Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73498
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佑宗(You-Tzung Chen)
dc.contributor.authorHsiang-Hsuan Fanen
dc.contributor.author范湘泫zh_TW
dc.date.accessioned2021-06-17T07:38:23Z-
dc.date.available2020-08-26
dc.date.copyright2019-08-26
dc.date.issued2019
dc.date.submitted2019-03-19
dc.identifier.citationAlemany, A., M. Florescu, C. S. Baron, J. Peterson-Maduro and A. van Oudenaarden (2018). 'Whole-organism clone tracing using single-cell sequencing.' Nature 556(7699): 108-112.
Armstrong, J. F., M. H. Kaufman, D. J. Harrison and A. R. Clarke (1995). 'High-frequency developmental abnormalities in p53-deficient mice.' Curr Biol 5(8): 931-936.
Bard-Chapeau, E. A., A. T. Nguyen, A. G. Rust, A. Sayadi, P. Lee, B. Q. Chua, L. S. New, J. de Jong, J. M. Ward, C. K. Chin, V. Chew, H. C. Toh, J. P. Abastado, T. Benoukraf, R. Soong, F. A. Bard, A. J. Dupuy, R. L. Johnson, G. K. Radda, E. C. Chan, L. F. Wessels, D. J. Adams, N. A. Jenkins and N. G. Copeland (2014). 'Transposon mutagenesis identifies genes driving hepatocellular carcinoma in a chronic hepatitis B mouse model.' Nat Genet 46(1): 24-32.
Beil-Wagner, J., G. Dossinger, K. Schober, J. vom Berg, A. Tresch, M. Grandl, P. Palle, F. Mair, M. Gerhard, B. Becher, D. H. Busch and T. Buch (2016). 'T cell-specific inactivation of mouse CD2 by CRISPR/Cas9.' Sci Rep 6: 21377.
Biramijamal, F., A. Allameh, P. Mirbod, H. J. Groene, R. Koomagi and M. Hollstein (2001). 'Unusual profile and high prevalence of p53 mutations in esophageal squamous cell carcinomas from northern Iran.' Cancer Res 61(7): 3119-3123.
Blandino, G., A. J. Levine and M. Oren (1999). 'Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy.' Oncogene 18(2): 477-485.
Bouaoun, L., D. Sonkin, M. Ardin, M. Hollstein, G. Byrnes, J. Zavadil and M. Olivier (2016). 'TP53 Variations in Human Cancers: New Lessons from the IARC TP53 Database and Genomics Data.' Hum Mutat 37(9): 865-876.
Cancer Genome Atlas Research, N. (2011). 'Integrated genomic analyses of ovarian carcinoma.' Nature 474(7353): 609-615.
Cerami, E., J. Gao, U. Dogrusoz, B. E. Gross, S. O. Sumer, B. A. Aksoy, A. Jacobsen, C. J. Byrne, M. L. Heuer, E. Larsson, Y. Antipin, B. Reva, A. P. Goldberg, C. Sander and N. Schultz (2012). 'The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.' Cancer Discov 2(5): 401-404.
Chen, J., Y. Du, X. He, X. Huang and Y. S. Shi (2017). 'A Convenient Cas9-based Conditional Knockout Strategy for Simultaneously Targeting Multiple Genes in Mouse.' Sci Rep 7(1): 517.
Chen, L., P. Jenjaroenpun, A. M. Pillai, A. V. Ivshina, G. S. Ow, M. Efthimios, T. Zhiqun, T. Z. Tan, S. C. Lee, K. Rogers, J. M. Ward, S. Mori, D. J. Adams, N. A. Jenkins, N. G. Copeland, K. H. Ban, V. A. Kuznetsov and J. P. Thiery (2017). 'Transposon insertional mutagenesis in mice identifies human breast cancer susceptibility genes and signatures for stratification.' Proc Natl Acad Sci U S A 114(11): E2215-E2224.
Cheung, A. F., A. M. Carter, K. K. Kostova, J. F. Woodruff, D. Crowley, R. T. Bronson, K. M. Haigis and T. Jacks (2010). 'Complete deletion of Apc results in severe polyposis in mice.' Oncogene 29(12): 1857-1864.
Chow, R. D., C. D. Guzman, G. Wang, F. Schmidt, M. W. Youngblood, L. Ye, Y. Errami, M. B. Dong, M. A. Martinez, S. Zhang, P. Renauer, K. Bilguvar, M. Gunel, P. A. Sharp, F. Zhang, R. J. Platt and S. Chen (2017). 'AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma.' Nat Neurosci 20(10): 1329-1341.
Clark, C. R., M. Maile, P. Blaney, S. R. Hellweg, A. Strauss, W. Durose, S. Priya, J. Habicht, M. B. Burns, R. Blekhman, J. E. Abrahante and T. K. Starr (2018). 'Transposon mutagenesis screen in mice identifies TM9SF2 as a novel colorectal cancer oncogene.' Sci Rep 8(1): 15327.
Conde, C., M. Mark, F. J. Oliver, A. Huber, G. de Murcia and J. Menissier-de Murcia (2001). 'Loss of poly(ADP-ribose) polymerase-1 causes increased tumour latency in p53-deficient mice.' EMBO J 20(13): 3535-3543.
Cong, L., F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A. Marraffini and F. Zhang (2013). 'Multiplex genome engineering using CRISPR/Cas systems.' Science 339(6121): 819-823.
de Vries, W. N., L. T. Binns, K. S. Fancher, J. Dean, R. Moore, R. Kemler and B. B. Knowles (2000). 'Expression of Cre recombinase in mouse oocytes: a means to study maternal effect genes.' Genesis 26(2): 110-112.
Donehower, L. A., M. Harvey, B. L. Slagle, M. J. McArthur, C. A. Montgomery, Jr., J. S. Butel and A. Bradley (1992). 'Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours.' Nature 356(6366): 215-221.
Donehower, L. A., M. Harvey, H. Vogel, M. J. McArthur, C. A. Montgomery, Jr., S. H. Park, T. Thompson, R. J. Ford and A. Bradley (1995). 'Effects of genetic background on tumorigenesis in p53-deficient mice.' Mol Carcinog 14(1): 16-22.
Donovan, K. F., M. Hegde, M. Sullender, E. W. Vaimberg, C. M. Johannessen, D. E. Root and J. G. Doench (2017). 'Creation of Novel Protein Variants with CRISPR/Cas9-Mediated Mutagenesis: Turning a Screening By-Product into a Discovery Tool.' PLoS One 12(1): e0170445.
Dow, L. E., J. Fisher, K. P. O'Rourke, A. Muley, E. R. Kastenhuber, G. Livshits, D. F. Tschaharganeh, N. D. Socci and S. W. Lowe (2015). 'Inducible in vivo genome editing with CRISPR-Cas9.' Nat Biotechnol 33(4): 390-394.
Duselis, A. R. and P. B. Vrana (2007). 'Harvesting sperm and artificial insemination of mice.' J Vis Exp(3): 184.
Engelholm, L. H., A. Riaz, D. Serra, F. Dagnaes-Hansen, J. V. Johansen, E. Santoni-Rugiu, S. H. Hansen, F. Niola and M. Frodin (2017). 'CRISPR/Cas9 Engineering of Adult Mouse Liver Demonstrates That the Dnajb1-Prkaca Gene Fusion Is Sufficient to Induce Tumors Resembling Fibrolamellar Hepatocellular Carcinoma.' Gastroenterology 153(6): 1662-1673 e1610.
Fan, H. H., I. S. Yu, Y. H. Lin, S. Y. Wang, Y. H. Liaw, P. L. Chen, T. L. Yang, S. W. Lin and Y. T. Chen (2019). 'P53 ICE CRIM mouse: a tool to generate mutant allelic series in somatic cells and germ lines for cancer studies.' FASEB J: fj201802027R.
Forbes, S. A., D. Beare, H. Boutselakis, S. Bamford, N. Bindal, J. Tate, C. G. Cole, S. Ward, E. Dawson, L. Ponting, R. Stefancsik, B. Harsha, C. Y. Kok, M. Jia, H. Jubb, Z. Sondka, S. Thompson, T. De and P. J. Campbell (2017). 'COSMIC: somatic cancer genetics at high-resolution.' Nucleic Acids Res 45(D1): D777-D783.
Gao, J., B. A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S. O. Sumer, Y. Sun, A. Jacobsen, R. Sinha, E. Larsson, E. Cerami, C. Sander and N. Schultz (2013). 'Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.' Sci Signal 6(269): pl1.
Gao, Y. B., Z. L. Chen, J. G. Li, X. D. Hu, X. J. Shi, Z. M. Sun, F. Zhang, Z. R. Zhao, Z. T. Li, Z. Y. Liu, Y. D. Zhao, J. Sun, C. C. Zhou, R. Yao, S. Y. Wang, P. Wang, N. Sun, B. H. Zhang, J. S. Dong, Y. Yu, M. Luo, X. L. Feng, S. S. Shi, F. Zhou, F. W. Tan, B. Qiu, N. Li, K. Shao, L. J. Zhang, L. J. Zhang, Q. Xue, S. G. Gao and J. He (2014). 'Genetic landscape of esophageal squamous cell carcinoma.' Nat Genet 46(10): 1097-1102.
Groszer, M., R. Erickson, D. D. Scripture-Adams, R. Lesche, A. Trumpp, J. A. Zack, H. I. Kornblum, X. Liu and H. Wu (2001). 'Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo.' Science 294(5549): 2186-2189.
Halperin, S. O., C. J. Tou, E. B. Wong, C. Modavi, D. V. Schaffer and J. E. Dueber (2018). 'CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window.' Nature 560(7717): 248-252.
Hanel, W., N. Marchenko, S. Xu, S. X. Yu, W. Weng and U. Moll (2013). 'Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis.' Cell Death Differ 20(7): 898-909.
Harvey, M., M. J. McArthur, C. A. Montgomery, Jr., J. S. Butel, A. Bradley and L. A. Donehower (1993). 'Spontaneous and carcinogen-induced tumorigenesis in p53-deficient mice.' Nat Genet 5(3): 225-229.
Harvey, M., A. T. Sands, R. S. Weiss, M. E. Hegi, R. W. Wiseman, P. Pantazis, B. C. Giovanella, M. A. Tainsky, A. Bradley and L. A. Donehower (1993). 'In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice.' Oncogene 8(9): 2457-2467.
Harvey, M., H. Vogel, D. Morris, A. Bradley, A. Bernstein and L. A. Donehower (1995). 'A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53-deficient mice.' Nat Genet 9(3): 305-311.
Hayashi, S., P. Lewis, L. Pevny and A. P. McMahon (2002). 'Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain.' Mech Dev 119 Suppl 1: S97-S101.
Hayashi, S., T. Tenzen and A. P. McMahon (2003). 'Maternal inheritance of Cre activity in a Sox2Cre deleter strain.' Genesis 37(2): 51-53.
Hsu, P. D., D. A. Scott, J. A. Weinstein, F. A. Ran, S. Konermann, V. Agarwala, Y. Li, E. J. Fine, X. Wu, O. Shalem, T. J. Cradick, L. A. Marraffini, G. Bao and F. Zhang (2013). 'DNA targeting specificity of RNA-guided Cas9 nucleases.' Nat Biotechnol 31(9): 827-832.
Huang, J., M. Chen, M. J. Whitley, H.-C. Kuo, E. S. Xu, A. Walens, Y. M. Mowery, D. Van Mater, W. C. Eward, D. M. Cardona, L. Luo, Y. Ma, O. M. Lopez, C. E. Nelson, J. N. Robinson-Hamm, A. Reddy, S. S. Dave, C. A. Gersbach, R. D. Dodd and D. G. Kirsch (2017). 'Generation and comparison of CRISPR-Cas9 and Cre-mediated genetically engineered mouse models of sarcoma.' Nature Communications 8: 15999.
Hung, S. S., V. Chrysostomou, F. Li, J. K. Lim, J. H. Wang, J. E. Powell, L. Tu, M. Daniszewski, C. Lo, R. C. Wong, J. G. Crowston, A. Pebay, A. E. King, B. V. Bui, G. S. Liu and A. W. Hewitt (2016). 'AAV-Mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo.' Invest Ophthalmol Vis Sci 57(7): 3470-3476.
Ipsaro, J. J., C. Shen, E. Arai, Y. Xu, J. B. Kinney, L. Joshua-Tor, C. R. Vakoc and J. Shi (2017). 'Rapid generation of drug-resistance alleles at endogenous loci using CRISPR-Cas9 indel mutagenesis.' PLoS One 12(2): e0172177.
Jacks, T., L. Remington, B. O. Williams, E. M. Schmitt, S. Halachmi, R. T. Bronson and R. A. Weinberg (1994). 'Tumor spectrum analysis in p53-mutant mice.' Curr Biol 4(1): 1-7.
Johnson, T. M., E. M. Hammond, A. Giaccia and L. D. Attardi (2005). 'The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality.' Nat Genet 37(2): 145-152.
Jones, S. N., A. T. Sands, A. R. Hancock, H. Vogel, L. A. Donehower, S. P. Linke, G. M. Wahl and A. Bradley (1996). 'The tumorigenic potential and cell growth characteristics of p53-deficient cells are equivalent in the presence or absence of Mdm2.' Proc Natl Acad Sci U S A 93(24): 14106-14111.
Justice, M. J., J. K. Noveroske, J. S. Weber, B. Zheng and A. Bradley (1999). 'Mouse ENU mutagenesis.' Hum Mol Genet 8(10): 1955-1963.
Knudson, C. M., G. M. Johnson, Y. Lin and S. J. Korsmeyer (2001). 'Bax accelerates tumorigenesis in p53-deficient mice.' Cancer Res 61(2): 659-665.
Kodama, T., J. Yi, J. Y. Newberg, J. C. Tien, H. Wu, M. J. Finegold, M. Kodama, Z. Wei, T. Tamura, T. Takehara, R. L. Johnson, N. A. Jenkins and N. G. Copeland (2018). 'Molecular profiling of nonalcoholic fatty liver disease-associated hepatocellular carcinoma using SB transposon mutagenesis.' Proc Natl Acad Sci U S A 115(44): E10417-E10426.
Kosicki, M., K. Tomberg and A. Bradley (2018). 'Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements.' Nat Biotechnol 36(8): 765-771.
Kucera, G. T., D. M. Bortner and M. P. Rosenberg (1996). 'Overexpression of an Agouti cDNA in the skin of transgenic mice recapitulates dominant coat color phenotypes of spontaneous mutants.' Dev Biol 173(1): 162-173.
Lang, G. A., T. Iwakuma, Y. A. Suh, G. Liu, V. A. Rao, J. M. Parant, Y. A. Valentin-Vega, T. Terzian, L. C. Caldwell, L. C. Strong, A. K. El-Naggar and G. Lozano (2004). 'Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome.' Cell 119(6): 861-872.
Lee, M. K. and K. Sabapathy (2008). 'The R246S hot-spot p53 mutant exerts dominant-negative effects in embryonic stem cells in vitro and in vivo.' J Cell Sci 121(11): 1899-1906.
Li, B., K. L. Murphy, R. Laucirica, F. Kittrell, D. Medina and J. M. Rosen (1998). 'A transgenic mouse model for mammary carcinogenesis.' Oncogene 16(8): 997-1007.
Liao, H. K., F. Hatanaka, T. Araoka, P. Reddy, M. Z. Wu, Y. Sui, T. Yamauchi, M. Sakurai, D. D. O'Keefe, E. Nunez-Delicado, P. Guillen, J. M. Campistol, C. J. Wu, L. F. Lu, C. R. Esteban and J. C. Izpisua Belmonte (2017). 'In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation.' Cell 171(7): 1495-1507 e1415.
Liu, Y., X. Qi, Z. Zeng, L. Wang, J. Wang, T. Zhang, Q. Xu, C. Shen, G. Zhou, S. Yang, X. Chen and F. Lu (2017). 'CRISPR/Cas9-mediated p53 and Pten dual mutation accelerates hepatocarcinogenesis in adult hepatitis B virus transgenic mice.' Sci Rep 7(1): 2796.
Madison, B. B., L. Dunbar, X. T. Qiao, K. Braunstein, E. Braunstein and D. L. Gumucio (2002). 'Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine.' J Biol Chem 277(36): 33275-33283.
Mahaffey, C. M., N. C. Mahaffey, W. Holland, H. Zhang, D. R. Gandara, P. C. Mack and H. J. Forman (2012). 'Aberrant regulation of the MRP3 gene in non-small cell lung carcinoma.' J Thorac Oncol 7(1): 34-39.
Malina, A., J. R. Mills, R. Cencic, Y. Yan, J. Fraser, L. M. Schippers, M. Paquet, J. Dostie and J. Pelletier (2013). 'Repurposing CRISPR/Cas9 for in situ functional assays.' Genes Dev 27(23): 2602-2614.
Mann, K. M., J. M. Ward, C. C. Yew, A. Kovochich, D. W. Dawson, M. A. Black, B. T. Brett, T. E. Sheetz, A. J. Dupuy, I. Australian Pancreatic Cancer Genome, D. K. Chang, A. V. Biankin, N. Waddell, K. S. Kassahn, S. M. Grimmond, A. G. Rust, D. J. Adams, N. A. Jenkins and N. G. Copeland (2012). 'Sleeping Beauty mutagenesis reveals cooperating mutations and pathways in pancreatic adenocarcinoma.' Proc Natl Acad Sci U S A 109(16): 5934-5941.
Mann, M. B., M. A. Black, D. J. Jones, J. M. Ward, C. C. Yew, J. Y. Newberg, A. J. Dupuy, A. G. Rust, M. W. Bosenberg, M. McMahon, C. G. Print, N. G. Copeland and N. A. Jenkins (2015). 'Transposon mutagenesis identifies genetic drivers of Braf(V600E) melanoma.' Nat Genet 47(5): 486-495.
Mao, J. H., D. Wu, J. Perez-Losada, H. Nagase, R. DelRosario and A. Balmain (2003). 'Genetic interactions between Pten and p53 in radiation-induced lymphoma development.' Oncogene 22(52): 8379-8385.
March, H. N., A. G. Rust, N. A. Wright, J. ten Hoeve, J. de Ridder, M. Eldridge, L. van der Weyden, A. Berns, J. Gadiot, A. Uren, R. Kemp, M. J. Arends, L. F. Wessels, D. J. Winton and D. J. Adams (2011). 'Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis.' Nat Genet 43(12): 1202-1209.
Maresch, R., S. Mueller, C. Veltkamp, R. Ollinger, M. Friedrich, I. Heid, K. Steiger, J. Weber, T. Engleitner, M. Barenboim, S. Klein, S. Louzada, R. Banerjee, A. Strong, T. Stauber, N. Gross, U. Geumann, S. Lange, M. Ringelhan, I. Varela, K. Unger, F. Yang, R. M. Schmid, G. S. Vassiliou, R. Braren, G. Schneider, M. Heikenwalder, A. Bradley, D. Saur and R. Rad (2016). 'Multiplexed pancreatic genome engineering and cancer induction by transfection-based CRISPR/Cas9 delivery in mice.' Nat Commun 7: 10770.
Martinez-Cruz, A. B., M. Santos, M. F. Lara, C. Segrelles, S. Ruiz, M. Moral, C. Lorz, R. Garcia-Escudero and J. M. Paramio (2008). 'Spontaneous squamous cell carcinoma induced by the somatic inactivation of retinoblastoma and Trp53 tumor suppressors.' Cancer Res 68(3): 683-692.
Masciarelli, S., G. Fontemaggi, S. Di Agostino, S. Donzelli, E. Carcarino, S. Strano and G. Blandino (2014). 'Gain-of-function mutant p53 downregulates miR-223 contributing to chemoresistance of cultured tumor cells.' Oncogene 33(12): 1601-1608.
McCarthy, A., K. Savage, A. Gabriel, C. Naceur, J. S. Reis-Filho and A. Ashworth (2007). 'A mouse model of basal-like breast carcinoma with metaplastic elements.' J Pathol 211(4): 389-398.
Meinhold-Heerlein, I., E. Ninci, H. Ikenberg, T. Brandstetter, C. Ihling, I. Schwenk, A. Straub, B. Schmitt, H. Bettendorf, R. Iggo and T. Bauknecht (2001). 'Evaluation of methods to detect p53 mutations in ovarian cancer.' Oncology 60(2): 176-188.
Moser, A. R., H. C. Pitot and W. F. Dove (1990). 'A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse.' Science 247(4940): 322-324.
Mouradov, D., C. Sloggett, R. N. Jorissen, C. G. Love, S. Li, A. W. Burgess, D. Arango, R. L. Strausberg, D. Buchanan, S. Wormald, L. O'Connor, J. L. Wilding, D. Bicknell, I. P. Tomlinson, W. F. Bodmer, J. M. Mariadason and O. M. Sieber (2014). 'Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.' Cancer Res 74(12): 3238-3247.
Nakagata, N. (2011). Cryopreservation of Mouse Spermatozoa and In Vitro Fertilization. Transgenic Mouse Methods and Protocols. M. H. Hofker and J. van Deursen. Totowa, NJ, Humana Press: 57-73.
Nelson, C. E., C. H. Hakim, D. G. Ousterout, P. I. Thakore, E. A. Moreb, R. M. Castellanos Rivera, S. Madhavan, X. Pan, F. A. Ran, W. X. Yan, A. Asokan, F. Zhang, D. Duan and C. A. Gersbach (2016). 'In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.' Science 351(6271): 403-407.
Nguyen, N., L. M. Judd, A. Kalantzis, B. Whittle, A. S. Giraud and I. R. van Driel (2011). 'Random mutagenesis of the mouse genome: a strategy for discovering gene function and the molecular basis of disease.' Am J Physiol Gastrointest Liver Physiol 300(1): G1-11.
Ni, T. K., S. F. Landrette, R. D. Bjornson, M. W. Bosenberg and T. Xu (2013). 'Low-copy piggyBac transposon mutagenesis in mice identifies genes driving melanoma.' Proc Natl Acad Sci U S A 110(38): E3640-3649.
Nik-Zainal, S., H. Davies, J. Staaf, M. Ramakrishna, D. Glodzik, X. Zou, I. Martincorena, L. B. Alexandrov, S. Martin, D. C. Wedge, P. Van Loo, Y. S. Ju, M. Smid, A. B. Brinkman, S. Morganella, M. R. Aure, O. C. Lingjaerde, A. Langerod, M. Ringner, S. M. Ahn, S. Boyault, J. E. Brock, A. Broeks, A. Butler, C. Desmedt, L. Dirix, S. Dronov, A. Fatima, J. A. Foekens, M. Gerstung, G. K. Hooijer, S. J. Jang, D. R. Jones, H. Y. Kim, T. A. King, S. Krishnamurthy, H. J. Lee, J. Y. Lee, Y. Li, S. McLaren, A. Menzies, V. Mustonen, S. O'Meara, I. Pauporte, X. Pivot, C. A. Purdie, K. Raine, K. Ramakrishnan, F. G. Rodriguez-Gonzalez, G. Romieu, A. M. Sieuwerts, P. T. Simpson, R. Shepherd, L. Stebbings, O. A. Stefansson, J. Teague, S. Tommasi, I. Treilleux, G. G. Van den Eynden, P. Vermeulen, A. Vincent-Salomon, L. Yates, C. Caldas, L. van't Veer, A. Tutt, S. Knappskog, B. K. Tan, J. Jonkers, A. Borg, N. T. Ueno, C. Sotiriou, A. Viari, P. A. Futreal, P. J. Campbell, P. N. Span, S. Van Laere, S. R. Lakhani, J. E. Eyfjord, A. M. Thompson, E. Birney, H. G. Stunnenberg, M. J. van de Vijver, J. W. Martens, A. L. Borresen-Dale, A. L. Richardson, G. Kong, G. Thomas and M. R. Stratton (2016). 'Landscape of somatic mutations in 560 breast cancer whole-genome sequences.' Nature 534(7605): 47-54.
Noveroske, J. K., J. S. Weber and M. J. Justice (2000). 'The mutagenic action of N-ethyl-N-nitrosourea in the mouse.' Mamm Genome 11(7): 478-483.
O'Donnell, K. A., V. W. Keng, B. York, E. L. Reineke, D. Seo, D. Fan, K. A. Silverstein, C. T. Schrum, W. R. Xie, L. Mularoni, S. J. Wheelan, M. S. Torbenson, B. W. O'Malley, D. A. Largaespada and J. D. Boeke (2012). 'A Sleeping Beauty mutagenesis screen reveals a tumor suppressor role for Ncoa2/Src-2 in liver cancer.' Proc Natl Acad Sci U S A 109(21): E1377-1386.
O'Gorman, S., N. A. Dagenais, M. Qian and Y. Marchuk (1997). 'Protamine-Cre recombinase transgenes efficiently recombine target sequences in the male germ line of mice, but not in embryonic stem cells.' Proc Natl Acad Sci U S A 94(26): 14602-14607.
Olive, K. P., D. A. Tuveson, Z. C. Ruhe, B. Yin, N. A. Willis, R. T. Bronson, D. Crowley and T. Jacks (2004). 'Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome.' Cell 119(6): 847-860.
Ott, K., H. Vogelsang, J. Mueller, K. Becker, M. Muller, U. Fink, J. R. Siewert, H. Hofler and G. Keller (2003). 'Chromosomal instability rather than p53 mutation is associated with response to neoadjuvant cisplatin-based chemotherapy in gastric carcinoma.' Clin Cancer Res 9(6): 2307-2315.
Platt, R. J., S. Chen, Y. Zhou, M. J. Yim, L. Swiech, H. R. Kempton, J. E. Dahlman, O. Parnas, T. M. Eisenhaure, M. Jovanovic, D. B. Graham, S. Jhunjhunwala, M. Heidenreich, R. J. Xavier, R. Langer, D. G. Anderson, N. Hacohen, A. Regev, G. Feng, P. A. Sharp and F. Zhang (2014). 'CRISPR-Cas9 knockin mice for genome editing and cancer modeling.' Cell 159(2): 440-455.
Postic, C., M. Shiota, K. D. Niswender, T. L. Jetton, Y. Chen, J. M. Moates, K. D. Shelton, J. Lindner, A. D. Cherrington and M. A. Magnuson (1999). 'Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase.' J Biol Chem 274(1): 305-315.
Quintana, R. M., A. J. Dupuy, A. Bravo, M. L. Casanova, J. P. Alameda, A. Page, M. Sanchez-Viera, A. Ramirez and M. Navarro (2013). 'A transposon-based analysis of gene mutations related to skin cancer development.' J Invest Dermatol 133(1): 239-248.
Rad, R., L. Rad, W. Wang, A. Strong, H. Ponstingl, I. F. Bronner, M. Mayho, K. Steiger, J. Weber, M. Hieber, C. Veltkamp, S. Eser, U. Geumann, R. Ollinger, M. Zukowska, M. Barenboim, R. Maresch, J. Cadinanos, M. Friedrich, I. Varela, F. Constantino-Casas, A. Sarver, J. Ten Hoeve, H. Prosser, B. Seidler, J. Bauer, M. Heikenwalder, E. Metzakopian, A. Krug, U. Ehmer, G. Schneider, T. Knosel, P. Rummele, D. Aust, R. Grutzmann, C. Pilarsky, Z. Ning, L. Wessels, R. M. Schmid, M. A. Quail, G. Vassiliou, I. Esposito, P. Liu, D. Saur and A. Bradley (2015). 'A conditional piggyBac transposition system for genetic screening in mice identifies oncogenic networks in pancreatic cancer.' Nat Genet 47(1): 47-56.
Roper, J., T. Tammela, N. M. Cetinbas, A. Akkad, A. Roghanian, S. Rickelt, M. Almeqdadi, K. Wu, M. A. Oberli, F. Sanchez-Rivera, Y. K. Park, X. Liang, G. Eng, M. S. Taylor, R. Azimi, D. Kedrin, R. Neupane, S. Beyaz, E. T. Sicinska, Y. Suarez, J. Yoo, L. Chen, L. Zukerberg, P. Katajisto, V. Deshpande, A. J. Bass, P. N. Tsichlis, J. Lees, R. Langer, R. O. Hynes, J. Chen, A. Bhutkar, T. Jacks and O. H. Yilmaz (2017). 'In vivo genome editing and organoid transplantation models of colorectal cancer and metastasis.' Nat Biotechnol 35(6): 569-576.
Sah, V. P., L. D. Attardi, G. J. Mulligan, B. O. Williams, R. T. Bronson and T. Jacks (1995). 'A subset of p53-deficient embryos exhibit exencephaly.' Nat Genet 10(2): 175-180.
Sanchez-Rivera, F. J., T. Papagiannakopoulos, R. Romero, T. Tammela, M. R. Bauer, A. Bhutkar, N. S. Joshi, L. Subbaraj, R. T. Bronson, W. Xue and T. Jacks (2014). 'Rapid modelling of cooperating genetic events in cancer through somatic genome editing.' Nature 516(7531): 428-431.
Shafarenko, M., J. Mahler, C. Cochran, A. Kisielewski, E. Golding, R. Wiseman and T. Goodrow (1997). 'Similar incidence of K-ras mutations in lung carcinomas of FVB/N mice and FVB/N mice carrying a mutant p53 transgene.' Carcinogenesis 18(7): 1423-1426.
Shimada, S., A. Mimata, M. Sekine, K. Mogushi, Y. Akiyama, H. Fukamachi, J. Jonkers, H. Tanaka, Y. Eishi and Y. Yuasa (2012). 'Synergistic tumour suppressor activity of E-cadherin and p53 in a conditional mouse model for metastatic diffuse-type gastric cancer.' Gut 61(3): 344-353.
Slatter, T. L., P. Ganesan, C. Holzhauer, R. Mehta, C. Rubio, G. Williams, M. Wilson, J. A. Royds, M. A. Baird and A. W. Braithwaite (2010). 'p53-mediated apoptosis prevents the accumulation of progenitor B cells and B-cell tumors.' Cell Death Differ 17(3): 540-550.
Sluss, H. K., H. Armata, J. Gallant and S. N. Jones (2004). 'Phosphorylation of serine 18 regulates distinct p53 functions in mice.' Mol Cell Biol 24(3): 976-984.
Song, H., M. Hollstein and Y. Xu (2007). 'p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM.' Nat Cell Biol 9(5): 573-580.
Spanjaard, B., B. Hu, N. Mitic, P. Olivares-Chauvet, S. Janjuha, N. Ninov and J. P. Junker (2018). 'Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars.' Nat Biotechnol 36(5): 469-473.
Srinivas, S., T. Watanabe, C. S. Lin, C. M. William, Y. Tanabe, T. M. Jessell and F. Costantini (2001). 'Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus.' BMC Dev Biol 1: 4.
Su, L. K., K. W. Kinzler, B. Vogelstein, A. C. Preisinger, A. R. Moser, C. Luongo, K. A. Gould and W. F. Dove (1992). 'Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene.' Science 256(5057): 668-670.
Takeda, H., Z. Wei, H. Koso, A. G. Rust, C. C. Yew, M. B. Mann, J. M. Ward, D. J. Adams, N. G. Copeland and N. A. Jenkins (2015). 'Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression.' Nat Genet 47(2): 142-150.
Tate, J. G., S. Bamford, H. C. Jubb, Z. Sondka, D. M. Beare, N. Bindal, H. Boutselakis, C. G. Cole, C. Creatore, E. Dawson, P. Fish, B. Harsha, C. Hathaway, S. C. Jupe, C. Y. Kok, K. Noble, L. Ponting, C. C. Ramshaw, C. E. Rye, H. E. Speedy, R. Stefancsik, S. L. Thompson, S. Wang, S. Ward, P. J. Campbell and S. A. Forbes (2019). 'COSMIC: the Catalogue Of Somatic Mutations In Cancer.' Nucleic Acids Res 47(D1): D941-D947.
The Australian Phenomics Facility at The Australian National University (2006-2014). “Heritable mouse mutants from the ENU mutagenesis program at the Australian Phenomics Facility at The Australian National University.” MGI Direct Data Submission.
Todaro, G. J. and H. Green (1963). 'Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines.' J Cell Biol 17: 299-313.
Toft, N. J., L. J. Curtis, O. J. Sansom, A. L. Leitch, A. H. Wyllie, H. te Riele, M. J. Arends and A. R. Clarke (2002). 'Heterozygosity for p53 promotes microsatellite instability and tumorigenesis on a Msh2 deficient background.' Oncogene 21(41): 6299-6306.
Toki, H., M. Inoue, H. Motegi, O. Minowa, H. Kanda, N. Yamamoto, A. Ikeda, Y. Karashima, J. Matsui, H. Kaneda, I. Miura, T. Suzuki, S. Wakana, H. Masuya, Y. Gondo, T. Shiroishi, T. Akiyama, R. Yao and T. Noda (2013). 'Novel mouse model for Gardner syndrome generated by a large-scale N-ethyl-N-nitrosourea mutagenesis program.' Cancer Sci 104(7): 937-944.
Ueki, K., R. Nishikawa, Y. Nakazato, T. Hirose, J. Hirato, N. Funada, T. Fujimaki, S. Hojo, O. Kubo, T. Ide, M. Usui, C. Ochiai, S. Ito, H. Takahashi, A. Mukasa, A. Asai and T. Kirino (2002). 'Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors.' Clin Cancer Res 8(1): 196-201.
van Oers, J. M., Y. Edwards, R. Chahwan, W. Zhang, C. Smith, X. Pechuan, S. Schaetzlein, B. Jin, Y. Wang, A. Bergman, M. D. Scharff and W. Edelmann (2014). 'The MutSbeta complex is a modulator of p53-driven tumorigenesis through its functions in both DNA double-strand break repair and mismatch repair.' Oncogene 33(30): 3939-3946.
Vegran, F., R. Boidot, C. Oudin, C. Defrain, M. Rebucci and S. Lizard-Nacol (2007). 'Association of p53 gene alterations with the expression of antiapoptotic survivin splice variants in breast cancer.' Oncogene 26(2): 290-297.
Voskamp, P., C. A. Bodmann, H. G. Rebel, G. E. Koehl, C. P. Tensen, J. N. Bouwes Bavinck, A. El Ghalbzouri, H. J. Van Kranen, R. Willemze, E. K. Geissler and F. R. De Gruijl (2012). 'Rapamycin impairs UV induction of mutant-p53 overexpressing cell clusters without affecting tumor onset.' Int J Cancer 131(6): 1267-1276.
Weber, J., R. Ollinger, M. Friedrich, U. Ehmer, M. Barenboim, K. Steiger, I. Heid, S. Mueller, R. Maresch, T. Engleitner, N. Gross, U. Geumann, B. Fu, A. Segler, D. Yuan, S. Lange, A. Strong, J. de la Rosa, I. Esposito, P. Liu, J. Cadinanos, G. S. Vassiliou, R. M. Schmid, G. Schneider, K. Unger, F. Yang, R. Braren, M. Heikenwalder, I. Varela, D. Saur, A. Bradley and R. Rad (2015). 'CRISPR/Cas9 somatic multiplex-mutagenesis for high-throughput functional cancer genomics in mice.' Proc Natl Acad Sci U S A 112(45): 13982-13987.
Whibley, C., A. F. Odell, T. Nedelko, G. Balaburski, M. Murphy, Z. Liu, L. Stevens, J. H. Walker, M. Routledge and M. Hollstein (2010). 'Wild-type and Hupki (human p53 knock-in) murine embryonic fibroblasts: p53/ARF pathway disruption in spontaneous escape from senescence.' J Biol Chem 285(15): 11326-11335.
Xue, W., S. Chen, H. Yin, T. Tammela, T. Papagiannakopoulos, N. S. Joshi, W. Cai, G. Yang, R. Bronson, D. G. Crowley, F. Zhang, D. G. Anderson, P. A. Sharp and T. Jacks (2014). 'CRISPR-mediated direct mutation of cancer genes in the mouse liver.' Nature 514(7522): 380-384.
Yen, S. T., M. Zhang, J. M. Deng, S. J. Usman, C. N. Smith, J. Parker-Thornburg, P. G. Swinton, J. F. Martin and R. R. Behringer (2014). 'Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes.' Dev Biol 393(1): 3-9.
Young, L. C., A. M. Keuling, R. Lai, P. N. Nation, V. A. Tron and S. E. Andrew (2007). 'The associated contributions of p53 and the DNA mismatch repair protein Msh6 to spontaneous tumorigenesis.' Carcinogenesis 28(10): 2131-2138.
Zehir, A., R. Benayed, R. H. Shah, A. Syed, S. Middha, H. R. Kim, P. Srinivasan, J. Gao, D. Chakravarty, S. M. Devlin, M. D. Hellmann, D. A. Barron, A. M. Schram, M. Hameed, S. Dogan, D. S. Ross, J. F. Hechtman, D. F. DeLair, J. Yao, D. L. Mandelker, D. T. Cheng, R. Chandramohan, A. S. Mohanty, R. N. Ptashkin, G. Jayakumaran, M. Prasad, M. H. Syed, A. B. Rema, Z. Y. Liu, K. Nafa, L. Borsu, J. Sadowska, J. Casanova, R. Bacares, I. J. Kiecka, A. Razumova, J. B. Son, L. Stewart, T. Baldi, K. A. Mullaney, H. Al-Ahmadie, E. Vakiani, A. A. Abeshouse, A. V. Penson, P. Jonsson, N. Camacho, M. T. Chang, H. H. Won, B. E. Gross, R. Kundra, Z. J. Heins, H. W. Chen, S. Phillips, H. Zhang, J. Wang, A. Ochoa, J. Wills, M. Eubank, S. B. Thomas, S. M. Gardos, D. N. Reales, J. Galle, R. Durany, R. Cambria, W. Abida, A. Cercek, D. R. Feldman, M. M. Gounder, A. A. Hakimi, J. J. Harding, G. Iyer, Y. Y. Janjigian, E. J. Jordan, C. M. Kelly, M. A. Lowery, L. G. T. Morris, A. M. Omuro, N. Raj, P. Razavi, A. N. Shoushtari, N. Shukla, T. E. Soumerai, A. M. Varghese, R. Yaeger, J. Coleman, B. Bochner, G. J. Riely, L. B. Saltz, H. I. Scher, P. J. Sabbatini, M. E. Robson, D. S. Klimstra, B. S. Taylor, J. Baselga, N. Schultz, D. M. Hyman, M. E. Arcila, D. B. Solit, M. Ladanyi and M. F. Berger (2017). 'Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients.' Nat Med 23(6): 703-713.
Zhu, F., M. E. Dolle, T. R. Berton, R. V. Kuiper, C. Capps, A. Espejo, M. J. McArthur, M. T. Bedford, H. van Steeg, A. de Vries and D. G. Johnson (2010). 'Mouse models for the p53 R72P polymorphism mimic human phenotypes.' Cancer Res 70(14): 5851-5859.
Zuckermann, M., V. Hovestadt, C. B. Knobbe-Thomsen, M. Zapatka, P. A. Northcott, K. Schramm, J. Belic, D. T. Jones, B. Tschida, B. Moriarity, D. Largaespada, M. F. Roussel, A. Korshunov, G. Reifenberger, S. M. Pfister, P. Lichter, D. Kawauchi and J. Gronych (2015). 'Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling.' Nat Commun 6: 7391.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73498-
dc.description.abstract癌症為一個異質性高的多基因疾病,目前癌症基因體相關研究已經找到為數眾多的癌症基因突變,而許多突變都尚未在活體內驗證它們的生物活性。在近期興起的CRISPR/Cas9系統讓我們擁有了前所未有的高效率精確修改基因體的方法,該技術的發展大幅地加速了體細胞基因編修的實現,讓我們能夠在活體內針對特定標的癌症基因製造突變細胞群,在不必經由過多冗長、費力的動物交配、繁殖之下,可以在原位突變的體細胞群上進行遺傳篩選或檢驗不同癌症基因突變事件間對於癌症起始、進程的合作關係。在這個研究中,我提出了一個結合誘導性Cas9效應物以及CRISPR誘變物 (ICE CRIM) 的轉殖基因小鼠模式,在這個小鼠模式中,CRISPR/Cas9系統會因應環化重組酶 (Cre) 的表現而活化,進而誘導活體內體細胞突變事件的發生。我選擇了著名的抑癌基因Trp53以及兩個重要的DNA錯配修復基因 (Mlh1跟Msh2) 做為此研究中進行體細胞突變的目標基因。我已成功建造並繁殖三個品系的Trp53複合轉基因小鼠,分別針對Trp53轉譯起始密碼以及核酸辨識結合區進行破壞,以及一個同時表現針對Mlh1以及Msh2單一嚮導核醣核酸 (sgRNA) 的LS轉基因小鼠品系。Surveyor分析跟擴增子定序技術在此被用來驗證活體內各個目標基因的編修效率。同時,擴增子定序技術也用來定義所產生的突變等位基因系列。藉由搭配多種不同品系的環化重組酶小鼠 (Sox2-Cre, Alb-Cre, 以及Zp3-Cre小鼠),所建立的ICE CRIM轉殖基因能受到活化,並且在體細胞或者生殖細胞產生目標基因的突變等位基因。此研究提供了直接的實驗證據證明活化的ICE CRIM轉殖基因可以在一個細胞中同時針對目標基因的兩個等位基因進行突變。當所建立的CRISPR誘變物帶有多個嚮導核醣核酸時,活化的ICE CRIM轉殖基因也可以達成同時破壞多個目標基因的目標。此研究的小鼠模式能夠在活體內建立目標基因的突變庫,以供後續在原位進行各個突變的功能性篩選。在所建立的小鼠模式中,CRISPR/Cas9系統藉由誘導的不精確插入缺失事件,產生了多種不同的突變等位基因,而這些序列上的標記提供了一個在活體內做純系分析的工具,藉此特徵,我的實驗成果也提供了支持單一細胞來源的血液腫瘤生成的證據。另外,此研究的實驗成果也驗證了在Trp53突變的遺傳背景下,DNA錯配修復的缺失會加速腫瘤生成的現象。CRISPR/Cas9系統的應用讓我們在未來能夠以基因體序列為基礎,有系統地針對多個癌症相關基因去設計癌症研究,進而了解不同癌症相關基因對於癌症起始、進程的合作關係。zh_TW
dc.description.abstractCancer is a multistep, heterogeneous, genetic disease. Numerous newly identified cancer gene mutations (and the interactions among them) derived from cancer genome projects have yet been functionally illustrated. The CRISPR/Cas9 technology allows somatic genome editing to create mutant pools of target gene(s). When selective pressure is applied, an in situ somatic genetic screen can be performed. Cooperative genetic interactions may also be revealed at the cellular level without extensive breeding between different germline mutant animals. In this study, I proposed a transgenic inducible Cas9 effector/CRISPR mutagen (ICE CRIM) mouse model in which CRISPR/Cas9-mediated somatic mutagenesis events can occur in response to Cre expression. I chose the well-known tumor suppressor gene, Trp53, and two important DNA mismatch repair genes, Mlh1 and Msh2, to be our somatic mutagenesis targets. Three Trp53 ICE CRIM transgenic mouse lines, targeting exon 2 or exon 7 of Trp53, as well as a LS CRIM transgenic mouse line, expressing sgRNAs targeting Mlh1 and Msh2, were generated. Surveyor assay and amplicon-based sequencing were performed to validate the editing efficiency of each target gene. Additionally, amplicon-based sequencing was also used to identify the mutant allelic series. By crossing with different Cre lines (Sox2-Cre, Alb-Cre, and Zp3-Cre), the ICE CRIM allele was activated to generate somatic- and/or germline-mutant alleles of target gene(s). I provided experimental evidence to show that both targeted alleles within a cell can be mutated by an activated ICE CRIM allele. Simultaneous disruption of multiple genes was also achieved when there are multiple sgRNA expression cassettes embedded within an activated ICE CRIM. Our mouse model can be used to generate an in vivo mutants pool for the in situ functional screen. I observed that various mutant alleles resulting from imprecise indel events can provide useful tags for in vivo clonal analysis, and the results suggested a monoclonal origin of hematopoietic neoplasms. The experimental results also indicated that DNA mismatch repair deficiency accelerates tumorigenesis in a Trp53 mutant genetic background. The use of CRISPR/Cas9 system allows genomic sequence-based, systematic experimental designs for various comprehensive cancer gene studies in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:38:23Z (GMT). No. of bitstreams: 1
ntu-108-D00455002-1.pdf: 7383609 bytes, checksum: a659ac818da943856482eb86252dd148 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 #
致謝 ii
中文摘要 iv
Abstract vi
目錄 viii
List of Abbreviations x
List of Figures xii
List of Tables xiii
List of Supplementary Figures xiv
Chapter 1 Introduction 1
1.1 Somatic mutation and cancer 1
1.2 N-Ethyl-N-Nitrosourea- and transposon-mediated mutagenesis 2
1.3 CRISPR/Cas9-mediated in vivo somatic mutagenesis 4
1.4 Functional screen using CRISPR/Cas9-generated mutant allelic series 6
1.5 Trp53 mutant mouse models 8
1.6 The proposed ICE CRIM mouse model 9
Chapter 2 Materials and Methods 11
2.1 sgRNA design 11
2.2 Constructs and generation of transgenic ICE CRIM mice 11
2.3 Animals 13
2.4 RNA extraction and quantitative PCR 14
2.5 Genomic DNA extraction and Surveyor assay 15
2.6 Amplicon-based deep sequencing 17
2.7 Mouse embryonic fibroblast culture 18
2.8 Sanger sequencing 19
2.9 Sperm cells isolation 20
2.10 Histology and immunohistochemistry 20
2.11 Microsatellite instability analysis 22
2.12 Statistical analysis 23
Chapter 3 Results 24
3.1 Generation of Trp53 ICE CRIM transgenic mice 24
3.2 Ubiquitous activation of the ICE CRIM allele in mice 25
3.3 Activated ICE CRIM MEF cells escaped from senescence 28
3.4 Spontaneous tumorigenesis in activated Trp53 ICE CRIM mice 30
3.5 Liver-specific activation of the ICE CRIM allele in mice 32
3.6 Germline-specific activation of the ICE CRIM allele in mic 33
3.7 Somatic mutagenesis of multiple genes in compound heterozygous ICE CRIM mice 35
Chapter 4 Discussion 39
Chapter 5 Perspectives 47
Reference 53
dc.language.isoen
dc.titleCRISPR/Cas9系統創建之小鼠體細胞突變在癌症研究的應用zh_TW
dc.titleMouse Somatic Mutagenesis Using CRISPR/Cas9 for Cancer Studiesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.oralexamcommittee潘思樺(Szu-Hua Pan),陳俊銘(Chun-Ming Chen),周申如(Shen-Ju Chou),游益興(I-Shing Yu)
dc.subject.keywordCRISPR/Cas9,小鼠模式,基因編修,體細胞突變,突變等位基因系列,基因篩選,zh_TW
dc.subject.keywordCRISPR/Cas9,mouse model,genome editing,somatic mutagenesis,mutant allelic series,genetic screen,en
dc.relation.page118
dc.identifier.doi10.6342/NTU201900648
dc.rights.note有償授權
dc.date.accepted2019-03-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept基因體暨蛋白體醫學研究所zh_TW
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  目前未授權公開取用
7.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved