Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73590
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳宇(Bing-Yu Chen)
dc.contributor.author"WANG, NAI-HUI"en
dc.contributor.author王乃卉zh_TW
dc.date.accessioned2021-06-17T08:06:27Z-
dc.date.available2029-08-15
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citation[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016.
[2] G. Adomavicius and Y. Kwon. Toward more diverse recommendations: Item reranking methods for recommender systems. In Workshop on Information Technologies and Systems. Citeseer, 2009.
[3] O. Barkan and N. Koenigstein. Item2vec: neural item embedding for collaborative filtering. In 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2016.
[4] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere. The million song dataset. In Proceedings of the 12th International Conference on Music Information Retrieval (ISMIR 2011), 2011.
[5] R. Burke. Hybrid recommender systems: Survey and experiments. User modeling and user-adapted interaction, 12(4):331–370, 2002.
[6] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.
[7] K. Choi, G. Fazekas, and M. Sandler. Automatic tagging using deep convolutional neural networks. arXiv preprint arXiv:1606.00298, 2016.
[8] K. Choi, G. Fazekas, M. Sandler, and K. Cho. Convolutional recurrent neural networks for music classification. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 2392–2396. IEEE, 2017.
[9] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289, 2015.
[10] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In Proceedings of the 26th international conference on world wide web, pages 173–182. International World Wide Web Conferences Steering Committee, 2017.
[11] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, volume 8, pages 263–272. Citeseer, 2008.
[12] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.
[13] M. Kaminskas and D. Bridge. Diversity, serendipity, novelty, and coverage: a survey and empirical analysis of beyond-accuracy objectives in recommender systems. ACM Transactions on Interactive Intelligent Systems (TiiS), 7(1):2, 2017.
[14] D. Kim, C. Park, J. Oh, S. Lee, and H. Yu. Convolutional matrix factorization for document context-aware recommendation. In Proceedings of the 10th ACM Conference on Recommender Systems, pages 233–240. ACM, 2016.
[15] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[16] K. Lang. Newsweeder: Learning to filter netnews. In Machine Learning Proceedings 1995, pages 331–339. Elsevier, 1995.
[17] M. Levy and K. Bosteels. Music recommendation and the long tail. In 1st Workshop On Music Recommendation And Discovery (WOMRAD), ACM RecSys, 2010, Barcelona, Spain. Citeseer, 2010.
[18] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara. Variational autoencoders for collaborative filtering. In Proceedings of the 2018 World Wide Web Conference, pages 689–698. International World Wide Web Conferences Steering Committee, 2018.
[19] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the twenty-fifth conference on uncertainty in artificial intelligence, pages 452–461. AUAI Press, 2009.
[20] S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th International Conference on World Wide Web, pages 111–112. ACM, 2015.
[21] S. Sigtia, E. Benetos, and S. Dixon. An end-to-end neural network for polyphonic piano music transcription. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(5):927–939, 2016.
[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of machine learning research, 15(1):1929–1958, 2014.
[23] A. Van den Oord, S. Dieleman, and B. Schrauwen. Deep content-based music recommendation. In Advances in neural information processing systems, pages 2643– 2651, 2013.
[24] H. Wang, N. Wang, and D.-Y. Yeung. Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining, pages 1235–1244. ACM, 2015.
[25] X. Wang and Y. Wang. Improving content-based and hybrid music recommendation using deep learning. In Proceedings of the 22nd ACM international conference on Multimedia, pages 627–636. ACM, 2014.
[26] Y. Wang, A. Kucukelbir, and D. M. Blei. Robust probabilistic modeling with bayesian data reweighting. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 3646–3655. JMLR. org, 2017.
[27] J. Wei, J. He, K. Chen, Y. Zhou, and Z. Tang. Collaborative filtering and deep learning based recommendation system for cold start items. Expert Systems with Applications, 69:29–39, 2017.
[28] Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-encoders for top-n recommender systems. In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pages 153–162. ACM, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73590-
dc.description.abstract隨著線上音樂服務的巨大成長,人們現在有管道可以接觸大量風格迴異的音樂。大部分的歌曲都是大眾不知道的,他們代表著長尾分布長長的尾巴。因此,推薦系統是人們挖掘新音樂很重要的工具,但是已提出的方法主要都專注在提升整體系統的準確率,這常常使得系統推薦熱門歌因為熱門歌的歷史聆聽紀錄比較多。對於樂迷來說這樣的推薦不實用,因為他們很可能已經聽過這些歌,或者因為品味不同而對熱門歌不感興趣。另一件有趣的事是冷門歌比較不容易吸引到聆聽者,但當吸引到聆聽者時他們會認為這些冷門歌品質比主流歌好。所以,推薦這些長尾中隱藏的鑽石可以促進使用者對系統的信心。
在推薦系統中對於新的使用者或商品沒有歷史紀錄而難以推薦的問題稱為冷啟動問題。通常要處理冷啟動需要有額外的內容資料。這篇論文中我們使用卷積遞歸神經網路提取音樂特徵,設計了一個基於內容的推薦模型,而後提出一種針對像音樂歷史資料這樣偏斜的資料集重新加權的方法應用在這個模型上。主要的想法是在訓練模型時提高冷門歌的的重要度,也就是給予他們較大的懲罰。我們實驗了所提出的基於內容推薦模型的架構以及重新加權方法的的設計,另外,我們也應用這個偏斜加權方法在其他幾個模型上,展示了它的效果不只在基於內容推薦模型,協同過濾模型混和模型也適用。實驗結果顯示,推薦系統採用我們所提出的重新加權方法後,對於較不有名的歌的推薦表現有了顯著的提升。
zh_TW
dc.description.abstractWith the enormous development of online music services, people nowadays have access to a massive amount of music covering a wide range of genres. Most of the music in the market are unknown to the public, representing the heavy tail in the long tail distribution. Therefore, recommender systems are an important tool for people to find new music that draws interest. However, the majority of methods proposed have focused on improving overall recommendation accuracy, which often leads to recommending hit songs since hit songs have more interaction data with users. This is not practical for music nerds because they are very likely to have heard of the hit songs, or even not interested in hit songs for they have different tastes. Another interesting thing is that as these niche songs are less likely to attract listeners, the ones they attract perceive the songs as higher quality than the mainstream songs. Thus, providing recommendations of the hidden gems in the long tail helps foster customer confidence.
It is called the cold start problem in recommendation system when only a little or no historical data available for new items/users. Typically additional content is needed to solve the cold start problem. In this work, we design a content-based model using a convolutional recurrent neural network (CRNN) to extract features from the audio file and then apply to it a reweighting method targeting skewed data that we proposed. The main idea is to raise the importance of lesser-known songs when training the model, in other words, to give larger penalties on them. We experiment with the architecture for our content-based model as well as the design of the reweighting function. Besides, we apply the reweighting method on other several models, demonstrating the effectiveness not only on content-based models but also collaborative filtering-based and hybrid ones. Experiments show that models with our proposed skew reweighting method significantly outperform those without reweighting on lesser-known songs.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:06:27Z (GMT). No. of bitstreams: 1
ntu-108-R05725008-1.pdf: 2769873 bytes, checksum: b709485c1ef2224f5e2a80c3bca9bc23 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Chapter 2 Related Work 8
2.1 Weighted Matrix Factorization . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Autoencoder for Collaborative Filtering . . . . . . . . . . . . . . . . . . 10
2.3 DeepMusic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 ConvMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Chapter 3 Proposed Method 16
3.1 Skew Reweighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Audio Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Network Structure for Content Model . . . . . . . . . . . . . . . . . . . 19
3.3.1 CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 CRNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Applying Reweighting to Different Models . . . . . . . . . . . . . . . . 23
3.4.1 Naive Content-Based Model . . . . . . . . . . . . . . . . . . . . 23
3.4.2 ConvMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 WMF and DeepMusic . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.4 Autoencoder for CF . . . . . . . . . . . . . . . . . . . . . . . . 26
Chapter 4 Experiments and Results 27
4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Evaluation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Measures of Accuracy . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Measures of Novelty . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Hyperparameters and Implementation Details . . . . . . . . . . . . . . . 32
4.4 Evaluation of Different Reweighting Function Designs . . . . . . . . . . 33
4.5 Ablation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.5.1 Usage of Additional FC layers in Naive Content-based Model . . 38
4.5.2 Network for Audio Feature Extraction . . . . . . . . . . . . . . . 38
4.5.3 Number of Parameters . . . . . . . . . . . . . . . . . . . . . . . 39
4.5.4 Activation Function . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 Evaluation of Different Models Using Proposed Reweighting . . . . . . . 41
4.6.1 CCS problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6.2 ICS problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Chapter 5 Conclusion and Future Work 45
Bibliography 47
dc.language.isoen
dc.subject音樂推薦zh_TW
dc.subject冷啟動zh_TW
dc.subject卷積遞歸神經網路zh_TW
dc.subject重新加權zh_TW
dc.subjectreweightingen
dc.subjectconvolutional recurrent neural networken
dc.subjectmusic recommendationen
dc.subjectcold starten
dc.title以偏態加權處理音樂推薦中的冷啟動問題zh_TW
dc.titleUsing Skew Reweighting to Deal with Cold Start in Music Recommendationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor張智星(Jyh-Shing Jang)
dc.contributor.oralexamcommittee李瑞庭(Anthony J.T. Lee)
dc.subject.keyword冷啟動,音樂推薦,卷積遞歸神經網路,重新加權,zh_TW
dc.subject.keywordcold start,music recommendation,convolutional recurrent neural network,reweighting,en
dc.relation.page51
dc.identifier.doi10.6342/NTU201903386
dc.rights.note有償授權
dc.date.accepted2019-08-20
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved