., Takagi, Y., Okuizumi, H., Kanematsu, M., Hase, M., Takai, H., Harada, A., and Ikeda, K., Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Miner Res, 1998. 13(10): 1569-1576.
43. Gordon, K.J. and Blobe, G.C., Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta, 2008. 1782(4): 197-228.
44. Ciacci, C., Lind, S.E., and Podolsky, D.K., Transforming growth factor beta regulation of migration in wounded rat intestinal epithelial monolayers. Gastroenterology, 1993. 105(1): 93-101.
45. Wang, H., Radjendirane, V., Wary, K.K., and Chakrabarty, S., Transforming growth factor beta regulates cell-cell adhesion through extracellular matrix remodeling and activation of focal adhesion kinase in human colon carcinoma Moser cells. Oncogene, 2004. 23(32): 5558-5561.
46. Dean, R.G., Balding, L.C., Candido, R., Burns, W.C., Cao, Z., Twigg, S.M., and Burrell, L.M., Connective tissue growth factor and cardiac fibrosis after myocardial infarction. J Histochem Cytochem, 2005. 53(10): 1245-1256.
47. Meng, X.M., Tang, P.M., Li, J., and Lan, H.Y., TGF-beta/Smad signaling in renal fibrosis. Front Physiol, 2015. 6: 82.
48. Meng, X.-m., Nikolic-Paterson, D.J., and Lan, H.Y., TGF-β: the master regulator of fibrosis. Nature Reviews Nephrology, 2016. 12: 325.
49. Li, Y., Foster, W., Deasy, B.M., Chan, Y., Prisk, V., Tang, Y., Cummins, J., and Huard, J., Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathol, 2004. 164(3): 1007-1019.
50. Accornero, F., Kanisicak, O., Tjondrokoesoemo, A., Attia, A.C., McNally, E.M., and Molkentin, J.D., Myofiber-specific inhibition of TGFbeta signaling protects skeletal muscle from injury and dystrophic disease in mice. Hum Mol Genet, 2014. 23(25): 6903-6915.
51. Henningsen, J., Rigbolt, K.T.G., Blagoev, B., Pedersen, B.K., and Kratchmarova, I., Dynamics of the skeletal muscle secretome during myoblast differentiation. Molecular & cellular proteomics : MCP, 2010. 9(11): 2482-2496.
52. Johnstone, R.M., Adam, M., Hammond, J.R., Orr, L., and Turbide, C., Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem, 1987. 262(19): 9412-9420.
53. Febbraio, M.A., Hiscock, N., Sacchetti, M., Fischer, C.P., and Pedersen, B.K., Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes, 2004. 53(7): 1643-1648.
54. Banzet, S., Koulmann, N., Simler, N., Sanchez, H., Chapot, R., Serrurier, B., Peinnequin, A., and Bigard, X., Control of gluconeogenic genes during intense/prolonged exercise: hormone-independent effect of muscle-derived IL-6 on hepatic tissue and PEPCK mRNA. J Appl Physiol (1985), 2009. 107(6): 1830-1839.
55. Cairns, D.M., Lee, P.G., Uchimura, T., Seufert, C.R., Kwon, H., and Zeng, L., The role of muscle cells in regulating cartilage matrix production. J Orthop Res, 2010. 28(4): 529-536.
56. Hamrick, M.W., The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. BoneKEy reports, 2012. 1: 60-60.
57. Fruhbeis, C., Helmig, S., Tug, S., Simon, P., and Kramer-Albers, E.M., Physical exercise induces rapid release of small extracellular vesicles into the circulation. J Extracell Vesicles, 2015. 4: 28239.
58. Wolfers, J., Lozier, A., Raposo, G., Regnault, A., Thery, C., Masurier, C., Flament, C., Pouzieux, S., Faure, F., Tursz, T., Angevin, E., Amigorena, S., and Zitvogel, L., Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med, 2001. 7(3): 297-303.
59. Zitvogel, L., Regnault, A., Lozier, A., Wolfers, J., Flament, C., Tenza, D., Ricciardi-Castagnoli, P., Raposo, G., and Amigorena, S., Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med, 1998. 4(5): 594-600.
60. van Niel, G., Raposo, G., Candalh, C., Boussac, M., Hershberg, R., Cerf-Bensussan, N., and Heyman, M., Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology, 2001. 121(2): 337-349.
61. Blanchard, N., Lankar, D., Faure, F., Regnault, A., Dumont, C., Raposo, G., and Hivroz, C., TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol, 2002. 168(7): 3235-3241.
62. Raposo, G., Nijman, H.W., Stoorvogel, W., Liejendekker, R., Harding, C.V., Melief, C.J., and Geuze, H.J., B lymphocytes secrete antigen-presenting vesicles. J Exp Med, 1996. 183(3): 1161-1172.
63. Akers, J.C., Gonda, D., Kim, R., Carter, B.S., and Chen, C.C., Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol, 2013. 113(1): 1-11.
64. Bebelman, M.P., Smit, M.J., Pegtel, D.M., and Baglio, S.R., Biogenesis and function of extracellular vesicles in cancer. Pharmacol Ther, 2018. 188: 1-11.
65. Maas, S.L.N., Breakefield, X.O., and Weaver, A.M., Extracellular Vesicles: Unique Intercellular Delivery Vehicles. Trends in Cell Biology, 2017. 27(3): 172-188.
66. Gonda, A., Kabagwira, J., Senthil, G.N., and Wall, N.R., Internalization of Exosomes through Receptor-Mediated Endocytosis. Mol Cancer Res, 2019. 17(2): 337-347.
67. Wagner, K.U., Krempler, A., Qi, Y., Park, K., Henry, M.D., Triplett, A.A., Riedlinger, G., Rucker, I.E., and Hennighausen, L., Tsg101 is essential for cell growth, proliferation, and cell survival of embryonic and adult tissues. Mol Cell Biol, 2003. 23(1): 150-162.
68. Lopez-Verrilli, M.A., Picou, F., and Court, F.A., Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia, 2013. 61(11): 1795-1806.
69. Mu, W., Rana, S., and Zoller, M., Host matrix modulation by tumor exosomes promotes motility and invasiveness. Neoplasia, 2013. 15(8): 875-887.
70. Mittelbrunn, M., Gutiérrez-Vázquez, C., Villarroya-Beltri, C., González, S., Sánchez-Cabo, F., González, M.Á., Bernad, A., and Sánchez-Madrid, F., Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications, 2011. 2: 282.
71. Qazi, K.R., Gehrmann, U., Domange Jordo, E., Karlsson, M.C., and Gabrielsson, S., Antigen-loaded exosomes alone induce Th1-type memory through a B-cell-dependent mechanism. Blood, 2009. 113(12): 2673-2683.
72. Buschow, S.I., Nolte-'t Hoen, E.N., van Niel, G., Pols, M.S., ten Broeke, T., Lauwen, M., Ossendorp, F., Melief, C.J., Raposo, G., Wubbolts, R., Wauben, M.H., and Stoorvogel, W., MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic, 2009. 10(10): 1528-1542.
73. Al-Nedawi, K., Meehan, B., Kerbel, R.S., Allison, A.C., and Rak, J., Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc Natl Acad Sci U S A, 2009. 106(10): 3794-3799.
74. Hoshino, A., Costa-Silva, B., Shen, T.L., Rodrigues, G., Hashimoto, A., Tesic Mark, M., Molina, H., Kohsaka, S., Di Giannatale, A., Ceder, S., Singh, S., Williams, C., Soplop, N., Uryu, K., Pharmer, L., King, T., Bojmar, L., Davies, A.E., Ararso, Y., Zhang, T., Zhang, H., Hernandez, J., Weiss, J.M., Dumont-Cole, V.D., Kramer, K., Wexler, L.H., Narendran, A., Schwartz, G.K., Healey, J.H., Sandstrom, P., Labori, K.J., Kure, E.H., Grandgenett, P.M., Hollingsworth, M.A., de Sousa, M., Kaur, S., Jain, M., Mallya, K., Batra, S.K., Jarnagin, W.R., Brady, M.S., Fodstad, O., Muller, V., Pantel, K., Minn, A.J., Bissell, M.J., Garcia, B.A., Kang, Y., Rajasekhar, V.K., Ghajar, C.M., Matei, I., Peinado, H., Bromberg, J., and Lyden, D., Tumour exosome integrins determine organotropic metastasis. Nature, 2015. 527(7578): 329-335.
75. Kucharzewska, P., Christianson, H.C., Welch, J.E., Svensson, K.J., Fredlund, E., Ringner, M., Morgelin, M., Bourseau-Guilmain, E., Bengzon, J., and Belting, M., Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc Natl Acad Sci U S A, 2013. 110(18): 7312-7317.
76. Vella, L.J., Hill, A.F., and Cheng, L., Focus on Extracellular Vesicles: Exosomes and Their Role in Protein Trafficking and Biomarker Potential in Alzheimer's and Parkinson's Disease. Int J Mol Sci, 2016. 17(2): 173.
77. Kim, S., Lee, M.J., Choi, J.Y., Park, D.H., Kwak, H.B., Moon, S., Koh, J.W., Shin, H.K., Ryu, J.K., Park, C.S., Park, J.H., and Kang, J.H., Roles of Exosome-Like Vesicles Released from Inflammatory C2C12 Myotubes: Regulation of Myocyte Differentiation and Myokine Expression. Cell Physiol Biochem, 2018. 48(5): 1829-1842.
78. Lin, S. and Gregory, R.I., MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer, 2015. 15: 321.
79. Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2): 215-233.
80. Fabian, M.R., Sonenberg, N., and Filipowicz, W., Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem, 2010. 79: 351-379.
81. Zhang, A., Li, M., Wang, B., Klein, J.D., Price, S.R., and Wang, X.H., miRNA-23a/27a attenuates muscle atrophy and renal fibrosis through muscle-kidney crosstalk. J Cachexia Sarcopenia Muscle, 2018. 9(4): 755-770.
82. Wang, X.H., Hu, Z., Klein, J.D., Zhang, L., Fang, F., and Mitch, W.E., Decreased miR-29 Suppresses Myogenesis in CKD. Journal of the American Society of Nephrology, 2011. 22(11): 2068.
83. Lovett, J.A.C., Durcan, P.J., and Myburgh, K.H., Investigation of Circulating Extracellular Vesicle MicroRNA Following Two Consecutive Bouts of Muscle-Damaging Exercise. Frontiers in Physiology, 2018. 9(1149).
84. Inder, K.L., Ruelcke, J.E., Petelin, L., Moon, H., Choi, E., Rae, J., Blumenthal, A., Hutmacher, D., Saunders, N.A., Stow, J.L., Parton, R.G., and Hill, M.M., Cavin-1/PTRF alters prostate cancer cell-derived extracellular vesicle content and internalization to attenuate extracellular vesicle-mediated osteoclastogenesis and osteoblast proliferation. J Extracell Vesicles, 2014. 3.
85. Willms, E., Johansson, H.J., Mäger, I., Lee, Y., Blomberg, K.E.M., Sadik, M., Alaarg, A., Smith, C.I.E., Lehtiö, J., El Andaloussi, S., Wood, M.J.A., and Vader, P., Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports, 2016. 6: 22519.
86. Andreu, Z. and Yanez-Mo, M., Tetraspanins in extracellular vesicle formation and function. Front Immunol, 2014. 5: 442.
87. Gumucio, J.P. and Mendias, C.L., Atrogin-1, MuRF-1, and sarcopenia. Endocrine, 2013. 43(1): 12-21.
88. Mahdy, M.A.A., Glycerol-induced injury as a new model of muscle regeneration. Cell Tissue Res, 2018. 374(2): 233-241.
89. Baehr, L.M., Furlow, J.D., and Bodine, S.C., Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol, 2011. 589(Pt 19): 4759-4776.
90. Sato, E., Mori, T., Mishima, E., Suzuki, A., Sugawara, S., Kurasawa, N., Saigusa, D., Miura, D., Morikawa-Ichinose, T., Saito, R., Oba-Yabana, I., Oe, Y., Kisu, K., Naganuma, E., Koizumi, K., Mokudai, T., Niwano, Y., Kudo, T., Suzuki, C., Takahashi, N., Sato, H., Abe, T., Niwa, T., and Ito, S., Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease. Scientific Reports, 2016. 6: 36618.
91. Gardner, S., Alzhanov, D., Knollman, P., Kuninger, D., and Rotwein, P., TGF-β inhibits muscle differentiation by blocking autocrine signaling pathways initiated by IGF-II. Molecular endocrinology (Baltimore, Md.), 2011. 25(1): 128-137.
92. Fahal, I.H., Uraemic sarcopenia: aetiology and implications. Nephrology Dialysis Transplantation, 2013. 29(9): 1655-1665.
93. Gardner, S., Alzhanov, D., Knollman, P., Kuninger, D., and Rotwein, P., TGF-beta inhibits muscle differentiation by blocking autocrine signaling pathways initiated by IGF-II. Mol Endocrinol, 2011. 25(1): 128-137.
94. Furrer, R., Eisele, P.S., Schmidt, A., Beer, M., and Handschin, C., Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP. Scientific Reports, 2017. 7: 40789.
95. Liu, D., Black, B.L., and Derynck, R., TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev, 2001. 15(22): 2950-2966.
96. Abrigo, J., Rivera, J.C., Simon, F., Cabrera, D., and Cabello-Verrugio, C., Transforming growth factor type beta (TGF-beta) requires reactive oxygen species to induce skeletal muscle atrophy. Cell Signal, 2016. 28(5): 366-376.
97. Edstrom, E., Altun, M., Hagglund, M., and Ulfhake, B., Atrogin-1/MAFbx and MuRF1 are downregulated in aging-related loss of skeletal muscle. J Gerontol A Biol Sci Med Sci, 2006. 61(7): 663-674.
98. Xu, M., Chen, X., Chen, D., Yu, B., and Huang, Z., FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. Oncotarget, 2017. 8(6): 10662-10674.
99. Zhang, Y.E., Non-Smad pathways in TGF-beta signaling. Cell Res, 2009. 19(1): 128-139.
100. Pomies, P., Blaquiere, M., Maury, J., Mercier, J., Gouzi, F., and Hayot, M., Involvement of the FoxO1/MuRF1/Atrogin-1 Signaling Pathway in the Oxidative Stress-Induced Atrophy of Cultured Chronic Obstructive Pulmonary Disease Myotubes. PLoS One, 2016. 11(8): e0160092.
101. Ojha, R. and Amaravadi, R.K., Targeting the unfolded protein response in cancer. Pharmacol Res, 2017. 120: 258-266.
102. Storm, M., Sheng, X., Arnoldussen, Y.J., and Saatcioglu, F., Prostate cancer and the unfolded protein response. Oncotarget, 2016. 7(33): 54051-54066.
103. Han, J. and Kaufman, R.J., The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res, 2016. 57(8): 1329-1338.
104. Lemus, L. and Goder, V., Regulation of Endoplasmic Reticulum-Associated Protein Degradation (ERAD) by Ubiquitin. Cells, 2014. 3(3): 824-847.
105. Sano, R. and Reed, J.C., ER stress-induced cell death mechanisms. Biochim Biophys Acta, 2013. 1833(12): 3460-3470.
106. Alter, J. and Bengal, E., Stress-induced C/EBP homology protein (CHOP) represses MyoD transcription to delay myoblast differentiation. PloS one, 2011. 6(12): e29498-e29498.
107. Cicchini, M., Karantza, V., and Xia, B., Molecular pathways: autophagy in cancer--a matter of timing and context. Clin Cancer Res, 2015. 21(3): 498-504.
108. Liu, W.J., Ye, L., Huang, W.F., Guo, L.J., Xu, Z.G., Wu, H.L., Yang, C., and Liu, H.F., p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cellular & molecular biology letters, 2016. 21: 29-29.
109. Sandri, M., Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. The international journal of biochemistry & cell biology, 2013. 45(10): 2121-2129.
110. Hsu, W.W., Wu, B., and Liu, W.R., Sirtuins 1 and 2 Are Universal Histone Deacetylases. ACS Chem Biol, 2016. 11(3): 792-799.
111. Finley, L.W.S. and Haigis, M.C., Metabolic regulation by SIRT3: implications for tumorigenesis. Trends in molecular medicine, 2012. 18(9): 516-523.
112. Chiu, H.C., Chiu, C.Y., Yang, R.S., Chan, D.C., Liu, S.H., and Chiang, C.K., Preventing muscle wasting by osteoporosis drug alendronate in vitro and in myopathy models via sirtuin-3 down-regulation. J Cachexia Sarcopenia Muscle, 2018. 9(3): 585-602.
113. Pardo, P.S. and Boriek, A.M., The physiological roles of Sirt1 in skeletal muscle. Aging, 2011. 3(4): 430-437.
114. Zhou, Y., Zhou, Z., Zhang, W., Hu, X., Wei, H., Peng, J., and Jiang, S., SIRT1 inhibits adipogenesis and promotes myogenic differentiation in C3H10T1/2 pluripotent cells by regulating Wnt signaling. Cell & bioscience, 2015. 5: 61-61.
115. Wang, B., Zhang, A., Wang, H., Klein, J.D., Tan, L., Wang, Z.-M., Du, J., Naqvi, N., Liu, B.-C., and Wang, X.H., miR-26a Limits Muscle Wasting and Cardiac Fibrosis through Exosome-Mediated microRNA Transfer in Chronic Kidney Disease. Theranostics, 2019. 9(7): 1864-1877.
116. Wang, H., Wang, B., Zhang, A., Hassounah, F., Seow, Y., Wood, M., Ma, F., Klein, J.D., Price, S.R., and Wang, X.H., Exosome-Mediated miR-29 Transfer Reduces Muscle Atrophy and Kidney Fibrosis in Mice. Mol Ther, 2019. 27(3): 571-583.
117. Gao, X., Zhao, J., Han, G., Zhang, Y., Dong, X., Cao, L., Wang, Q., Moulton, H.M., and Yin, H., Effective dystrophin restoration by a novel muscle-homing peptide-morpholino conjugate in dystrophin-deficient mdx mice. Mol Ther, 2014. 22(7): 1333-1341.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73597-
dc.description.abstract人口老化是現今社會一個重要的課題。臨床上甚至有一個領域專門針對老人常見的症狀。「跌倒」是老人常見的症狀之一,而容易跌倒的老人通常也患有「肌少症」。肌少症是指因為年齡或慢性病等因素導致的肌肉質量和力量降低。先前的研究已經提出dexamethasone(DEX)和indoxyl sulfate(IS)皆會導致肌少症。另外,肌少症患者常有肌肉修復能力低下以及肌肉纖維化的現象,而TGFβ1既是調控組織纖維化最常見的因子,也曾經被發現可以抑制肌肉的生長。另外,已知肌肉細胞分泌的胞外體會調控肌肉的生長,但尚未有研究提出胞外體在DEX, IS,和TGFβ1導致的肌肉分化抑制中是否皆扮演重要的角色。因此,本篇研究想要探討在DEX, IS,和TGFβ1的刺激下,肌肉細胞是否皆會透過胞外體調控肌肉的分化。從MHC的蛋白質表現,我們確認DEX, IS,和TGFβ1確實會導致C2C12細胞的肌肉分化受到抑制,但只有在整個分化過程中暴露TGFβ1所產生的胞外體(分化胞外體)會抑制C2C12肌肉分化 (MHC蛋白質表現減少1/3)。接著,我們也收取TGFβ1刺激的C2C12肌束分泌的胞外體(肌束胞外體),並分別加入分化中以及肌束時期的C2C12細胞,藉以深入探討胞外體在TGFβ1刺激的C2C12細胞中扮演的角色。結果顯示在C2C12分化中加入分化胞外體可以減少分化marker MyoG以及磷酸化FOXO1a的蛋白質表現達40~50%,但對C2C12肌束並沒有太大的影響。進一步分析分化胞外體的miRNA表現,發現TGFβ1分化胞外體中有15種miRNA下降,其中包含在肌肉中專一性表現的myomiR—miR1a, miR133, miR206等等。TGFβ1對C2C12肌束並沒有顯著的影響,但肌束胞外體加入分化中的C2C12細胞可增加其MHC的蛋白質表現;而加入C2C12肌束則可使其atrogin1表現下降40%。動物實驗方面,小鼠肌肉注射甘油可使肌肉受傷,並誘導受傷肌肉局部TGFβ1上升。綜合上述,胞外體可能是調控TGFβ1刺激下C2C12細胞分化的因子之一,而肌肉注射了甘油的小鼠可作為觀察TGFβ1導致之受傷後肌肉生成抑制的動物模式。zh_TW
dc.description.abstractNowadays, aging is one of the most serious problem around the world. Clinically, there is an area called “geriatrics” that focus on the specific syndromes of old people. Fall is one of the “geriatric syndromes” due to “sarcopenia”, the age-related loss of skeletal muscle. Our previous studies have indicated that both uremic toxin, indoxyl sulfate (IS), and glucocorticoid, dexamethasone (DEX), induce sarcopenia. In addition, impaired regeneration and excessive extracellular matrix (ECM) deposition in muscle are also observed in sarcopenic patients. It is previously stated that TGFβ1 is the master regulator of ECM production and TGFβ1 is also reported to impair myogenesis of skeletal muscle. Previous studies have indicated that extracellular vesicle (EV) secreted by myoblasts or myotubes can affect the myogenesis. However, whether or not the impact of EV is universal in myogenesis impairment induced by IS, DEX, TGFβ1 was still unclear. Therefore, in the present study, we aimed to investigate the roles of EV released from IS/DEX/TGFβ1-treated C2C12 myoblasts and myotubes. First, we confirmed that IS, DEX, TGFβ1 impaired myogenesis in C2C12, as the protein expression of myosin heavy chain (MHC) decreased by 2/3 to 4/5 compared to control. However, when treated C2C12 cells with conditioned myogenic EV throughout myogenesis only TGFβ1-conditioned myogenic EV had negative impact on C2C12 myogenesis, as the protein expression of MHC decreased by 1/3 compared to control. We focused on the effects of TGFβ1-conditioned EV by collecting myogenic EV and myotubular EV and treating them with C2C12 cells throughout myogenesis or at myotube stage. When C2C12 cells were incubated with TGFβ1-conditioned myogenic EV, the protein expression of myogenin (MyoG) and phosphorylated FOXO1a was 40%~50% less than control EV group. However, TGFβ1-conditioned myogenic EV had little effects on C2C12 myotube. EV miRNA analysis showed that 15 miRNAs reduced in TGFβ1-conditioned myogenic EV, among which contained muscle specific miRNA (myomiR), including miR1a, miR133, miR206, etc. TGFβ1 had little effects on C2C12 myotube. Nevertheless, when it comes to myotubular EV, it could increase MHC protein expression when incubated with C2C12 cells during myogenesis, and decrease protein expression atrogin1 when treated at C2C12 myotube stage. In addition, glycerol injection in soleus could injure skeletal muscle and induce TGFβ1 mRNA expression. In conclusion, EV might be a regulator of C2C12 myogenesis when treated with TGFβ1 and a mouse model with intramuscular injection of glycerol might be suitable to investigate TGFβ1-induced myogenesis impairment in vivo.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:06:34Z (GMT). No. of bitstreams: 1
ntu-108-R06447002-1.pdf: 3342774 bytes, checksum: ab80adf01eb64cb9435a86e04c5d70ec (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
Abbreviation VI
中文摘要 VIII
Abstract X
1 Introduction 1
1.1 The Aging Society 1
1.2 Sarcopenia 2
1.3 Skeletal Muscle Myogenesis 4
1.4 Transforming Growth Factor β (TGFβ) 7
1.5 Secretory Function of Skeletal Muscle 10
1.6 Extracellular Vesicle 11
2 Aims 15
3 Materials and Methods 16
3.1 Study design 16
3.1.1 Generation of myogenic EV 16
3.1.2 Generation of myotubular EV 16
3.1.3 The procedures of ultracentrifugation 17
3.1.4 TGFβ1-conditioned EV treatment throughout myogenesis 17
3.1.5 TGFβ1-conditioned EV treatment in myotube 17
3.1.6 Strategies of TGFβ1-conditioned EV treatment in C2C12 18
3.1.7 Animal model 18
3.2 Cell Culture 18
3.3 Extracellular Vesicle (EV) Collection 19
3.4 EV Labeling 20
3.5 EV Uptake 20
3.6 Western Blot 21
3.7 Antibodies 22
3.8 EV miRNA extraction and sequencing 24
3.9 Animal model 25
3.10 mRNA extraction, reverse transcription, RT-PCR, and quantitative real-time PCR 25
3.11 Statistical analyses 26
4 Results 27
4.1 DEX, IS, and TGFβ1 impaired C2C12 myogenesis 27
4.2 TGFβ1-conditioned myogenic EV could decrease MHC expression 27
4.3 The effects of TGFβ1-conditioned myogenic EV on C2C12 29
4.4 The miRNA profile of TGFβ1-conditioned EV 29
4.5 The effects of TGFβ1-conditioned myotubular EV on C2C12 myogenesis 30
4.6 Intramuscular injection of glycerol in mouse soleus could induce muscle injury and local TGFβ1 upregulation 30
5 Discussion 32
6 Conclusion 42
7 Future Perspectives 43
7.1 qPCR of miRNA in glycerol-injured mouse muscle and TGFβ1-conditioned C2C12 43
7.2 EV containing target miRNA 43
8 Reference 44
9 Figures 65
Figure 1 65
Figure 2 67
Figure 3 69
Figure 4 71
Figure 5 74
Figure 6 76
10 Table 77
Table 1. MicroRNA that has significant difference between Ctrl. and TGFβ1-conditioned EV 77
11 Supplementary Figure 78
Supplementary Figure 1 78
dc.language.isoen
dc.subject胞外體zh_TW
dc.subject肌少症zh_TW
dc.subjectTGFβ1zh_TW
dc.subject肌肉生成zh_TW
dc.subject萎縮zh_TW
dc.subjectmyogenesisen
dc.subjectsarcopeniaen
dc.subjectTGFβ1en
dc.subjectextracellular vesicleen
dc.subjectatrophyen
dc.titleTGFβ1 誘導之骨骼肌胞外體在肌肉分化中的角色zh_TW
dc.titleThe Roles of TGFβ1-conditioned C2C12 Extracellular
Vesicles in Myogenesis
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉興華(Shing-Hwa Liu),楊榮森(Rong-Sen Yang),邱振源(Chen-Yuan Chiu),許美鈴(Mei-Ling Sheu)
dc.subject.keyword肌少症,TGFβ1,肌肉生成,萎縮,胞外體,zh_TW
dc.subject.keywordsarcopenia,TGFβ1,myogenesis,atrophy,extracellular vesicle,en
dc.relation.page80
dc.identifier.doi10.6342/NTU201903150
dc.rights.note有償授權
dc.date.accepted2019-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved