Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73540
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許正一(Zeng-Yei Hseu)
dc.contributor.authorChih-Yuan Huangen
dc.contributor.author黃馳元zh_TW
dc.date.accessioned2021-06-17T07:40:51Z-
dc.date.available2022-02-19
dc.date.copyright2019-02-19
dc.date.issued2019
dc.date.submitted2019-02-14
dc.identifier.citation中央氣象局。2018。氣候統計資料。http://www.cwb.gov.tw/V7/climate/monthlyMean/Taiwan_tx.htm。
王志強、陳一正、邱清安、林志銓、曾彥學、歐辰雄、呂金誠。2007。澎湖地區植相與植群之研究。林業研究季刊29 (2):1-18。
王為敏。1997。臺灣澎湖群島之近代土壤與晚中新世古土壤地球化學與風化化學之比較研究。國立臺灣大學農業化學研究所博士論文。
李寄嵎。1994。澎湖地區玄武岩類與福建地區基性脈岩之定年學與地球化學研究兼論中生代晚期以來中國東南地函之演化。國立台灣大學地質學研究所博士論文
阮維周、羅煥記、陳正宏。1976。臺灣岩之結晶分化。中國地質學會會刊 19: 87-97。
曹恕中、宋聖榮、李寄嵎、謝凱旋。1999。台灣地質圖說明書 澎湖群島。經濟部中央地質調查所。
莊文星,陳汝勤。1989。臺灣北部火山岩之定年與地球化學研究。經濟部中央地質調查所彙刊。
郭魁士。1948。澎湖羣島玄武岩上之土壤。國立中興大學農學院。
陳正宏。1990。臺灣之火成岩。經濟部中央地質調查所。
陳春泉。1979。土壤調查手冊。台灣省農業試驗所。
陳培源、劉德慶、黃怡楨。2004。臺灣之礦物。臺灣地質系列 (14): 232-239。
曾廣策、朱雲海、葉德隆。2006。晶體光學及光性礦物學。中國地質大學出版社。
張峻德。1988。森林土壤實驗。國立中興大學教務處出版組印行 p.60。
Aitchison, P. J., M. G. Bawden, D. M. Caroll, P. E. Glover, K. Klinkenberg, P. N. Leeuw, and P. Tuley. 1972. The Environment. Land Resource Study. Vol. 1.
Alexander, E. B., R. G. Coleman, T. Keeler-Wolf, and S. Harrison. 2006. Serpentine Geoecology of Western North America. Oxford University Press, New York, pp. 7, 49-68, 108-110.
M. Anda, J. Shamshuddin, C. Ishak, S. R. Syed Omar. 2008. Mineralogy and factors controlling charge development of three Oxisols developed from different parent materials. Geoderma. 143: 153-167.
Babechuk, M. G., M. Widdowsonc, B. S. Kamber. 2014. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India. Chemical Geology 363: 56–75
Bascomb, C. L. 1968. Distribution of pyrophosphate-extractable iron and organic carbon in soils of various groups. J. Soil Sci. 19: 251-268.
Birkeland, P. W. 1999. Soils and Geomorphology. Oxford University Press, New York.
Blake, G. R., and K. H. Hartge. 1986. Bulk density. pp. 363-375. In A. Klute (ed.). Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Blakemore, L. C., P. L. Searle, and B.K. Daly. 1981. Soil Bureau, Laboratory methods: A. Methods for chemical analysis of soils. Sci. Rep. 10A. Revised ed. New Zealand Soil Bureau, Lower Hutt, New Zealand.
Blume, H. P., and U. Schwertmann. 1969. Genetic evaluation of profile distribution of aluminum, iron, and manganese oxides. Soil Sci. Soc. Am. Proc. 33: 438–444.
Bullock, P., N. Fedoroff, A. Jongerius, G. Stoops, and T. Tursina. 1985. Handbook for soil thin section description. Waine Research Publications, Wolverhamption, U. K.
Cady, J. G., L. P. Wilding, and L. R. Drees. 1986. Petrographic microscope techniques. pp. 185-218. In A. Klute (ed.). Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Chittleborough, D. J. 1991. Indices of weathering for soils and paleosols formed on silicate rocks. Australian Journal of Earth Sciences 38: 115–120.
Chorover, J., M. K. Amistadi, O. A. Chadwick. 2004. Surface charge evolution of mineral–organic complexes during pedogenesis in Hawaiian basalt. Geochimica Et Cosmochimica Acta 68 (23): 4859–4876.
Chung S. L., S. S. Sun, K. Tu, C. H. Chen, C. Y. Lee. 1994. Late Cenozoic basaltic volcanism around the Taiwan Strait, SE China: Product of lithosphere-asthenosphere interaction during continental extension. Chemical Geology 112, Issues 1–2: 1-20.
Dahlgren, R. A., M. Saigusa, F. C. Ugolini. 2004. The nature, properties and management of volcanic soils. Advances in Agronomy 82: 113–182.
Darmody, R. G., C. E. Thorn, C. E. Allen. 2005. Chemical weathering and boulder mantles, Kärkevagge, Swedish Lapland. Geomorphology 67: 159–170.
Dessert C., B. Dupre´, J. Gaillardet, L. M. Francois, C. J. Allegre. 2003. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chemical Geology 202: 257– 273.
Eze P. N., J.Knight, M. Evans. 2016. Tracing recent environmental changes and pedogenesis using geochemistry and micromorphology of alluvial soils, Sabie-Sand River Basin, South Africa. Geomorphology 268: 12–321.
Fitzpatrick, E.A. 1970. A technique for the preparations of large thin sections of soils and consolidated material. In: D.A. Osmond and P. Bullock, Micromorphological Techniques and Application. Tech. Monogr. 2, Soil Survey of England and Wales, Rothamstead Exp. Sta., Harpenden, pp. 3-13.
FitzPatrick, E. A. 1984. Micromorphology of Soils. Chapman and Hall, London and New York.
Gardner, W. H. 1986. Water content. pp. 493-544. In A. Klute et al. (eds.). Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Gee, G. W. and J. W. Bauder. 1986. Particle-size analysis. pp. 383-411. In A. Klute (ed.). Methods of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Goldich, S. S. 1938. A study in rock-weathering. Journal of Geology. 46: 17-58
Harnois, L. 1988. The CIW index: a new Chemical Index of Weathering. Sedimentary Geology. 55: 319– 322.
Hassan, A. M., B. A. Raji, W. B. Malgwi, J. O. Agbenin. 2015. The basaltic soils of Plateau State, Nigeria: Proterties, classification and management practices. Journal of Soil Science and Environment Management. 6: 1-8
Jenny, H. 1941. Factors of soil formation. McGraw-Hill, New York.
Juang, W. S., and J. C. Chen. 1992. Geochronology and geochemistry of Penghu basalts, Taiwan Strait and their tectonic significance. Journal of Asian Earth Sciences 7 (2): 185-193.
Juang, W. S., and J. C. Chen. 1999. The nature and origin of Penghu basalts: a review. Bulletin of Central Geological Survey. 12: 147-200.
Kparmwang T., I. E. Esu, V. O. Chude. 1998. Properties, classification and agricultural potential of basaltic soils in semi-arid Nigeria. Journal of Arid Environments. 38: 117-128.
Lair, G. J., F. Zehetner, M. Hrachowitz, N. Franz, F. J. Maringer, and M. H. Gerzabek. 2009. Dating of soil layers in a young floodplain using iron oxide crystallinity. Quat. Geochronol. 4: 260-266.
McFadden, L. D., and D. M. Hendricks. 1985. Changes in the content and composition of pedogenic iron oxyhydroxides in a chronosequence of soils in southern California. Q. Res. 23: 189–204.
McKeague, J. A., and J. H. Day. 1966. Dithionite and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46: 13-22.
McLean, E. O. 1982. Soil pH and lime requirement. pp. 199-244. In A. L. Page et al. (eds.). Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Mehra, O. P., and M. L. Jackson, 1960. Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7: 317-327.
Miller, B. J. 1983. Ultisols. p.283-323. In L. P. Wilding, N. E. Smeck, and G. F. Hall (ed.) Pedogenesis and Soil Taxonomy, II. The soil orders. Elsevier Sci. Publ. Comp., New York, U.S.A and Amsterdam, The Netherlands.
Nagatsuka, S. 1972. Studies on genesis and classification of soils in warm-temperate region of Southwest Japan: Part 3. Some features in distribution and mode of existence of free iron and aluminum oxides in the soil profile. Soil Sci. Plant Nutr. 18: 147–154.
Nelson, D. W., and L. E. Sommers. 1982. Total carbon, OC, and organic matter. pp. 539-577. In A. L. Page et al. (eds.). Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Nesbitt, H. W., and G. M. Young, 1989. Formation and diagenesis of weathering profiles. Journal of Geology 97: 129–147.
Parfitt, R. L., and C. W. Childs. 1988. Estimation of forms of Fe and Al: a review, and analysis of contrasting soils by dissolution and Moessbauer methods. Aust. J. Soil Res. 26: 121-144.
Price J. R., M. A. Velbel. 2003. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology 202: 397– 416.
Rasmussen C., R. A. Dahlgren, R. J. Southard. 2010. Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA. Geoderma 154: 473–485.
Reiche, P. 1943. Graphical representation of chemical weathering. Journal of Sedimentary Petrology 13: 58–68.
Ruxton, B. P. 1968. Measures of the degree of chemical weathering of rocks. Journal of Geology 76: 518–527.
Self, S., Widdowson, M., Thordarson, T., Jay, A.E., 2006. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth and Planetary Science Letters 248 (1–2), 518–532.
Shoji, S., and T. Ono. 1978. Physical and chemical properties and clay mineralogy of Andosol from Kitakami, Japan. Soil Sci. 126: 297-312.
Soil Survey Staff. 2014. Keys to soil taxonomy. 12th ed. USDA–NRCS.
Stoops, G. 2003. Guidelines for analysis and description of soil and regolith thin sections. Soil Sci. Soc. Am., Madison, WI.
Sutton, S. J., J. B. Maynard, 1992. Multiple alteration events in the history of a sub-Huronian regolith at Lauzon Bay, Ontario. Canadian Journal of Earth Science 29: 432– 445.
Schwertmann, U. 1985. The Effect of Pedogenic Environments on Iron Oxide Minerals. Advances in Soil Science. pp 171-200.
Taboada T., L. Rodríguez-Lado, C. Ferro-Vázquez, G. Stoops, A. M. Cortizas. 2016. Chemical weathering in the volcanic soils of Isla Santa Cruz (Galápagos Islands, Ecuador). Geoderma 261: 160-168.
Thomas, G. W. 1982. Exchangeable cation. pp. 159-165. In A. L. Page et al. (eds.). Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
Torn, M. S., S. E. Trumbore, O. A. Chadwick, P. M. Vitousek, D. M. Hendricks. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389 (6647): 170–173.
Vacca, A., P. Adamo, M. Pigna, and P. Violante. 2003. Genesis of tephra-derived soils from the Roccamonfina Volcano, south central Italy. Soil Sci. Sco. Am. J. 67: 198-207.
Wada, K. and Higashi, T., 1976. The categories of aluminum- and iron-humus complexes in Ando soils determined by selective dissolution. J. Soil Sci. 27: 357--368.
Wedepohl, K. H. 1969. Handbook of Geochemistry. Springer-Verlag, Berlin-Heidelberg-New York. 578.
Wilson, S. G., J.-J. Lambert, M. Nanzyo, R. A. Dahlgren. 2017. Soil genesis and mineralogy across a volcanic lithosequence. Geoderma. 285: 301–312.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73540-
dc.description.abstract澎湖群島主要由玄武岩構成,過去較少研究探討澎湖玄武岩土壤的化育作用,並以風化指標描述澎湖玄武岩土壤之風化程度。本研究以既有的岩石定年資料,採取涵蓋不同地層年代的五個剖面,分別為土壤樣體1701與1702 (12.2 Ma)、土壤樣體1703 (10.6 Ma)、土壤樣體1704與1705 (8.2-8.5 Ma)。實驗結果顯示,土壤樣體1701、1702、1703的B層符合美國土壤分類系統中黏聚層之定義,而長年蒸發量大於降雨量造成各剖面之鹽基飽和度均大於35 %,故土壤樣體1701、1702及1703為典型簡育乾潤淋溶土 (Typic Haplustalfs),土壤樣體1704及1705為典型乾潤正常新成土 (Typic Ustorthents)。以元素全量分析結果選擇六個風化指標,包含Chemical index of weathering (CIW)、Chemical index of alteration (CIA)、Modified weathering potential index (MWPI)、Ruxton ratio、Bases/Alumina (B/A) 和 Bases/R2O3 (B/R)。以土壤形態特徵、黏粒含量、鐵活度與結晶度、岩層相對年代大小,檢視各加權平均之風化指標值,顯示各風化指標均能將岩層相對年代較老的土壤樣體1701、1702以及岩層相對年代較年輕的土壤樣體1704, 1705區分開來,土壤樣體1703則由於排水不良在CIW、CIA、MWPI、B/A、B/R等風化指標中偏差較大。各風化指標值在各剖面垂直深度中以計算過程不含鎂之CIA較具有系統性的變化,反映玄武岩風化過程中鋁的富集與鉀、鈉、鈣隨著時間遞移連續性的離子淋洗流失現象。由形態特徵、黏粒含量、鐵結晶度與活度以及風化指標判斷,風化程度以土壤樣體1701, 1702相對較高,而土壤樣體1704, 1705相對較低,符合岩層年紀之相對關係。zh_TW
dc.description.abstractPenghu Islands are mainly composed of basalts. Basalt weathering is relatively fast when compared with other lithologies. In the previous studies, less research focused on investigating in the Penghu basaltic soils of different weathering degree and characterizing the weathering condition of Penghu basaltic soils via weathering indices. In this study, we took the dating information published by Central Geological Survey (CGS) as reference to sample five soil pedons covering older stratigraphic age (Pedon 1701, 1702), middle stratigraphic age (Pedon 1703) and younger stratigraphic age (Pedon 1704, 1705). The result of particle distribution analysis indicated that the clay illuviation of Pedon 1701, 1702 and 1703 meet the requirements of argillic horizon (Bt) of USDA Soil Taxonomy. Years of evaporation overwhelming precipitation in Penghu Islands made the base saturation percentage (BSP) of all pedons over 35 %. Based on the USDA soil taxonomy, Pedon 1701, 1702 and 1703 were classified as Typic Haplustalfs, and Pedon 1704 and 1705 were classified as Typic Ustorthents. The result of total elemental analysis indicated the high aluminum content of Penghu pedons and the loss of cations under the subsurface during the weathering. Based on the result of total elemental analysis, six weathering indices were selected to characterizing the weathering condition of Penghu pedons, including chemical index of weathering (CIW), chemical index of alteration (CIA), modified weathering potential index (MWPI), Ruxton ratio, bases/alumina (B/A) and bases/R2O3 (B/R). The result indicated that all weathering indices showed the conformity with the morphological characteristics, clay content, activity and crystallinity ratios of free iron oxides, and stratigraphic age, discriminating the highly weathering degree of Pedon 1701, 1702 and relatively lower weathering degree of Pedon 1704, 1705. Because of the poor drainage condition, Pedon 1703 bore too much bases, which led to the outlying outcome in the weathering indices related to base elements. Among all of the selected weathering indices, changes in the CIA value with depth showed the most systematic and steadiest tendency, indicating the enrichment of aluminum and the continuously loss of K, Na, Ca during the process of basalt weathering.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:40:51Z (GMT). No. of bitstreams: 1
ntu-108-R05623014-1.pdf: 11775782 bytes, checksum: a47f950a68da34ae48490d5c3488d45b (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要 I
英文摘要 II
目錄 IV
表目錄 VI
圖目錄 VII
第一章 前言 1
第二章 文獻回顧 3
2.1. 玄武岩與玄武岩的風化 3
2.2 臺灣玄武岩及玄武岩土壤分布概況 7
2.3 淋餘土 8
2.4 風化與化學風化指標 9
2.5 研究區域環境概況 13
2.5.1. 氣候 13
2.5.2. 植生 13
2.5.3. 地形 13
2.5.4. 母質 16
2.5.5. 時間 16
第三章 材料與方法 17
3.1. 研究區域 17
3.2. 土壤樣體之選擇、採樣與處理 17
3.2.1 土壤樣體之選擇 17
3.2.2 剖面挖掘與野外形態特徵描述 20
3.2.3 土壤樣體之採集與處理 20
3.2.4 土壤薄切片製作與觀察 20
3.3 土壤物化性質分析 21
3.3.1 物理性質分析 21
3.3.2 化學性質分析 23
3.4 化學風化指標 26
第四章 結果與討論 28
4.1 土壤形態特徵 28
4.2 土壤微形態特徵 39
4.3 土壤物理性質 49
4.4 土壤化學性質 52
4.5 選擇性化學抽出 57
4.6 元素全量分析與風化指標 62
4.7 土壤化育作用 71
4.7.1 時間對研究樣體的影響 71
4.7.2 研究區域土壤的轉變 72
4.8 土壤分類 73
第五章 結論 75
參考文獻 76
附錄 81
dc.language.isozh-TW
dc.title澎湖玄武岩土壤之風化作用與化育過程zh_TW
dc.titleWeathering and Pedogenic Processes of the Basaltic Soils in Penghu Islandsen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳尊賢(Zueng-Sang Chen),王尚禮,蔡呈奇,簡士濠
dc.subject.keyword玄武岩土壤,土壤化育,土壤分類,風化指標,淋餘土,新成土,zh_TW
dc.subject.keywordbasaltic soils,pedogenesis,soil classification,weathering indices,alfisols,entisols,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201900598
dc.rights.note有償授權
dc.date.accepted2019-02-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
11.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved