Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73578
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫在弘(Tzai-Hung Wen)
dc.contributor.authorYi-Huei Liuen
dc.contributor.author劉怡慧zh_TW
dc.date.accessioned2021-06-17T08:06:18Z-
dc.date.available2021-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citation林豐博、曾平毅、林國顯、蘇振維、張瓊文、鄭嘉盈、呂怡青、劉國慶、陳昭堯、王怡方 (2011) 2011年臺灣公路容量手冊,臺北:交通部運輸研究所。
李樹彬、吳建軍、高自友、林勇、傅白白 (2011) 基於複雜網絡的交通壅堵與過程動力學分析,物理學報,60(5):1-9。
臺北市政府產業發展局 (2019)。進入臺北科技走廊。https://www.doed.gov.taipei/News_Content.aspx?n=D8AA98C34376D153&sms=28BB6CC9248C1740&s=2CB1AD13CB600795 (擷取日期:2019.7.23)。
Bertrand, R. M., Willis, S. L., and Sayer, L. (2001) An evaluation of change over time in everyday cognitive competence among Alzheimer's patients. Aging, Neuropsychology, and Cognition, 8: 192−212.
Bian, C. Z., Yuan, C. W., Kuamg, W. B., and Wu, D. Y. (2016) Evaluation, classification, and influential factors analysis of traffic congestion in Chinese cities using the online map data. Mathematical Problems in Engineering, 2016: 1-10.
Billings, B. and Yang, J. S. (2006) Application of the ARIMA models to urban roadway travel time. Paper presented at the IEEE International Conference on Systems, Man and Cybernetics, Taipei, 2006, pp. 2529-2534.
Chow, A. H. F., Santacreu, A., Tsapakis, I., Tanasaranod, G., and Cheng, T. (2014) Empirical assessment of urban traffic congestion. Journal of Advanced Transportation, 48: 1000-1016.
Chu, Y. L. (2009) Work departure time analysis using dogit ordered generalized extreme value model. Transportation Research Record, 2132: 42-49.
Duque, J. C., Luc, A., and Sergio, J. R. (2012) The Max-P Regions Problem. Journal of Regional Science, 52: 397–419.
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. W. (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Paper presented in Proceedings of Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, pp. 226–231.
Fei, W. P., Song, G. H., Zang, J. R., Gao, Y., Sun, J. P., and Yu, L. (2016) Framework model for time-variant propagation speed and congestion boundary by incident on expressways. The Institution of Engineering and Technology, 11(1): 10-17.
Feng, H., Li, C., Zhao, N., and Hu, H. (2011) Modeling the impacts of related factors on traffic operation. Procedia Engineering, 12, 99–104.
Fitzpatrick, K., Carlson, P. J., Brewer, M., and Wooldridge, M. D. (2001) Design factors that affect driver speed on suburban arterials. Transportation Research Record,1751, Washington, DC.
Gadda, S., Kockelman, K. M., and Damien, P. (2018) Continuous departure time models. Transportation Research Record, 2132(1): 13-24.
Gordon, P., Kumar, A., and Richardson, H. W. (1989) The influence of metropolitan spatial structure on commuting time. Journal of Urban Economics, 26: 138–151.
Hahn, E., Chatterjee, A., Younger, M. S., Hahn, E., Chatterjee, A., and Younger, M. S. (2002) Macro-level analysis of factors related to area-wide highway traffic congestion. Transportation Research Record: Transportation Research Record, 1817: 11–16.
Handy, S., Cao, X., and Mokhtarian, P. (2005) Correlation or causality between the built environment and travel behavior? Evidence from northern California. Transportation Research Part D Transport and Environment, 10(6): 427–444.
Hasan, S., Choudhury, C. F., Ben-Akiva, M. E., and Emmonds, A. (2011) Modeling of travel time variations on urban links in London. Transportation Research Record: Journal of the Transportation Research Board, 2260(1): 1–7.
Hong, W. C. (2011) Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing, 74(12–13), 2096-2107.
Li, S. B., Fu, B. B., and Zheng, J. F. (2013) Dynamic analysis of traffic state and congestion propagation on bidirectional grid network. Discrete Dynamics in Nature and Society. 2013: 1-7.
Long, J.C., Gao, Z. Y., Ren, H. L. and Lian A. P. (2008) Urban traffic congestion propagation and bottleneck identification. Science in China Series F: Information Sciences, 51(7): 948-964.
Izraeli, O. and Mccarthy, T. R. (1985) Variations in travel distance, travel time and modal choice among SMSAs. Journal of Transport Economics and Policy, 19(2): 139–160.
Ji, Y. X., Luo, J. and Geroliminis, N. (2014) Empirical observations of congestion propagation and dynamic partitioning with probe data for large-scale systems. Transportation Research Record: Journal of the Transportation Research Board, 2422(2): 1-11.
Kwon, J., Mauch, M., and Varaiya., P. (2006) Components of congestion: Delay from incidents, special events, lane closures, weather, potential ramp metering gain, and excess demand. Transportation Research Record: Journal of the Transportation Research Board, 1959: 1-10.
Long, J., Gao, Z., Zhao, X. Lian, A., and Orenstein, P. (2011) Urban traffic jam simulation based on the cell transmission model. Networks and Spatial Economics, 11(1): 43-64.
McCoach, D. B., O'Connell, A. A., Reis, S. M., and Levitt, H. A. (2006) Growing readers: a hierarchical linear model of children's reading growth during the first 2 years of school. Journal of Education and Psychology, 98: 14−28.
Miller, J. S., and Evans, L. D. (2011) Divergence of potential state-level performance measures to assess transportation and land use coordination. Journal of Transport and Land Use, 4(3): 81–103.
Moeckel, R. (2016) Constraints in household relocation: Modeling land-use/transport interactions that respect time and monetary budgets. Journal of Transport and Land Use, 10(1): 211–228.
Papacostas, C. S. and Prevedouros, P. D. (2001) Transportation Engineering and Planning, New Jersey: Prentice Hall.
Poe, C. M., Tarris, J. P., and Mason, J. M. (1998) Operation speed approach to geometric design of low-speed urban arterials. TRB 77th Annual Meeting Compendium of Papers (CD-ROM), Transportation Research Board of National Academy, Washington, DC.
Qiao, W., Haghani, A., and Hamedi, M. (2012) Short-term travel time prediction considering the effects of weather. Transportation Research Record: Journal of the Transportation Research Board, 2308-07.
Quddus, M. A., Bell, M. G. H., Schmöcker, J.-D., and Fonzone, A. (2005) The impact of the congestion charge on the retail business in London: An econometric analysis. Transport Policy, 14(5): 433-444.
Saeedmanesh, M. and Geroliminis, N. (2016) Clustering of heterogeneous networks with directional flows based on “Snake” similarities. Transportation Research Part B: Methodological, 91: 250-269.
Shen, Q., Chen, P., and Pan, H. (2016) Factors affecting car ownership and mode choice in rail transit-supported suburbs of a large Chinese city. Transportation Research Part A: Policy and Practice, 94: 31-44.
Silberglitt, B., Appleton, J. J., Burns, M. K., and Jimerson, S. R. (2006) Examining the effects of grade retention on student reading performance: a longitudinal study. Journal of School Psychology, 44: 255−270.
Sun, H., Wu, J., Ma, D., and Long, J. (2014) Spatial distribution complexities of traffic congestion and bottlenecks in different network topologies. Applied Mathematical Modelling, 38(2): 496-505.
Van Der Voort, M., Dougherty, M., and Watson, S. (1996) Combining kohonen maps with ARIMA time series models to forecast traffic flow. Transportation Research Part C: Emerging Technologies, 4(5): 307-318.
Wang, J. (2006) Operation speed models for low-speed urban environments based on in-vehicle GPS data. Ph.D. thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta.
Wang, S., li, R., and Guo, M. (2014) Application of nonparametric regression in predicting traffic incident duration. Transport, 33(2): 1-10.
Wen, T. H., Chin, W. C., and Lai, P. C. (2017) Understanding the topological characteristics and flow complexity of urban traffic congestion. Physica A: Statistical Mechanics and its Applications, 473(1): 166–177.
Wheaton, W. C. (1998). Land use and density in cities with congestion. Journal of Urban Economics, 43(2): 258–272.
Williams, B. M., Asce, M., Hoel, L. A., and Asce, F. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results. Journal of Transportation Engineering, 129(6): 664–672.
Yang, Y., and Diez-Roux, A. V. (2012) Walking distance by trip purpose and population Subgroups. American Journal of Preventive Medicine, 43(1): 11–19.
Yu, L., and Liu, Y. (2011) Traffic characteristics analysis and suggestions on school bus operation for primary school students in Beijing. Journal of Transportation Systems Engineering & Information Technology, 11(5): 193–200.
Zhang, T., Sun, L., Yao, L., and Rong, J. (2017a) Impact analysis of land use on traffic congestion using real-time traffic and POI. Journal of Advanced Transportation, 2017: 1-8.
Zhang, L., Hong, J. H., Nasri, A., and Shen, Q. (2012) How built environment affects travel behavior: A comparative analysis of the connections between land use and vehicle miles traveled in U.S. cities. Journal of Transport and Land Use, 5(3): 40–52.
Zhang, K., Sun, D. J., Shen, S., Zhu, Y. (2017b) Analyzing spatiotemporal congestion pattern on urban roads based on taxi GPS data. Journal of Transport and Land Use, 10(1): 675-694.
Zhang, L., and Levinson, D. (2017) A model of the rise and fall of roads. Journal of Transport and Land Use, 10(2): 1–23.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73578-
dc.description.abstract交通壅塞之過程是道路交通領域中的一大議題,它指的不單純是單一時間面下的壅塞,而是包含交通壅塞從形成、傳播、到消散等的過程,了解壅塞的變化機制與影響範圍之後可幫助決策者管理與改善交通壅塞情形。多數探討建成環境對壅塞的影響之研究主要集中於探討一段時間內 (如平日、假日、離峰、尖峰) 的壅塞,缺少討論壅塞在變化過程時的研究,忽略了建成環境的影響效果在不同時間時皆不同;而少數有探討壅塞過程的研究則受限於電腦運算效率,僅侷限於小尺度的理想網絡、缺少大尺度的都市研究。
本研究提出一個實證分析中分析交通壅塞過程的新方法,透過二次成長模型來分析壅塞的擴散速度及不同時間時建成環境對壅塞的影響效果。本研究使用 2017 年 1 月 10 日星期二與 1 月 21 日星期六12:00-19:00由臺北市交通管制處所提供的車輛偵測器 (Vehicle Detector, VD) 資料,並以車道平均速度來衡量交通壅塞程度。由於車速會受到道路上下游之車速影響、具有空間相依性,故使用 Max-P 分群方法將 VD 依照其位置及每小時之平均速度來分群,並將此分群結果作為空間分析單位。依變數為每群的壅塞程度,自變數部分則包括群周圍 500 公尺環域範圍內的建成環境及時間變數,結果以時間函數的方式來描述建成環境對交通壅塞的非線性成長過程,並以圖的方式視覺化呈現各建成環境變數在不同時段對壅塞的影響效果。
zh_TW
dc.description.abstractTraffic congestion propagation is a big issue in road transportation systems. It contains not only the congestion condition under one certain time but also the formation, transmission, propagation speed, affecting areas and other factors of congestion. Understanding these characteristics can help people manage and reduce traffic congestion. Numerous researches have studied how built environment affect traffic congestion, but most research focused on the congestion in a specific time period, like weekday, weekend, off peak and peak. Ho¬¬wever, it is not clear that how built environment at different times may affect congestion propagation. Limited by computer computing efficiency, the few research on congestion propagation has been mainly based on microsimulations of link-level dynamics, lack of research in large urban networks.
This study proposed a new empirical method to analysis traffic congestion propagation. Using quadratic growth model, the relationship between congestion propagation and built environment was analyzed. A data set of vehicle detector (VD) data of 2017/1/10 (Tue.) and 1/21 (Sat.) 12:00-19:00 from Bureau of Traffic Engineering, Taipei City Government is used to access traffic conditions. A linear growth model is utilized to analyze the spatial-temporal traffic data. In order to deal with the dependency among the data, each VD is firstly divided into different clusters by Max-P clustering. Then the ratio of the congested VDs within each cluster is used as the dependent variable, which represents the level of congestion. Independent variables include the built environment factors in a 500-meter radius of each cluster, which can be divided into traffic-related factors and land use, and time variable. The results use a function of time and figures to show the over-time relationship among congestion and the build environment factors.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:06:18Z (GMT). No. of bitstreams: 1
ntu-108-R05228019-1.pdf: 2688503 bytes, checksum: 4a5666139ef6db068568bcf22f878e8d (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VI
壹、 前言 1
第一節 研究動機 1
第二節 研究目的 4
貳、 文獻回顧 5
第一節 壅塞之過程 5
第二節 建成環境對壅塞的影響 7
參、 研究方法 9
第一節 研究流程 9
第二節 研究區 10
第三節 資料來源 10
第四節 資料處理 12
第五節 分群方法:Max-P 13
第六節 迴歸模型 18
肆、 結果 27
伍、 討論 36
第一節 模式討論 36
第二節 案例分析 37
第三節 比較平日與假日建成環境對壅塞過程影響之差異 43
第四節 研究限制及建議 45
陸、 結論 46
柒、 引用文獻 48
附錄一 各群 VD 相關屬性 55
附錄二 平日線性成長模型報表 57
附錄三 平日簡單線性迴歸模型報表 58
附錄四 平日建成環境對交通壅塞過程之影響 59
附錄五 假日建成環境對交通壅塞過程之影響 60
附錄六 比較平日各變數對交通壅塞過程之影響 61
dc.language.isozh-TW
dc.subject大尺度zh_TW
dc.subject交通zh_TW
dc.subject壅塞過程zh_TW
dc.subject建成環境zh_TW
dc.subject二次成長模式zh_TW
dc.subject都市zh_TW
dc.subjectquadratic growth modelen
dc.subjectlarge-scaleen
dc.subjecturbanen
dc.subjecttrafficen
dc.subjectcongestion propagationen
dc.subjectbuilt environmenten
dc.title利用多層次成長模式探討不同建成環境下的都市交通壅塞過程zh_TW
dc.titleCharacterizing Urban Traffic Congestion Propagation Process in Different Built Environments: Using Multilevel Growth Modelingen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林楨家,黃崇源
dc.subject.keyword交通,壅塞過程,建成環境,二次成長模式,都市,大尺度,zh_TW
dc.subject.keywordtraffic,congestion propagation,built environment,quadratic growth model,urban,large-scale,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201904011
dc.rights.note有償授權
dc.date.accepted2019-08-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地理環境資源學研究所zh_TW
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved