Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73548
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳仁治(Jen-Chih Chen)
dc.contributor.authorMin-Chih Chiuen
dc.contributor.author邱敏知zh_TW
dc.date.accessioned2021-06-17T08:05:56Z-
dc.date.issued2021
dc.date.submitted2021-04-23
dc.identifier.citationAndo S, Miyashita S, Takahashi H (2019) Plant defense systems against cucumber mosaic virus: Lessons learned from CMV–Arabidopsis interactions. Journal of General Plant Pathology 85: 174-181
Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Molecular Biology 69: 473-488
Bertaccini A, Duduk B (2009) Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathologia Mediterranea 48: 355-378
Chen W-Y, Huang Y-C, Tsai M-L, Lin C-P (2011) Detection and identification of a new phytoplasma associated with periwinkle leaf yellowing disease in Taiwan. Australasian Plant Pathology 40: 476-483
Chen Y, Shen H, Wang M, Li Q, He Z (2013) Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3. 5 is a potential activator of plant immunity in Arabidopsis. Acta Biochim Biophys Sin 45: 827-836
Chen Z, Yuan Y, Fu D, Shen C, Yang Y (2017) Identification and expression profiling of the auxin response factors in Dendrobium officinale under abiotic stresses. International Journal of Molecular Sciences 18: 927
Cho S-T, Lin C-P, Kuo C-H (2019) Genomic characterization of the periwinkle leaf yellowing (PLY) phytoplasmas in Taiwan. Frontiers in Microbiology 10: 2194
Christensen NM, Axelsen KB, Nicolaisen M, Schulz A (2005) Phytoplasmas and their interactions with hosts. Trends in Plant Science 10: 526-535
Davies PJ (2012) Plant hormones and their role in plant growth and development. Springer Science Business Media
Dermastia M (2019) Plant hormones in phytoplasma infected plants. Frontiers in Plant Science 10: 477
Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, Zhang Y (2018) Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity. Cell 173: 1454-1467. e1415
Doi Y, Teranaka M, Yora K, Asuyama H (1967) Mycoplasma-or PLT group-like microorganisms found in the phloem elements of plants infected with mulberry dwarf, potato witches' broom, aster yellows, or paulownia witches' broom. Japanese Journal of Phytopathology 33: 259-266
Durrant WE, Dong X (2004) Systemic acquired resistance. Annu. Rev. Phytopathol. 42: 185-209
Fu J, Chu J, Sun X, Wang J, Yan C (2012) Simple, rapid, and simultaneous assay of multiple carboxyl containing phytohormones in wounded tomatoes by UPLC-MS/MS using single SPE purification and isotope dilution. Analytical Sciences 28: 1081-1087
Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annual Review of Plant Biology 64: 839-863
Gao Q-M, Venugopal S, Navarre D, Kachroo A (2011) Low oleic acid-derived repression of jasmonic acid-inducible defense responses requires the WRKY50 and WRKY51 proteins. Plant Physiology 155: 464-476
Granados RR, Maramorosch K, Shikata E (1968) Mycoplasma: suspected etiologic agent of corn stunt. Proceedings of the National Academy of Sciences of the United States of America 60: 841
Group IPSWTPT (2004) ‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. International Journal of Systematic and Evolutionary Microbiology 54: 1243-1255
Guilfoyle TJ, Hagen G (2001) Auxin response factors. Journal of Plant Growth Regulation 20: 281-291
Guilfoyle TJ, Hagen G (2007) Auxin response factors. Current Opinion in Plant Biology 10: 453-460
Gundersen DE, Lee I-M, Rehner SA, Davis RE, Kingsbury DT (1994) Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification. Journal of Bacteriology 176: 5244-5254
Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. The Plant Cell 24: 2515-2527
Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Molecular Biology 49: 373-385
Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences 106: 6416-6421
Hren M, Nikolić P, Rotter A, Blejec A, Terrier N, Ravnikar M, Dermastia M, Gruden K (2009) 'Bois noir'phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 10: 460
Hull R, Horne R, Nayar RM (1969) Mycoplasma-like bodies associated with sandal spike disease. Nature 224: 1121-1122
ISHIIE T, DOI Y, YORA K, ASUYAMA H (1967) Suppressive effects of antibiotics of tetracycline group on symptom development of mulberry dwarf disease. Japanese Journal of Phytopathology 33: 267-275
Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology 59: 86-101
Kumari S, Krishnan N, Rai AB, Singh B, Rao GP, Bertaccini A (2019) Global status of phytoplasma diseases in vegetable crops. Frontiers in Microbiology 10: 1349
Lai C-M (2014) Construction of Transcription Factor Regulatory Network of CrPR1a and CrLOX2 genes in Catharanthus roseus. National Taiwan University, Taipei
Lee I-M, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic mollicutes. Annual Reviews in Microbiology 54: 221-255
Li J, Brader G, Palva ET (2004) The WRKY70 Transcription Factor: A Node of Convergence for Jasmonate-Mediated and Salicylate-Mediated Signals in Plant Defense. The Plant Cell 16: 319-331
Li S-B, OuYang W-Z, Hou X-J, Xie L-L, Hu C-G, Zhang J-Z (2015) Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis). Frontiers in Plant Science 6: 119
Li S-B, Xie Z-Z, Hu C-G, Zhang J-Z (2016) A review of auxin response factors (ARFs) in plants. Frontiers in Plant Science 7: 47
Lin L-Y (2016) Potential mechanisms of CrARF17 on plant defense against periwinkle leaf yellowing phytoplasma. National Taiwan University, Taipei
Liu K, Yuan C, Li H, Lin W, Yang Y, Shen C, Zheng X (2015) Genome-wide identification and characterization of auxin response factor (ARF) family genes related to flower and fruit development in papaya (Carica papaya L.). BMC Genomics 16: 1-12
Liu Y, Schiff M, Dinesh‐Kumar S (2002) Virus‐induced gene silencing in tomato. The Plant Journal 31: 777-786
Lo H-F (2014) Understanding regulatory network among transcription factors on expression of CrPR1a and CrLOX2 in Catharanthus roseus. National Taiwan University, Taipei
Mackelprang R, Okrent RA, Wildermuth MC (2017) Preference of Arabidopsis thaliana GH3. 5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate. Phytochemistry 143: 19-28
MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC, Immink RG, Hogenhout SA (2014) Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLoS Biol 12: e1001835
MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Tóth R, Nicolaisen M, Hogenhout SA (2011) Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology 157: 831-841
Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. The Plant Cell 17: 1360-1375
McCoy R (1989) Plant diseases associated with mycoplasma-like organisms. The Mycoplasmas 5: 545-640
Musetti R, di Toppi LS, Ermacora P, Favali M (2004) Recovery in apple trees infected with the apple proliferation phytoplasma: an ultrastructural and biochemical study. Phytopathology 94: 203-208
Okrent RA, Wildermuth MC (2011) Evolutionary history of the GH3 family of acyl adenylases in rosids. Plant Molecular Biology 76: 489-505
Pagliarani C, Gambino G, Ferrandino A, Chitarra W, Vrhovsek U, Cantu D, Palmano S, Marzachì C, Schubert A (2020) Molecular memory of Flavescence dorée phytoplasma in recovering grapevines. Horticulture Research 7: 1-15
Roosjen M, Paque S, Weijers D (2018) Auxin response factors: output control in auxin biology. Journal of Experimental Botany 69: 179-188
Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y, Hunt MD (1996) Systemic acquired resistance. The Plant Cell 8: 1809
Schneider B (1995) Phylogenetic classification of plant pathogenic mycoplasma-like organisms or phytoplasma. Molecular and Diagnostic Procedures in Mycoplasmolgy 1: 369-380
Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G (2005) Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. The Plant Cell 17: 1343-1359
Strauss E (2009) Phytoplasma research begins to bloom. In. American Association for the Advancement of Science
Su Y-T, Chen J-C, Lin C-P (2011) Phytoplasma-induced floral abnormalities in Catharanthus roseus are associated with phytoplasma accumulation and transcript repression of floral organ identity genes. Molecular Plant-Microbe Interactions 24: 1502-1512
Sugawara K, Honma Y, Komatsu K, Himeno M, Oshima K, Namba S (2013) The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU. Plant Physiology 162: 2005-2014
Sugio A, MacLean AM, Grieve VM, Hogenhout SA (2011) Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences 108: E1254-E1263
Sung Y-C, Lin C-P, Hsu H-J, Chen Y-L, Chen J-C (2019) Silencing of CrNPR1 and CrNPR3 alters plant susceptibility to periwinkle leaf yellowing phytoplasma. Frontiers in Plant Science 10: 1183
Tai CF, Lin CP, Sung YC, Chen JC (2013) Auxin influences symptom expression and phytoplasma colonisation in periwinkle infected with periwinkle leaf yellowing phytoplasma. Annals of Applied Biology 163: 420-429
Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nature Reviews Molecular Cell Biology 7: 847-859
Tomkins M, Kliot A, Marée AF, Hogenhout SA (2018) A multi-layered mechanistic modelling approach to understand how effector genes extend beyond phytoplasma to modulate plant hosts, insect vectors and the environment. Current Opinion in Plant Biology 44: 39-48
Ulmasov T, Liu Z-B, Hagen G, Guilfoyle TJ (1995) Composite structure of auxin response elements. The Plant Cell 7: 1611-1623
Wang B, Xue J-S, Yu Y-H, Liu S-Q, Zhang J-X, Yao X-Z, Liu Z-X, Xu X-F, Yang Z-N (2017) Fine regulation of ARF17 for anther development and pollen formation. BMC Plant Biology 17: 1-12
Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X (2007) Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Current Biology 17: 1784-1790
Weintraub PG, Wilson MR (2010) Control of phytoplasma diseases and vectors. In Phytoplasmas: Genomes, Plant Hosts and Vectors. CAB Internationa, Wallingford, UK, pp 233-249
Westfall CS, Sherp AM, Zubieta C, Alvarez S, Schraft E, Marcellin R, Ramirez L, Jez JM (2016) Arabidopsis thaliana GH3. 5 acyl acid amido synthetase mediates metabolic crosstalk in auxin and salicylic acid homeostasis. Proceedings of the National Academy of Sciences 113: 13917-13922
Xie Z, Nolan T, Jiang H, Tang B, Zhang M, Li Z, Yin Y (2019) The AP2/ERF transcription factor TINY modulates brassinosteroid-regulated plant growth and drought responses in Arabidopsis. The Plant Cell 31: 1788-1806
Yang J, Tian L, Sun M-X, Huang X-Y, Zhu J, Guan Y-F, Jia Q-S, Yang Z-N (2013) AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiology 162: 720-731
Zhang X, Yuan Y-R, Pei Y, Lin S-S, Tuschl T, Patel DJ, Chua N-H (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Development 20: 3255-3268
Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3. 5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiology 145: 450-464
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73548-
dc.description.abstract植物菌質體是一種缺少細胞壁的絕對寄生植物病源細菌,引起的常見病徵有枝條增生、花器綠化及花器葉化,並對作物造成危害進而造成經濟上的損失。釐清植物與植物菌質體之間的交互作用有助於發展控制此類病害的策略。先前的實驗中發現日日春感染日日春葉片黃化病菌質體(Periwinkle leaf yellowing phytoplasma,PLY phytoplasma)後,日日春會產生系統性的抗病反應,在有病徵及無病徵枝條並且都有誘導CrPR1a的表現,本實驗室利用病毒誘導基因靜默技術(virus-induced gene silencing,VIGS)篩選出11個潛在調控CrPR1a的日日春轉錄因子,包含五個ARF、3個bZIP及兩個AP2/ERF和1個WRKY。本研究進一步利用VIGS來驗證這些轉錄因子是否參與日日春抵抗植物菌質體的防禦反應,我們發現靜默CrWRKY31或CrTINY2會造成植物大量累積水楊酸並抑制TRV的累積,然而若基因靜默植物感染日日春葉片黃化病,其病程反而被加速。這顯示在日日春可能有與SA無關的抗植物菌質體防禦途徑而CrTINY2及CrWRKY31可能也參與其中。先前實驗發現靜默CrARF17之後降低了CrPR1a的表現並加速日日春葉片黃化病的發展,為了更了解CrARF17在植物抗病反應上的角色,我們將CrARF17與其同源的AtARF17於阿拉伯芥上過量表現,過量表現CrARF17的阿拉伯芥展現出捲葉及果莢短小的性狀,與文獻中的過量表現AtARF17的阿拉伯芥性狀相似,顯示CrARF17在阿拉伯芥上與AtARF17仍有相似的功能。在接種CMV的試驗中發現植物產生強烈的免疫反應,並且誘導了的AtPR1的表現,但是過量表現CrARF17及AtARF17在病毒的累積量上則沒有明顯的抑制效果。本研究找到兩個可能參與日日春抵抗菌質體的轉錄因子以及發現過量表現CrARF17會引發強烈的免疫反應但對於植物抗病毒的反應沒有明顯的幫助。zh_TW
dc.description.abstractPhytoplasma, a wall-less obligate bacterial plant parasite, can cause symptoms of witches’-broom, virenscence, as well as phyllody, and result in economic losses. Understanding plant-phytoplasma interactions should help us to develop new control strategies of this pathogen. We found that when Catharanthus roseus (periwinkle) plants are infected with periwinkle leaf yellowing (PLY) phytoplasma, they show systemic defense responses, which was proven by the finding of CrPR1a induction in non-symptomatic shoots. Previously, potential CrPR1a regulatory transcription factors, including 5 ARFs, 3 bZIP, 2 AP2/ERF and 1 WRKY, have been identified using virus-induced gene silencing (VIGS). In this study, I further confirmed whether changes of their transcript abundance affect plant defense against phytoplasma in periwinkle using VIGS. Silencing of CrWRKY31 and CrTINY2 changed the accumulation of SA and resulted in repression of TRV accumulation in periwinkles; however, symptom progression of PLY was accelerated in these plants when inoculated with PLY phytoplamsa. It is possible that CrTINY2 and CrWRKY31 could be involved in a SA-independent defense pathway that is also important for plant to defend against phytoplasma. Previously, it was found that silencing of CrARF17 repressed CrPR1a indcution and accelerated symptom progression of PLY. To understand more about CrARF17 in plant defense responses, it was ectopically expressed in Arabidopsis thaliana and compared its function with its counterpart, AtARF17. It is found that ectopic expression of CrARF17 resulted in curly leaves and short siliques. The phenotypical changes were resemble the phenotype of transgenic plants harbored 35S::5mARF17. These results suggest that CrARF17 shares similar functions with AtARF17. The transgenic plants showed strong immune responses and induction of AtPR1; however, no significant changes in CMV accumulation in these transgenic plants.en
dc.description.provenanceMade available in DSpace on 2021-06-17T08:05:56Z (GMT). No. of bitstreams: 1
U0001-2104202116224600.pdf: 3464121 bytes, checksum: 7c9dbf6c0f2aa895e11f2e47b0164c6c (MD5)
Previous issue date: 2021
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Abbreviations v
Contents vi
Introduction 1
Plant materials and Growth condition 8
Transgenic plants 9
Agrobacterium-mediated virus-induced gene silencing 10
RNA extraction and cDNA synthesis 11
Plasmid construction 11
Real-time PCR 12
PLY phytoplasma inoculation 12
Chemical treat 13
Phytohormone measurement 13
CMV infection 14
Sequence analysis and phylogenetic tree 14
Results 16
Symptom progression analysis in plants with periwinkle leaf yellowing 17
Silencing of CrTINY2 repressed TRV accumulation and enhanced SA accumulation as well as CrPR1a induction in periwinkles plants 19
Silencing of CrWRKY31 repressed TRV accumulation and enhanced SA accumulation in periwinkles plants 20
SA-Asp is a weaker inducer of CrPR1a than SA in periwinkle 21
Phylogenetic relationships and sequence analysis of AtARF17 and CrARF17 22
Transgenic plant and gene expression analysis of AtARF17 and CrARF17 in Arabidopsis thaliana 23
Overexpression of ARF17 enhance AtPR1a expression and hypersensitive reaction in Arabidopsis infected with Cucumber mosaic virus 24
Discussion 26
Tables and figures 32
Table 1. Expression profile of candidate TFs in different conditions 33
Figure 1. The symptoms of periwinkle leaf yellowing (PLY) 34
Figure 2. Relative expression of candidate genes in PLY phtoplasma infection and SA, MeJA and ACC treated periwinkles 35
Figure 3. Changes of disease progression on TFs VIGS constructs treated periwinkle plants infected with PLY phytoplasma 38
Figure 4. Phenotype of VIGS of CrTINY2 and CrWRKY31 in periwinkle. 40
Figure 5. Silencing of CrTINY2 repressed TRV accumulation and enhanced SA content in periwinkles plants. 41
Figure 6. Silencing of CrWRKY31 repressed TRV accumulation and enhanced SA content in periwinkles plants. 42
Figure 7. CrPR1a induction in different concentration of SA and SA-asp treated plant. 43
Figure 8. Phylogenetic tree of ARF proteins. 44
Figure 9. Alignment of Catharanthus roseus ARF17 (CrARF17) with other homologous protein from various species 45
Figure 10. Domain structure of Catharanthus roseus ARF17 (CrARF17) with other homologous protein from various species 47
Figure 11. AtARF17 and CrARF17 mRNA contain miR160 recognition site. 48
Figure 12. Localization of YFP-AtARF17 and YFP-CrARF17 49
Figure 13. The phenotype of leaves on transgenic plant. 50
Figure 14. The phenotype of silique of transgenic plant 51
Figure 15. The expression of AtGH3s and AtARF17 and CrARF17 in overexpression transgenic Arabidopsis thaliana 52
Figure 16. symptom of CMV infection in transgenic Arabidopsis 54
Figure 17. 35S::AtARF17 and 35S::CrARF17 transgenic Arabidopsis thaliana infected with CMV 56
Supplementary 57
Table S1. Primers used in this study 58
Figure S1. Plasmid map of the AtARF17 and CrARF17 overexpression construct 61
References 62
dc.language.isoen
dc.title以病毒基因靜默技術驗證候選轉錄因子基因在日日春對抗日日春葉片黃化病植物菌質體之角色及日日春ARF17於植物抗病反應中的可能角色zh_TW
dc.titleConfirming the roles of candidate transcription factor genes in periwinkle defense against periwinkle leaf yellowing phytoplasma and CrARF17 in plant defense responseen
dc.typeThesis
dc.date.schoolyear109-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林詩舜(Shih-Shun Lin),郭志鴻(Chih-Horng Kuo)
dc.subject.keywordCrPR1a,CrARF17,CrWRKY31,CrTINY2,植物菌質體,病毒誘導基因靜默,水楊酸,轉錄因子,植物防禦,zh_TW
dc.subject.keywordCrPR1a,CrARF17,CrWRKY31,CrTINY2,phytoplasma,virus-induced gene silencing,Salicylic acid,transcription factor,,plant defense,en
dc.relation.page67
dc.identifier.doi10.6342/NTU202100845
dc.rights.note有償授權
dc.date.accepted2021-04-23
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物科技研究所zh_TW
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
U0001-2104202116224600.pdf
  目前未授權公開取用
3.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved