請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73511
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李峻霣(Jiun-Yun Li) | |
dc.contributor.author | Jia-You Liu | en |
dc.contributor.author | 劉家佑 | zh_TW |
dc.date.accessioned | 2021-06-17T07:39:09Z | - |
dc.date.available | 2021-03-08 | |
dc.date.copyright | 2019-03-08 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-03-04 | |
dc.identifier.citation | 參考文獻
[1] Ravi Pillarisetty, 'Academic and industry research progress in germanium nanodevices,' Nature, vol. 479, p. 324, Nov. 2011. [2] Yosuke Shimura, Srinivasan Ashwyn Srinivasan, and Roger Loo, 'Design Requirements for Group-IV Laser Based on Fully Strained Ge1− xSnx Embedded in Partially Relaxed Si1− y− zGeySnz Buffer Layers,' ECS Journal of Solid State Science and Technology, vol. 5, no. 5, pp. Q140-Q143, 2016. [3] C. Schulte-Braucks, S. Glass, E. Hofmann, D. Stange, N. von den Driesch, J. M. Hartmann, Z. Ikonic, Q. T. Zhao, D. Buca, S. Mantl, 'Process modules for GeSn nanoelectronics with high Sn-contents,' Solid-State Electronics, vol. 128, pp. 54-59, 2017. [4] Suyog Gupta, Blanka Magyari-Köpe, Yoshio Nishi, and Krishna C. Saraswat, 'Achieving direct band gap in germanium through integration of Sn alloying and external strain,' Journal of Applied Physics, vol. 113, no. 7, p. 073707, 2013. [5] Yi Tong, Genquan Han, Bin Liu, Yue Yang, Lanxiang Wang, Wei Wang, and Yee-Chia Yeo, 'Ni(Ge1-xSnx) Ohmic Contact Formation on N-Type Ge1-xSnx Using Selenium or Sulfur Implant and Segregation,' IEEE Transactions on Electron Devices, vol. 60, no. 2, pp. 746-752, 2013. [6] S. Gupta, B. Vincent, B. Yang, D. Lin, F. Gencarelli, J. Y. J. Lin, R. Chen, O. Richard, H. Bender, B. Magyari-Köpe, M. Caymax, J. Dekoster, Y. Nishi and K. C. Saraswat,“Towards high mobility GeSn channel nMOSFETs: Improved surface passivation using novel ozone oxidation method,” in Proc. IEEE IEDM, Dec. 2012, pp. 16.2.1–16.2.4. [7] S. Gupta, B. Vincent, D. H. C. Lin, M. Gunji, A. Firrincieli, F. Gencarelli, B. Magyari-Köpe, B. Yang, B. Douhard, J. Delmotte, A. Franquet, M. Caymax, J. Dekoster, Y. Nishi and K. C. Saraswat, “GeSn channel nMOSFETs: Material potential and technological outlook,” in Proc. Symp. VLSI Technol., Jun. 2012, pp. 95–96. [8] Genquan Han, Shaojian Su, Lanxiang Wang, Wei Wang, Xiao Gong, Yue Yang, Ivana, Pengfei Guo, Cheng Guo, Guangze Zhang, Jisheng Pan, Zheng Zhang, Chunlai Xue, Buwen Cheng, and Yee-Chia Yeo, “Strained germanium-tin (GeSn) n-channel MOSFETs featuring low temperature n+/p junction formation and GeSnO2 interfacial layer,” in Proc. Symp. VLSI Technol., Jun. 2012, pp. 97–98. [9] Pengfei Guo, Chunlei Zhan, Yue Yang, Xiao Gong, Bin Liu, Ran Cheng, Wei Wang, Jisheng Pan, Zheng Zhang, Eng Soon Tok, Genquan Han, and Yee-Chia Yeo, “Germanium-tin (GeSn) n-channel MOSFETs with low temperature silicon surface passivation,” in Proc. Symp. VLSI Technology, Systems, and Applications (VLSI-TSA), Jun. 2013, pp. 1–2. [10] Yung-Chin Fang, Kuen-Yi Chen, Ching-Heng Hsieh, Chang-Chia Su, and Yung-Hsien Wu, “n-MOSFETs formed on solid phase epitaxially grown gesn film with passivation by oxygen plasma featuring high mobility,” ACS Applied Material Interfaces, vol. 7, pp. 26 374–26 380, Nov. 2015. [11] Tzu-Hung Liu, Po-Yuan Chiu, Yen Chuang, Chia-You Liu, Chang-Hong Shen, Guang-Li Luo, and Jiun-Yun Li, 'High-Mobility GeSn n-Channel MOSFETs by Low-Temperature Chemical Vapor Deposition and Microwave Annealing,' IEEE Electron Device Letters, vol. 39, no. 4, pp. 468-471, 2018. [12] Lanxiang Wang, Shaojian Su, Wei Wang, Yue Yang, Yi Tong, Bin Liu, Pengfei Guo, Xiao Gong, Guangze Zhang, Chunlai Xue, Buwen Cheng, Genquan Han, and Yee-Chia Yeo, “Germanium–Tin n+/p junction formed using phosphorus ion implant and 400 °C rapid thermal anneal,” IEEE Electron Device Letters, vol. 33, no. 11, pp. 1529–1531, Nov. 2012. [13] Jeehwan Kim, Stephen W. Bedell, and Devendra K. Sadana, 'Improved germanium n+/p junction diodes formed by coimplantation of antimony and phosphorus,' Applied Physics Letters, vol. 98, no. 8, p. 082112, 2011. [14] Che-Wei Chen, Cheng-Ting Chung, Jyun-Chih Lin, Guang-Li Luo, and Chao-Hsin Chien, 'High on/off ratio and very low leakage in p+/n and n+/p germanium/silicon heterojunction diodes,' Applied Physics Express, vol. 6, no. 2, p. 024001, 2013. [15] Yao-Jen Lee, Ta-Chun Cho, Shang-Shiun Chuang, Fu-Kuo Hsueh, Yu-Lun Lu, Po-Jung Sung, Hsiu-Chih Chen, Michael I. Current, Tseung-Yuen Tseng, Tien-Sheng Chao, Chenming Hu, and Fu-Liang Yang, 'Low-Temperature Microwave Annealing Processes for Future IC Fabrication—A Review,' IEEE Transactions on Electron Devices, vol. 61, no. 3, pp. 651-665, Mar. 2014 [16] Yao-Jen Lee, Shang-Shiun Chuang, Fu-Kuo Hsueh, Ho-Ming Lin, Shich-Chuang Wu, Ching-Yi Wu, and Tseung-Yuen Tseng, 'Dopant activation in single-crystalline germanium by low-temperature microwave annealing,' IEEE Electron Device Letters, vol. 32, no. 2, pp. 194-196, Feb. 2011. [17] Chaochao Fu, Yan Wang, Peng Xu, Lei Yue, Feng Sun, David Wei Zhang, Shi-Li Zhang, Jun Luo, Chao Zhao, and Dongping Wu, ' Understanding the microwave annealing of silicon,' AIP Advances, vol. 7, no. 3, Mar. 2017, Art. no. 035214. [18] Nupur Bhargava, Matthew Coppinger, Jay Prakash Gupta, Leszek Wielunski, and James Kolodzey, ' Lattice constant and substitutional composition of GeSn alloys grown by molecular beam epitaxy,' Applied Physics Letters, vol. 103, no. 4, p. 041908, 2013. [19] C. Kittel, Introduction to Solid State Physics. New York: Wiley, 1956, ch. 2. [20] Ching-Tsung Huang, 'Band Strucure Simulation and Photoluminescence of GeSn Alloys,' Master thesis, National Taiwan University, 2018. [21] Leo J van der Pauw, 'A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape,' Philips Technical Review, vol. 20, pp. 220-224, 1958. [22] Edwin Hall, 'On a New Action of the Magnet on Electric Currents,' American Journal of Mathematics, vol. 2, 1879. [23] Y. Yamamoto, S. Lischke, L. Zimmermann, D. Knoll, J. Murota, and B. Tillack, 'Advanced Germanium Epitaxy for Photonics Application,' ECS Transactions, vol. 67, no. 1, pp. 123-134, 2015. [24] Nupur Bhargava, Jay Prakash Gupta, Nikolai Faleev, Leszek Wielunski, and James Kolodzey,' Thermal Stability of Annealed Germanium-Tin Alloys Grown by Molecular Beam Epitaxy,' Journal of Electronic Materials, Vol. 46, No. 3, 2017. [25] H. Li, Y. X. Cui, K. Y. Wu, W. K. Tseng, H. H. Cheng, and H. Chen, 'Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment,' Applied Physics Letters, vol. 102, no. 25, p. 251907, 2013. [26] Wei Wang, Lingzi Lia, Qian Zhoua, Jisheng Panb, Zheng Zhangb,Eng Soon Tokc, and Yee-Chia Yeo, 'Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1− xSnx layer on Ge (001) substrate,' Applied Surface Science, vol. 321, pp. 240-244, 2014. [27] C. M. Comrie, C. B. Mtshali, P. T. Sechogela, N. M. Santos, K. van Stiphout, R. Loo, W. Vandervorst, and A. Vantomme, “Interplay between relaxation and Sn segregation during thermal annealing of GeSn strained layers,” Journal of Applied Physics, vol. 120, no. 14, p. 145303, 2016. [28] H. Li, C. Chang, T. P. Chen, H. H. Cheng, Z. W. Shi, and H. Chen, 'Characteristics of Sn segregation in Ge/GeSn heterostructures,' Applied Physics Letters, vol. 105, no. 15, p. 151906, 2014. [29] Z. P. Zhang, Y. X. Song, Y. Y. Li, X. Y. Wu, Z. Y. S. Zhu, Y. Han, L. Y. Zhang, H. Huang, and S. M. Wang, 'Effect of Thermal Annealing on Structural Properties of GeSn Thin Films Grown by Molecular Beam Epitaxy,' AIP Advances, vol. 7, no. 10, Oct. 2017, Art. no. 105020. [30] M. S. Carroll and R. Koudelka, 'Accurate modelling of average phosphorus diffusivities in germanium after long thermal anneals: evidence of implant damage enhanced diffusivities,' Semiconductor Science and Technology, vol. 22, no. 1, p. S164-S167, Jan. 2007. [31] Chi On Chui, Leonard Kulig, Jean Moran, and Wilman Tsai, and Krishna C. Saraswat, 'Germanium n-type shallow junction activation dependences,' Applied Physics Letters, vol. 87, no. 9, p. 091909, 2005. [32] Yu-Lin Chao and Jason C. S. Woo, 'Germanium n+/p Diodes: A Dilemma Between Shallow Junction Formation and Reverse Leakage Current Control,' IEEE Transactions on Electron Devices, vol. 57, no. 3 pp. 665-670, 2010. [33] Chyiu Hyia Poon, Leng Seow Tan, Byung Jin Cho, and An Yan Du, 'Dopant Loss Mechanism in n/p Germanium Junctions during Rapid Thermal Annealing,' Journal of the Electrochemical Society, vol. 152, no. 12, pp. G895-G899, 2005. [34] P. Tsouroutas, D. Tsoukalas, I. Zergioti, N. Cherkashin, and A. Claverie, 'Modeling and experiments on diffusion and activation of phosphorus in germanium,' Journal of Applied Physics, vol. 105, no. 9, p. 094910, 2009. [35] Dieter K. Schroder, 'Semiconductor material and device characterization,' John Wiley & Sons, 2006. [36] Wen-Hsien Tu, Shu-Han Hsu, and Chee-Wee Liu, 'The pn junctions of epitaxial germanium on silicon by solid phase doping,' IEEE Transactions on Electron Devices, vol. 61, no. 7, pp. 2595-2598, 2014. [37] Jin-Hong Park, Duygu Kuzum, Hyun-Yong Yu, and Krishna C. Saraswat, 'Optimization of Germanium (Ge) n/p and p/n Junction Diodes and Sub 380◦C Ge CMOS Technology for Monolithic Three-Dimensional Integration,' IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2394-2400, 2011. [38] Ray Duffy, and Anco Heringa, 'Characterisation of electrically active defects,' Physica Status Solidi (c), vol. 11, no. 1, pp. 130-137, 2014. [39] R. Duffy, A. Heringa, V. C. Venezia, J. Loo, M. A. Verheijen, M. J. P. Hopstaken, K. van der Tak, M. de Potter, J. C. Hooker, P. Meunier-Beillard, and R. Delhougne, 'Quantitative prediction of junction leakage in bulk-technology CMOS devices,' Solid-State Electronics, vol. 54, no. 3, pp. 243-251, 2010. [40] Chen Wang, Cheng Li, Guangyang Lin, Weifang Lu, Jiangbin Wei, Wei Huang, Hongkai Lai, Songyan Chen, Zengfeng Di, and Miao Zhang, 'Germanium n+/p shallow junction with record rectification ratio formed by low-temperature preannealing and excimer laser annealing,' IEEE Transactions on Electron Devices, vol. 61, no. 9, pp. 3060-3065, 2014. [41] Maryam Shayesteh, Dan O’Connell, Farzan Gity, Philip Murphy-Armando, Ran Yu, Karim Huet, Ines Toqué-Tresonne, Fuccio Cristiano, Simona Boninelli, Henrik Hartmann Henrichsen, Peter Folmer Nielsen, Dirch Hjorth Petersen, and Ray Duffy, 'Optimized laser thermal annealing on germanium for high dopant activation and low leakage current, ' IEEE Transactions on Electron Devices, vol. 61, no. 12, pp. 4047-4055, 2014. [42] Piyush Bhatt, Prashant Swarnkar, Abhishek Misra, Jayeeta Biswas, Christopher Hatem, Aneesh Nainani, and Saurabh Lodha, 'Enhanced Ge n+/p junction performance using cryogenic phosphorus implantation, ' IEEE Transactions on Electron Devices, vol. 62, no. 1, pp. 69-74, 2015. [43] Tony Chi Liu, Hiroki Ikegaya, and Tomonori Nishimura, 'Ge n+/p junctions with high ON-to-OFF current ratio by surface passivation, ' IEEE Electron Device Letters, vol. 37, no. 7, pp. 847-850, 2016. [44] Yi-Ju Chen, Bing-Yue Tsui, Hung-Ju Chou, Ching-I. Li, Ger-Pin Lin, and Shao-Yu Hu, 'Reduced junction leakage by hot phosphorus ion implantation of NiGe-contacted germanium n+/p shallow junction, ' IEEE Electron Device Letters, vol. 38, no. 9, pp. 1192-1195, 2017. [45] Li Sian Jheng, Hui Li, Chiao Chang, Hung Hsiang Cheng, and Liang Chen Li, 'Comparative investigation of Schottky barrier height of Ni/n-type Ge and Ni/n-type GeSn,' AIP Advances, vol. 7, no. 9, Sep. 2017, Art. no. 095324. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73511 | - |
dc.description.abstract | 鍺錫合金其高載子遷移率的特性,使其非常有潛力成為下一代邏輯元件的通道材料。當錫比例超過8 ~ 11%時,鍺錫將變成直接能隙材料,此時聚集在Γ能帶中的電子數量會增加,導致較低的電子等效質量及較高的電子遷移率。近來鍺錫n-型電晶體的相關研究顯示其最佳開關電流比值僅10 ~ 10^3 A/A,主因是源極(汲極)p/n界面之漏電流所致,因此在本論文中,我們將針對n-型施體磷離子佈植於應變或鬆弛鍺錫薄膜中,研究其材料品質及載子活化特性,並深入探討不同應變對鍺錫n+/p二極體漏電流的影響。
由於鍺錫在經過離子佈值與熱退火或微波退火製程後,晶格品質會受損,且可能會產生應變鬆弛與錫偏析的現象,我們以X射線繞射(X-ray diffraction, XRD)訊號分析鍺錫的晶格狀態,並進行霍爾實驗以量測片電阻及載子活化率,整體而言,微波退火的表現比熱退火來的好。另外,在製作鍺錫二極體之前,藉由製作純鍺二極體作為參考,並確認各項製程步驟對於元件效能的影響,以作為後續鍺錫二極體製程基礎。本論文中鍺二極體的最高開關電流比值為4.3 x 10^6 A/A。另一方面,藉由不同離子佈值劑量,與熱退火或微波退火條件製作鍺錫二極體元件,電性結果顯示位於鍺錫薄膜之缺陷可能為主要漏電流來源,當鍺錫膜厚越厚,其缺陷造成越大的二極體漏電流,而微波退火相較於熱退火較能抑制漏電流。藉由較高能量離子佈植,可以有效降低漏電流,應變鍺錫二極體之最高的電流開關比可達約10^6 A/A,而鬆弛鍺錫二極體則可達10^4 A/A。 | zh_TW |
dc.description.abstract | Germanium-Tin (GeSn) alloys with a high carrier mobility are a promising channel material for next-generation CMOS technology. As the Sn fraction of GeSn alloysis higher than 8 ~ 11 %, GeSn becomes a direct-bandgap material, where more electrons would populate in the Γ band, leading to a smaller effective mass and higher electron mobility. Recent works on GeSn n-MOSFET shows the best ION/IOFF ratio is merely 10 ~ 10^3 A/A possibly due to the source/substrate or drain/substrate junction leakage. In this thesis, we focus on the material quality and carrier activation by phosphorus ion implant in strained or relaxed GeSn films to investigate the effects of strains in the epitaxial GeSn films on the n+/p junction leakage.
Crystal quality will be degraded with severe Sn segregation after the ion implantation and the subsequent thermal or microwave annealing step. By X-ray diffraction, crystal quality after annealing can be evaluated. For sheet resistance and carrier activation, Hall measurements were performed. The results showed that MWA is better than RTA for carrier activation and crystal quality. To test the pn junction leakage, we fabricated Ge diodes as a baseline to evaluate the effects of process steps on the diode performance. The best JON/JOFF ratio achieved in Ge diode is 4.3 x 10^6 A/A. For GeSn diodes, by different process parameters such as implant doses, annealing temperature and microwave power, and GeSn thicknesses, it is suggested that the defects in the GeSn film would dominate the junction leakage. As the GeSn film is thicker, the leakage current is larger due to more associated defects by the strain relaxation. By MWA, the leakage current can be effectively suppressed. Furthermore, with a deep pn junction by a higher implant energy, the leakage current can be further suppressed. The record-high JON/JOFF ratios are 10^6 and 10^4 A/A for the strained and relaxed GeSn diodes, respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:39:09Z (GMT). No. of bitstreams: 1 ntu-108-R05943060-1.pdf: 5959192 bytes, checksum: 05d1f52ca14cb59b73c5a67999d998ad (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iv Abstract v 目錄 vi 圖目錄 viii 表目錄 xv 第一章 引言.. 1 1.1 鍺錫n-型電晶體 3 1.2 鍺錫n+/p二極體 4 1.3 微波退火技術 5 1.4 倒晶格空間映射 7 1.5 論文架構 9 第二章 磷離子佈植於鍺錫薄膜之載子活化 10 2.1 van der Pauw量測原理簡介 10 2.2 鍺錫薄膜材料特性與分析 12 2.2.1 鍺錫薄膜磊晶及特性 12 2.2.2 n-型鍺錫薄膜製程 14 2.2.3 熱穩定度分析 15 2.3 鍺錫薄膜之van der Pauw量測結果與分析 17 2.3.1 應變鍺錫薄膜之量測結果與分析 17 2.3.2 鬆弛鍺錫薄膜之量測結果與分析 20 2.4 討論 23 第三章 鍺n+/p二極體之製作與分析 24 3.1 鍺n+/p二極體元件製程 24 3.2 鍺n+/p二極體量測結果與分析 27 3.2.1 單步離子佈植形成二極體之量測結果 28 3.2.2 雙步離子佈植形成二極體之量測結果 28 3.3 討論 31 第四章 鍺錫n+/p二極體之製作與分析 33 4.1 鍺錫薄膜材料特性與分析 33 4.1.1 鍺錫薄膜磊晶及特性 33 4.1.2 熱穩定度分析 36 4.2 鍺錫n+/p二極體元件 39 4.2.1 鍺錫n+/p二極體元件製程 39 4.2.2 樣品C1 ~ C5之二極體電性結果與討論 40 4.2.3 離子佈植深度效應 47 第五章 結論及未來工作 50 參考文獻 52 | |
dc.language.iso | zh-TW | |
dc.title | 具高電流開關比之鍺錫n+/p二極體之製作與分析 | zh_TW |
dc.title | Fabrication and Characterization of GeSn n+/p Diodes
with High JON/JOFF Ratios | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳敏璋(Miin-Jang Chen),李敏鴻(Min-Hung Lee) | |
dc.subject.keyword | 鍺錫合金,二極體,漏電流,離子佈植,微波退火,熱退火,電流開關比, | zh_TW |
dc.subject.keyword | Germanium-tin (GeSn) alloys,diodes,leakage current,ion implant,microwave annealing (MWA),rapid thermal annealing (RTA),JON/JOFF ratio, | en |
dc.relation.page | 56 | |
dc.identifier.doi | 10.6342/NTU201900633 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-03-05 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 5.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。