Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73571
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳益群
dc.contributor.authorKatherine Chenen
dc.contributor.author陳可葳zh_TW
dc.date.accessioned2021-06-17T08:06:12Z-
dc.date.available2019-08-20
dc.date.copyright2019-08-20
dc.date.issued2019
dc.date.submitted2019-08-19
dc.identifier.citationAebi, M. (2013). N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833, 2430-2437.
Andreani, V., Ramamoorthy, S., Pandey, A., Lupar, E., Nutt, S.L., Lammermann, T., and Grosschedl, R. (2018). Cochaperone Mzb1 is a key effector of Blimp1 in plasma cell differentiation and beta1-integrin function. Proc Natl Acad Sci U S A 115, E9630-E9639.
Ang, A.L., Taguchi, T., Francis, S., Folsch, H., Murrells, L.J., Pypaert, M., Warren, G., and Mellman, I. (2004). Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J Cell Biol 167, 531-543.
Armenti, S.T., and Nance, J. (2012). Adherens junctions in C. elegans embryonic morphogenesis. Subcell Biochem 60, 279-299.
Balderhaar, H.J., and Ungermann, C. (2013). CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 126, 1307-1316.
Battey, N.H., James, N.C., Greenland, A.J., and Brownlee, C. (1999). Exocytosis and endocytosis. Plant Cell 11, 643-660.
Bonifacino, J.S., and Glick, B.S. (2004). The mechanisms of vesicle budding and fusion. Cell 116, 153-166.
Broeks, A., Janssen, H.W., Calafat, J., and Plasterk, R.H. (1995). A P-glycoprotein protects Caenorhabditis elegans against natural toxins. EMBO J 14, 1858-1866.
Bruser, L., and Bogdan, S. (2017). Adherens Junctions on the Move-Membrane Trafficking of E-Cadherin. Cold Spring Harb Perspect Biol 9.
Bygarski, E.E., Prichard, R.K., and Ardelli, B.F. (2014). Resistance to the macrocyclic lactone moxidectin is mediated in part by membrane transporter P-glycoproteins: Implications for control of drug resistant parasitic nematodes. Int J Parasitol Drugs Drug Resist 4, 143-151.
Chaffin, W.L., Lopez-Ribot, J.L., Casanova, M., Gozalbo, D., and Martinez, J.P. (1998). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62, 130-180Chang, D.H., Cattoretti, G., and Calame, K.L. (2002). The dynamic expression pattern of B lymphocyte induced maturation protein-1 (Blimp-1) during mouse embryonic development. Mech Dev 117, 305-309.
Chen, B., Jiang, Y., Zeng, S., Yan, J., Li, X., Zhang, Y., Zou, W., and Wang, X. (2010). Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by TAT-1/CHAT-1. PLoS Genet 6, e1001235.
Chen, C.C., Schweinsberg, P.J., Vashist, S., Mareiniss, D.P., Lambie, E.J., and Grant, B.D. (2006). RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol Biol Cell 17, 1286-1297.
Chen, S., Li, L., Li, J., Liu, B., Zhu, X., Zheng, L., Zhang, R., and Xu, T. (2014). SEC-10 and RAB-10 coordinate basolateral recycling of clathrin-independent cargo through endosomal tubules in Caenorhabditis elegans. Proc Natl Acad Sci U S A 111, 15432-15437.
Chin, K.V., Pastan, I., and Gottesman, M.M. (1993). Function and regulation of the human multidrug resistance gene. Adv Cancer Res 60, 157-180.
Chotard, L., Mishra, A.K., Sylvain, M.A., Tuck, S., Lambright, D.G., and Rocheleau, C.E. (2010). TBC-2 regulates RAB-5/RAB-7-mediated endosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 21, 2285-2296.
Cordon-Cardo, C., O'Brien, J.P., Boccia, J., Casals, D., Bertino, J.R., and Melamed, M.R. (1990). Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 38, 1277-1287.
Coutinho, M.F., Prata, M.J., and Alves, S. (2012). Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab 105, 542-550.
Delahaye, J.L., Foster, O.K., Vine, A., Saxton, D.S., Curtin, T.P., Somhegyi, H., Salesky, R., and Hermann, G.J. (2014). Caenorhabditis elegans HOPS and CCZ-1 mediate trafficking to lysosome-related organelles independently of RAB-7 and SAND-1. Mol Biol Cell 25, 1073-1096.
Delva, E., and Kowalczyk, A.P. (2009). Regulation of cadherin trafficking. Traffic 10, 259-267.
Dingjan, I., Linders, P.T.A., Verboogen, D.R.J., Revelo, N.H., Ter Beest, M., and van den Bogaart, G. (2018). Endosomal and Phagosomal SNAREs. Physiol Rev 98, 1465-1492.Dominguez, R., and Holmes, K.C. (2011). Actin structure and function. Annu Rev Biophys 40, 169-186.
Enrich, C., Rentero, C., Hierro, A., and Grewal, T. (2015). Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. J Cell Sci 128, 1071-1081.
Ferrier, A., Charron, A., Sadozai, Y., Switaj, L., Szutenbach, A., and Smith, P.A. (2011). Multiple phenotypes resulting from a mutagenesis screen for pharynx muscle mutations in Caenorhabditis elegans. PLoS One 6, e26594.
Gillard, G., Shafaq-Zadah, M., Nicolle, O., Damaj, R., Pecreaux, J., and Michaux, G. (2015). Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells. Development 142, 1684-1694.
Goldenring, J.R. (2015). Recycling endosomes. Curr Opin Cell Biol 35, 117-122.
Grant, B.D., and Donaldson, J.G. (2009). Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10, 597-608.
Hermann, G.J., Schroeder, L.K., Hieb, C.A., Kershner, A.M., Rabbitts, B.M., Fonarev, P., Grant, B.D., and Priess, J.R. (2005). Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 16, 3273-3288.
Huang, T.F., Cho, C.Y., Cheng, Y.T., Huang, J.W., Wu, Y.Z., Yeh, A.Y., Nishiwaki, K., Chang, S.C., and Wu, Y.C. (2014). BLMP-1/Blimp-1 regulates the spatiotemporal cell migration pattern in C. elegans. PLoS Genet 10, e1004428.
Huotari, J., and Helenius, A. (2011). Endosome maturation. EMBO J 30, 3481-3500.
Hutagalung, A.H., and Novick, P.J. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91, 119-149.
Hyun, M., Kim, J., Dumur, C., Schroeder, F.C., and You, Y.J. (2016). BLIMP-1/BLMP-1 and Metastasis-Associated Protein Regulate Stress Resistant Development in Caenorhabditis elegans. Genetics 203, 1721-1732.
Ji, Y., Pos, Z., Rao, M., Klebanoff, C.A., Yu, Z., Sukumar, M., Reger, R.N., Palmer, D.C., Borman, Z.A., Muranski, P., et al. (2011). Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat Immunol 12, 1230-1237.
Kaczmarek Michaels, K., Natarajan, M., Euler, Z., Alter, G., Viglianti, G., and Henderson, A.J. (2015). Blimp-1, an intrinsic factor that represses HIV-1 proviral transcription in memory CD4+ T cells. J Immunol 194, 3267-3274.
Kallies, A., and Nutt, S.L. (2010). Bach2: plasma-cell differentiation takes a break. EMBO J 29, 3896-3897.
65
Koppen, M., Simske, J.S., Sims, P.A., Firestein, B.L., Hall, D.H., Radice, A.D., Rongo, C., and Hardin, J.D. (2001). Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat Cell Biol 3, 983-991.
Lin, M.H., Chou, F.C., Yeh, L.T., Fu, S.H., Chiou, H.Y., Lin, K.I., Chang, D.M., and Sytwu, H.K. (2013). B lymphocyte-induced maturation protein 1 (BLIMP-1) attenuates autoimmune diabetes in NOD mice by suppressing Th1 and Th17 cells. Diabetologia 56, 136-146.
Lincke, C.R., Broeks, A., The, I., Plasterk, R.H., and Borst, P. (1993). The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells. EMBO J 12, 1615-1620.
MacQueen, A.J., Baggett, J.J., Perumov, N., Bauer, R.A., Januszewski, T., Schriefer, L., and Waddle, J.A. (2005). ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Mol Biol Cell 16, 3247-3259.
Martins, G., and Calame, K. (2008). Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol 26, 133-169.
Martins, G.A., Cimmino, L., Shapiro-Shelef, M., Szabolcs, M., Herron, A., Magnusdottir, E., and Calame, K. (2006). Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 7, 457-465.
Marty, F. (1999). Plant vacuoles. Plant Cell 11, 587-600.
McMahon, L., Legouis, R., Vonesch, J.L., and Labouesse, M. (2001). Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. J Cell Sci 114, 2265-2277.
Morris, C., Foster, O.K., Handa, S., Peloza, K., Voss, L., Somhegyi, H., Jian, Y., Vo, M.V., Harp, M., Rambo, F.M., et al. (2018). Function and regulation of the Caenorhabditis elegans Rab32 family member GLO-1 in lysosome-related organelle biogenesis. PLoS Genet 14, e1007772.
Mukherjee, S., Ghosh, R.N., and Maxfield, F.R. (1997). Endocytosis. Physiol Rev 77, 759-803.
Murray, R.Z., Kay, J.G., Sangermani, D.G., and Stow, J.L. (2005). A role for the phagosome in cytokine secretion. Science 310, 1492-1495.
Ohinata, Y., Payer, B., O'Carroll, D., Ancelin, K., Ono, Y., Sano, M., Barton, S.C., Obukhanych, T., Nussenzweig, M., Tarakhovsky, A., et al. (2005). Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207-213.Okamura, N., Hirai, M., Tanigawara, Y., Tanaka, K., Yasuhara, M., Ueda, K., Komano, T., and Hori, R. (1993). Digoxin-cyclosporin A interaction: modulation of the multidrug transporter P-glycoprotein in the kidney. J Pharmacol Exp Ther 266, 1614-1619.
Olkkonen, V.M., and Ikonen, E. (2006). When intracellular logistics fails--genetic defects in membrane trafficking. J Cell Sci 119, 5031-5045.
Paez Valencia, J., Goodman, K., and Otegui, M.S. (2016). Endocytosis and Endosomal Trafficking in Plants. Annu Rev Plant Biol 67, 309-335.
Palade, G. (1975). Intracellular aspects of the process of protein synthesis. Science 189, 867.
Pasti, G., and Labouesse, M. (2014). Epithelial junctions, cytoskeleton, and polarity. WormBook, 1-35.
Pearse, B.M. (1976). Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci U S A 73, 1255-1259.
Sanderfoot, A.A., and Raikhel, N.V. (1999). The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell 11, 629-642.
Schinkel, A.H. (1999). P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36, 179-194.
Shapiro-Shelef, M., Lin, K.I., McHeyzer-Williams, L.J., Liao, J., McHeyzer-Williams, M.G., and Calame, K. (2003). Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607-620.
Shapiro-Shelef, M., Lin, K.I., Savitsky, D., Liao, J., and Calame, K. (2005). Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J Exp Med 202, 1471-1476.
Sheps, J.A., Ralph, S., Zhao, Z., Baillie, D.L., and Ling, V. (2004). The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol 5, R15.
Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10, 513-525.
Stenmark, H., and Olkkonen, V.M. (2001). The Rab GTPase family. Genome Biol 2, REVIEWS3007.
Surpin, M., and Raikhel, N. (2004). Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5, 100-109.
Aebi, M. (2013). N-linked protein glycosylation in the ER. Biochim Biophys Acta 1833, 2430-2437.
Andreani, V., Ramamoorthy, S., Pandey, A., Lupar, E., Nutt, S.L., Lammermann, T., and Grosschedl, R. (2018). Cochaperone Mzb1 is a key effector of Blimp1 in plasma cell differentiation and beta1-integrin function. Proc Natl Acad Sci U S A 115, E9630-E9639.
Ang, A.L., Taguchi, T., Francis, S., Folsch, H., Murrells, L.J., Pypaert, M., Warren, G., and Mellman, I. (2004). Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J Cell Biol 167, 531-543.
Armenti, S.T., and Nance, J. (2012). Adherens junctions in C. elegans embryonic morphogenesis. Subcell Biochem 60, 279-299.
Balderhaar, H.J., and Ungermann, C. (2013). CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 126, 1307-1316.
Battey, N.H., James, N.C., Greenland, A.J., and Brownlee, C. (1999). Exocytosis and endocytosis. Plant Cell 11, 643-660.
Bonifacino, J.S., and Glick, B.S. (2004). The mechanisms of vesicle budding and fusion. Cell 116, 153-166.
Broeks, A., Janssen, H.W., Calafat, J., and Plasterk, R.H. (1995). A P-glycoprotein protects Caenorhabditis elegans against natural toxins. EMBO J 14, 1858-1866.
Bruser, L., and Bogdan, S. (2017). Adherens Junctions on the Move-Membrane Trafficking of E-Cadherin. Cold Spring Harb Perspect Biol 9.
Bygarski, E.E., Prichard, R.K., and Ardelli, B.F. (2014). Resistance to the macrocyclic lactone moxidectin is mediated in part by membrane transporter P-glycoproteins: Implications for control of drug resistant parasitic nematodes. Int J Parasitol Drugs Drug Resist 4, 143-151.
Chaffin, W.L., Lopez-Ribot, J.L., Casanova, M., Gozalbo, D., and Martinez, J.P. (1998). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62, 130-180.
63
Chang, D.H., Cattoretti, G., and Calame, K.L. (2002). The dynamic expression pattern of B lymphocyte induced maturation protein-1 (Blimp-1) during mouse embryonic development. Mech Dev 117, 305-309.
Chen, B., Jiang, Y., Zeng, S., Yan, J., Li, X., Zhang, Y., Zou, W., and Wang, X. (2010). Endocytic sorting and recycling require membrane phosphatidylserine asymmetry maintained by TAT-1/CHAT-1. PLoS Genet 6, e1001235.
Chen, C.C., Schweinsberg, P.J., Vashist, S., Mareiniss, D.P., Lambie, E.J., and Grant, B.D. (2006). RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol Biol Cell 17, 1286-1297.
Chen, S., Li, L., Li, J., Liu, B., Zhu, X., Zheng, L., Zhang, R., and Xu, T. (2014). SEC-10 and RAB-10 coordinate basolateral recycling of clathrin-independent cargo through endosomal tubules in Caenorhabditis elegans. Proc Natl Acad Sci U S A 111, 15432-15437.
Chin, K.V., Pastan, I., and Gottesman, M.M. (1993). Function and regulation of the human multidrug resistance gene. Adv Cancer Res 60, 157-180.
Chotard, L., Mishra, A.K., Sylvain, M.A., Tuck, S., Lambright, D.G., and Rocheleau, C.E. (2010). TBC-2 regulates RAB-5/RAB-7-mediated endosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 21, 2285-2296.
Cordon-Cardo, C., O'Brien, J.P., Boccia, J., Casals, D., Bertino, J.R., and Melamed, M.R. (1990). Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 38, 1277-1287.
Coutinho, M.F., Prata, M.J., and Alves, S. (2012). Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol Genet Metab 105, 542-550.
Delahaye, J.L., Foster, O.K., Vine, A., Saxton, D.S., Curtin, T.P., Somhegyi, H., Salesky, R., and Hermann, G.J. (2014). Caenorhabditis elegans HOPS and CCZ-1 mediate trafficking to lysosome-related organelles independently of RAB-7 and SAND-1. Mol Biol Cell 25, 1073-1096.
Delva, E., and Kowalczyk, A.P. (2009). Regulation of cadherin trafficking. Traffic 10, 259-267.
Dingjan, I., Linders, P.T.A., Verboogen, D.R.J., Revelo, N.H., Ter Beest, M., and van den Bogaart, G. (2018). Endosomal and Phagosomal SNAREs. Physiol Rev 98, 1465-1492.
64
Dominguez, R., and Holmes, K.C. (2011). Actin structure and function. Annu Rev Biophys 40, 169-186.
Enrich, C., Rentero, C., Hierro, A., and Grewal, T. (2015). Role of cholesterol in SNARE-mediated trafficking on intracellular membranes. J Cell Sci 128, 1071-1081.
Ferrier, A., Charron, A., Sadozai, Y., Switaj, L., Szutenbach, A., and Smith, P.A. (2011). Multiple phenotypes resulting from a mutagenesis screen for pharynx muscle mutations in Caenorhabditis elegans. PLoS One 6, e26594.
Gillard, G., Shafaq-Zadah, M., Nicolle, O., Damaj, R., Pecreaux, J., and Michaux, G. (2015). Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells. Development 142, 1684-1694.
Goldenring, J.R. (2015). Recycling endosomes. Curr Opin Cell Biol 35, 117-122.
Grant, B.D., and Donaldson, J.G. (2009). Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 10, 597-608.
Hermann, G.J., Schroeder, L.K., Hieb, C.A., Kershner, A.M., Rabbitts, B.M., Fonarev, P., Grant, B.D., and Priess, J.R. (2005). Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 16, 3273-3288.
Huang, T.F., Cho, C.Y., Cheng, Y.T., Huang, J.W., Wu, Y.Z., Yeh, A.Y., Nishiwaki, K., Chang, S.C., and Wu, Y.C. (2014). BLMP-1/Blimp-1 regulates the spatiotemporal cell migration pattern in C. elegans. PLoS Genet 10, e1004428.
Huotari, J., and Helenius, A. (2011). Endosome maturation. EMBO J 30, 3481-3500.
Hutagalung, A.H., and Novick, P.J. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91, 119-149.
Hyun, M., Kim, J., Dumur, C., Schroeder, F.C., and You, Y.J. (2016). BLIMP-1/BLMP-1 and Metastasis-Associated Protein Regulate Stress Resistant Development in Caenorhabditis elegans. Genetics 203, 1721-1732.
Ji, Y., Pos, Z., Rao, M., Klebanoff, C.A., Yu, Z., Sukumar, M., Reger, R.N., Palmer, D.C., Borman, Z.A., Muranski, P., et al. (2011). Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat Immunol 12, 1230-1237.
Kaczmarek Michaels, K., Natarajan, M., Euler, Z., Alter, G., Viglianti, G., and Henderson, A.J. (2015). Blimp-1, an intrinsic factor that represses HIV-1 proviral transcription in memory CD4+ T cells. J Immunol 194, 3267-3274.
Kallies, A., and Nutt, S.L. (2010). Bach2: plasma-cell differentiation takes a break. EMBO J 29, 3896-3897.
65
Koppen, M., Simske, J.S., Sims, P.A., Firestein, B.L., Hall, D.H., Radice, A.D., Rongo, C., and Hardin, J.D. (2001). Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat Cell Biol 3, 983-991.
Lin, M.H., Chou, F.C., Yeh, L.T., Fu, S.H., Chiou, H.Y., Lin, K.I., Chang, D.M., and Sytwu, H.K. (2013). B lymphocyte-induced maturation protein 1 (BLIMP-1) attenuates autoimmune diabetes in NOD mice by suppressing Th1 and Th17 cells. Diabetologia 56, 136-146.
Lincke, C.R., Broeks, A., The, I., Plasterk, R.H., and Borst, P. (1993). The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells. EMBO J 12, 1615-1620.
MacQueen, A.J., Baggett, J.J., Perumov, N., Bauer, R.A., Januszewski, T., Schriefer, L., and Waddle, J.A. (2005). ACT-5 is an essential Caenorhabditis elegans actin required for intestinal microvilli formation. Mol Biol Cell 16, 3247-3259.
Martins, G., and Calame, K. (2008). Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol 26, 133-169.
Martins, G.A., Cimmino, L., Shapiro-Shelef, M., Szabolcs, M., Herron, A., Magnusdottir, E., and Calame, K. (2006). Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 7, 457-465.
Marty, F. (1999). Plant vacuoles. Plant Cell 11, 587-600.
McMahon, L., Legouis, R., Vonesch, J.L., and Labouesse, M. (2001). Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. J Cell Sci 114, 2265-2277.
Morris, C., Foster, O.K., Handa, S., Peloza, K., Voss, L., Somhegyi, H., Jian, Y., Vo, M.V., Harp, M., Rambo, F.M., et al. (2018). Function and regulation of the Caenorhabditis elegans Rab32 family member GLO-1 in lysosome-related organelle biogenesis. PLoS Genet 14, e1007772.
Mukherjee, S., Ghosh, R.N., and Maxfield, F.R. (1997). Endocytosis. Physiol Rev 77, 759-803.
Murray, R.Z., Kay, J.G., Sangermani, D.G., and Stow, J.L. (2005). A role for the phagosome in cytokine secretion. Science 310, 1492-1495.
Ohinata, Y., Payer, B., O'Carroll, D., Ancelin, K., Ono, Y., Sano, M., Barton, S.C., Obukhanych, T., Nussenzweig, M., Tarakhovsky, A., et al. (2005). Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207-213.
66
Okamura, N., Hirai, M., Tanigawara, Y., Tanaka, K., Yasuhara, M., Ueda, K., Komano, T., and Hori, R. (1993). Digoxin-cyclosporin A interaction: modulation of the multidrug transporter P-glycoprotein in the kidney. J Pharmacol Exp Ther 266, 1614-1619.
Olkkonen, V.M., and Ikonen, E. (2006). When intracellular logistics fails--genetic defects in membrane trafficking. J Cell Sci 119, 5031-5045.
Paez Valencia, J., Goodman, K., and Otegui, M.S. (2016). Endocytosis and Endosomal Trafficking in Plants. Annu Rev Plant Biol 67, 309-335.
Palade, G. (1975). Intracellular aspects of the process of protein synthesis. Science 189, 867.
Pasti, G., and Labouesse, M. (2014). Epithelial junctions, cytoskeleton, and polarity. WormBook, 1-35.
Pearse, B.M. (1976). Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci U S A 73, 1255-1259.
Sanderfoot, A.A., and Raikhel, N.V. (1999). The specificity of vesicle trafficking: coat proteins and SNAREs. Plant Cell 11, 629-642.
Schinkel, A.H. (1999). P-Glycoprotein, a gatekeeper in the blood-brain barrier. Adv Drug Deliv Rev 36, 179-194.
Shapiro-Shelef, M., Lin, K.I., McHeyzer-Williams, L.J., Liao, J., McHeyzer-Williams, M.G., and Calame, K. (2003). Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607-620.
Shapiro-Shelef, M., Lin, K.I., Savitsky, D., Liao, J., and Calame, K. (2005). Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow. J Exp Med 202, 1471-1476.
Sheps, J.A., Ralph, S., Zhao, Z., Baillie, D.L., and Ling, V. (2004). The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol 5, R15.
Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10, 513-525.
Stenmark, H., and Olkkonen, V.M. (2001). The Rab GTPase family. Genome Biol 2, REVIEWS3007.
Surpin, M., and Raikhel, N. (2004). Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5, 100-109.
67
Taguchi, T. (2013). Emerging roles of recycling endosomes. J Biochem 153, 505-510.
Tanowitz, M., and von Zastrow, M. (2003). A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem 278, 45978-45986.
Tellier, J., Shi, W., Minnich, M., Liao, Y., Crawford, S., Smyth, G.K., Kallies, A., Busslinger, M., and Nutt, S.L. (2016). Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nat Immunol 17, 323-330.
Tilney, L.G., Tilney, M.S., and Guild, G.M. (1996). Formation of actin filament bundles in the ring canals of developing Drosophila follicles. J Cell Biol 133, 61-74.
Tjelle, T.E., Brech, A., Juvet, L.K., Griffiths, G., and Berg, T. (1996). Isolation and characterization of early endosomes, late endosomes and terminal lysosomes: their role in protein degradation. J Cell Sci 109 ( Pt 12), 2905-2914.
Turner, C.A., Jr., Mack, D.H., and Davis, M.M. (1994). Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297-306.
van Assema, D.M., Lubberink, M., Bauer, M., van der Flier, W.M., Schuit, R.C., Windhorst, A.D., Comans, E.F., Hoetjes, N.J., Tolboom, N., Langer, O., et al. (2012). Blood-brain barrier P-glycoprotein function in Alzheimer's disease. Brain 135, 181-189.
Van den Steen, P., Rudd, P.M., Dwek, R.A., and Opdenakker, G. (1998). Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33, 151-208.
West, J.J., and Harris, T.J. (2016). Cadherin Trafficking for Tissue Morphogenesis: Control and Consequences. Traffic 17, 1233-1243.
Wilkens, S. (2015). Structure and mechanism of ABC transporters. F1000Prime Rep 7, 14.
Wu, L.G., Hamid, E., Shin, W., and Chiang, H.C. (2014). Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 76, 301-331.
Zerial, M., and McBride, H. (2001). Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2, 107-117.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73571-
dc.description.abstract囊泡運輸作用對於生物體來說是極為重要又複雜的機制。細胞透過胞吞作用、胞吐作用,以及物質運輸,來維持膜上物質的動態平衡,包括膜上蛋白質的量及位置。然而,細胞內物質運輸機制還有許多細節尚未被釐清。BLMP-1(B細胞成熟因子)是一個轉錄因子,在演化上高度被保留下來,代表其對於生物體具有重要性。先前研究指出,BLMP-1在生物體的發育過程中,決定特定時間的發育事件,這包含了小鼠免疫細胞的分化作用、果蠅蛻皮激素的分泌以及線蟲遠頂細胞的移動。我們的研究發現blmp-1(s71)線蟲突變株其表皮的鈣黏蛋白(E-cadherin)有錯位的情形。我們猜測這可能源自細胞內囊泡物質運輸情形出現了問題。透過觀察各種細胞內物質運輸相關的蛋白標定線蟲,確實發現到在blmp-1(RNAi)突變種腸道細胞囊泡運輸作用有變異,包含負責將物質運輸到細胞膜表面的RAB-11-related回收囊泡數量減少,以及跟降解作用的囊泡數量異常累積,也可能造成分泌到細胞膜上的P-糖蛋白(P-glycoprotein)的量可能有減少,指向BLMP-1可能透過影響囊泡運輸作用,而調控運送物質到細胞膜上的機制。zh_TW
dc.description.abstractMembrane trafficking is an important and complicated mechanism in all cells. The counterbalancing action of endocytosis and exocytosis maintains a dynamic equilibrium that regulates the composition of the plasma membrane as well as the level and localization of membrane proteins. E-cadherins which are regulated by membrane trafficking are adherens junctional molecules important for tissue organization and integrity. BLMP-1 is an evolutionarily conserved transcriptional factor which mostly functions as a repressor. Previous studies have shown that BLMP-1 regulates the timing of specific developmental events including ecdysone induced developmental pathway in Drosophila and distal tip cells migration in C. elegans. In our studies, we used investigated blmp-1 function in C. elegans. Interestingly, we observed that E-cadherin proteins are mislocalized in the epidermis of the blmp-1 mutant. We hypothesized the E-cadherin abnormality might be due to defects in vesicle trafficking. We employed RAB-related reporters to dissect
vesicle trafficking steps. The data showed that inactivation of blmp-1 by RNA interference caused the decrease of rab-11-related recycling vesicles, theaccumulation of lysosome-related organelles and the increase of late endosomal vesicles as well as lysosomes. Further, we found that the P-glycoprotein, which localizes to the apical surface of intestinal cells, were decreased in blmp-1(RNAi) mutants. This result indicated that the defects of vesicle trafficking in blmp-1(RNAi) mutants affected the localization of membrane proteins. Altogether, our results suggested that BLMP-1 affects vesicles trafficking in the intestine.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:06:12Z (GMT). No. of bitstreams: 1
ntu-108-R05B43024-1.pdf: 22709404 bytes, checksum: c557eba8ed7305a6b88764a210ed018e (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsTable of contents
中文摘要…………………………………………….…………………………………I
Abstract…………………………………………………………...………………….II
Introduction………………………………………………………….………………9
Materials and Methods……………………………………………………………..17
1. C. elegans strains…………………………………………………………………17
2. RNAi interference………………………………………………..………………17
3. Microscopy and Image analysis………………………………………………….18
Results……………………………………………………………………...………..21
1. blmp-1 mutants show abnormal apical junction in seam syncytium at adult stage in epidermis…………………………………………………………………….21
2. Intestine is a good tissue to study membrane trafficking………………………21
3. blmp-1 mutants show endosomal trafficking defects in intestine………………23
4. BLMP-1 regulates late endosome-lysosome pathway in a rab-11.1 independent manner………………………………………………………..…………………25
5. BLMP-1 affects the secretion of P-glycoproteins in intestine………………….26
6. BLMP-1 might not regulate trafficking at transcriptional level…………..…….27
7. BLMP-1 regulates vesicle trafficking in the intestinal cell……………………..28
Discussion……………………………………………………………………………30
1. The analysis of trafficking defects in blmp-1(RNAi)…………………………….30
2. The different results between RNA interference and mutant strains…………….30
3. The regulation role of BLMP-1 in C. elegans……………………………………31
4. The correlation of Blimp1 and vesicle trafficking in mammals…………………32
Figures………………………………………………………………………………33
Figure1. Model of vesicle trafficking in polarized cells……………………………..33
Figure2. Epidermis of C. elegans……………………………………………………34
Figure3. Proteins required for E-cadherin apical localization in epidermis…………35
Figure4. BLMP-1 plays a role of developmental process………………….………..36
Figure5. blmp-1(s71) mutants show abnormal apical junction in seam syncytium at adult stage in epidermis…………………………………………..………………….37
Figure6. Intestinal cells are an ideal tool to observe endosomal trafficking…………38
Figure7. blmp-1(RNAi) mutants show endosomal trafficking defects in intestine......39
Figure8. Accumulated large vesicular structures of blmp-1(RNAi) mutants are related to late endosomes, lysosomes and lysosome-related organelles in intestine……...…40
Figure9. BLMP-1 regulates late endosome-lysosome pathway in a rab-11.1 independent manner………………………………………………………………….41
Figure10. rab-11.1 RNAi knockdown in GFP::RAB-7 and LMP-1::sfGFP transgenic worms………………………………………………………………………………42
Figure11. blmp-1 mutants show normal actin localization but decreasing P-glycoproteins at intestinal apical cells………………………………………………..43
Figure12. blmp-1(s71) RNA-seq analysis of endosomal trafficking machinery…….44
Figure13. Model of BLMP-1 regulates vesicle trafficking in the intestinal cell…….45
Table…………………………………………………………………………………46Table1. Trafficking defects in blmp-1(RNAi)………………………………………46
Supplementary data……………………………………………………………….47
Figure S1. blmp-1 mutant adults showed abnormal apical seam shape…………..47
Figure S2. rab-11.1 RNAi knockdown affects HMR-1(E-cadherin) and AJM-1 apical localization in epidermis…………………………………………………………..48
Figure S3. Expression patterns of GLO-1::GFP transgenic worms……………….49
Figure S4. Early endosomes marker RAB-5 expression patterns of RNAi control and blmp-1 RNAi feeding worms………………………………………………………50
Figure S5. Basal-lateral recycling endosomes marker RAB-10 expression patterns of RNAi control and blmp-1 RNAi feeding worms…………………………………….51
Figure S6. Apical recycling endosomes marker RAB-11.1 expression patterns of RNAi control and blmp-1 RNAi feeding worms…………………………………….52
Figure S7-1. Late endosomes marker RAB-7 expression patterns of RNAi control and blmp-1 RNAi feeding worms………………………………………………...………53
Figure S7-2. Late endosomes marker RAB-7 expression patterns of RNAi control and blmp-1 RNAi feeding worms……………………………………………………….54
Figure S8. Lysosomes marker LMP-1 expression patterns of RNAi control and blmp-1 RNAi feeding worms………………………………………………………………55
Figure S9-1. Lysosome-related organelles marker GLO-1 expression patterns of RNAi control and blmp-1 RNAi feeding worms…………………………………….56
Figure S9-2. Lysosome-related organelles marker GLO-1 expression patterns of RNAi control and blmp-1 RNAi feeding worms…………………………………….57Figure S10. PGP-1 localization in intestine………………………………………..58
Figure S11. Early endosomes marker RAB-5 expression patterns of WT and blmp-1(s71) worms…………………………………………………………………………59
Figure S12. Apical recycling endosomes marker RAB-11.1 expression patterns of WT and blmp-1(s71) worms……………………………………...……………………….60
Figure S13. Phsp-4::gfp expression patterns and level in intestine…………………61
Acknowledgements…………………………………………………………………62
References………………………………………………………………………….63
dc.language.isozh-TW
dc.subjectrab-11zh_TW
dc.subjectP-glycoproteinzh_TW
dc.subject回收囊泡機制zh_TW
dc.subjectblmp-1zh_TW
dc.subject膜囊泡運輸zh_TW
dc.subjectblmp-1en
dc.subjectrecycling endosomesen
dc.subjectvesicle traffickingen
dc.subjectP-glycoproteinen
dc.subjectrab-11en
dc.title探討BLMP-1在線蟲腸道細胞內之膜囊泡運輸過程中扮演的角色zh_TW
dc.titleInvestigating the role of C. elegans BLMP-1 in vesicle trafficking in the intestinal cellen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee溫進德,廖秀娟
dc.subject.keyword膜囊泡運輸,blmp-1,rab-11,回收囊泡機制,P-glycoprotein,zh_TW
dc.subject.keywordvesicle trafficking,blmp-1,rab-11,recycling endosomes,P-glycoprotein,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201904035
dc.rights.note有償授權
dc.date.accepted2019-08-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
22.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved