請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73496
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 葉開溫 | |
dc.contributor.author | CHUAN-REN LIN | en |
dc.contributor.author | 林川仁 | zh_TW |
dc.date.accessioned | 2021-06-17T07:38:16Z | - |
dc.date.available | 2024-03-27 | |
dc.date.copyright | 2019-03-27 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-03-19 | |
dc.identifier.citation | Andres-Colas, N., Sancenon, V., Rodriguez-Navarro, S., Thiele, D.J., Ecker, J.R., Puig, S., and Penarrubia, L. (2006). The Arabidopsis heavy meteal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45, 225-236.
Asselbergh, B., De Vleesschauwer, D., and Hofte, M. (2008). Global switches and fine-tunung-ABA modulates plant pathogen defense. Mol. Plant Microbe Interact 21, 709-719. Bae, H., Kin, M.S., Sicher, R.C., Bae, H.J., and Bailey, B.A. (2006). Necrosis- and ethylene-inducing peptide from Fusarium oxysporum induces a complex casade of transcripts associated with signal transduction and cell death in Arabidopsis. Plant Physiol 141, 1056-1067. Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B., and Feldmann, K.A. (1996). Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273, 948-950. Brewer, G.J. (2010). Copper toxicity in the general population. Clin Neurophysiol 121, 459-460. Bruex, A., Kainkaryam, R.M., Wieckowski, Y., Kang, Y.H., Bernhardt, C., Xia, Y., Zheng, X., Wang, J.Y., Lee, M.M., Benfey, P., Woolf, P.J., and Schiefelbein, J. (2012). A gene regulatory network for root epidermis cell differentiation in Arabidopsis. PLoS Genet 8, e1002446. Burkhead, J.L., Reynolds, K.A., Abdel-Ghany, S.E., Cohu, C.M., and Pilon, M. (2009). Copper homeostasis. New Phytol 182, 799-816. Cao, F.Y., Yoshioka, K., and Desveaux, D. (2011). The role of ABA in plant-pathogen interactions. F. Plant Res 124, 489-499. Casareno, R.L., Waggoner, D., and Gitlin, J.D. (1998). The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J Biol Chem 273 23625-23628. Chen, J.H., Jiang, H.W., Hsieh, E.J., Chen, H.Y., Chien, C.T., Hsieh, H.L., and Lin, T.P. (2012). Drought and salt stress tolerance of Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158, 340-351. Chu, C.C., Lee, W.C., Guo, W.Y., Pan, S.M., Chen, L.J., Li, H.M., and Jinn, T.L. (2005). A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant physiol 139, 425-436. Dixon, D.P., Davis, B.G., Edwards, R. (2002). Functional divergence in the glutathione transferase super-family in plants: Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 277, 30859-30869. Erhardt, M., Namba, K., and Hughes, K.T. (2010). Bacterial nanomachines: the flagellum and type III injectisome. Cold Spring Harbor perspectives in biology 2, a000299. Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., and Palme, K. (1998). Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282, 2226-2230. Guillon, S., Trémouillaux-Guiller, J., Pati, P.K., Rideau, M., and Gantet, P. (2006). Hairy root research: recent scenario and exciting prospects. Current opinion in plant biology 9(3), 341-346. Gray, W.M., Kepinski, S., Rouse, D., Leyser, O., and Estelle, M. (2001). Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271-276. Guan, Y., and Nothnagel, E.A. (2004). Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell culture. Plant Physiol 135, 1346-1366. Gunning, V., Tzafestas, K., Sparrow, H., Johnston, E.J., Brentnall, A.S., Potts, J.R., Rylott, E.L., and Bruce, N.C. (2014). Arabidopsis glutathione transferases U24 and U25 exhibit a range of detoxification activities with the environmental pollutant and explosive, 2,4,6-trinitrotoluene. Plant Physiol 165, 854-865. Hardtke, C.S., Ckurshumova, W., Vidaurre, D.P., Singh, S.A., Stamatiou, G., Tiwari, S.B., Hagen, G., Guilfoyle, T.J., and Berleth, T. (2004). Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131, 1089-1100. Harrison, M.D., Jones, C.E., and Dameron, C.T. (1999). Copper chaperones: function, structure and copper-binding properties. J Biol inorg Chem 4, 145-153. Himelblau, E., Mira H., Lin, S.J., Culotta, V.C., Penarrubia, L., and Amasino, R.M. (1998). Identification of a functional homolog of yeast copper homeostasis gene ATX1 from Arabidopsis. Plant Physiol 117, 1227-1234. Hirayama, T., Kieber, J.J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., Alonso, J.M., Dailey, W.P., Dancis, A., and Ecker, J.R. (1999) RESPONSIVE-TO-ANTAGONIST, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97, 383-393. Hua, M.D.S., Kumar, R.S., Shyur, L.F., Cheng, Y.B., Tian, Z., Oelmüller, R., and Yeh, K.W. (2017). Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction. Scientific reports 7, 9291. Huitema, E., Bos, J.I., Tian, M., Win J., Waugh, M.E., and Kamoun, S. (2004). Linking sequence to phenotype in Phytophthora-plant interactions. Trends in microbiology 12, 193-200. Jacobs, S., Zechmann, B., Molitor, A., Trujillo, M., Petutschnig, E., Lipka, V., Kogel, K.H., and Schafer, P. (2011). Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant physiology 156, 726-740. Jha, B., Sharma, A., and Mishra, A. (2011). Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiate in tobacco for salt tolerance. Mol Biol Rep 38: 4823-4832. Kale, S.D., and Tyler, B.M. (2011). Entry of oomycete and fungal effectors into plant and animal host cells. Cellular microbiology 13, 1839-1848. Kamoun, S. (2003). Molecular genetics of pathogenic oomycetes. Eukaryotic cell 2, 191-199. Kampfenkel, K., Kushnir, S., Babiychuk, E., Inze, D., and Van, Montagu, M. (1995) Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J Biol Chem 270, 28479-28486. Kao, C.W., Bakshi, M., Sherameti, I., Dong, S., Reichelt, M., Oelmüller, R., and Yeh, K.W. (2016). A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. Plant molecular biology 92, 643-659. Kim, J., Harter, K., and Theologis, A. (1997). Protein-protein interactions among the Aux/IAA proteins. Proc. Natl. Acad. Sci. USA 94, 11786-11791. Kloppholz, S., Kuhn, H., and Requena, N. (2011). A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Current biology 21, 1204-1209. Lee, Y.C., Johnson, J.M., Chien, C.T., Sun, C., Cai, D., Lou, B., Oelmuller, R., and Yeh, K.W. (2011). Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Molecular plant-microbe interactions 24, 421-431. Lin, H.F., Xiong, J., Zhou, H.M., Chen, C.M., Lin, F.Z., Xu, X.M., Oelmuller, R., and Yeh, K.W. (2019). Growth promotion and disease resistance induced in Anthurium colonized by the beneficial root endophyte Piriformospora indica. BMC plant biology 19(1), 40. Marchant, A., Kargul, J., May, S.T., Muller, P., Delbarre, A., Perrot‐Rechenmann, C., and Bennett, M.J. (1999). AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. The EMBO journal 18(8), 2066-2073. Martin, F., Aerts, A., Ahren, D., Brun, A., Danchin, E.G., Duchaussoy, F., Gibon, J., Kohler, A., Lindquist, E., Pereda, V., Salamov, A., Shapiro, H.J., Wuyts, J., Blaudez, D., Buee, M., Brokstein, P., Canback, B., Cohen, D., Courty, P.E., Coutinho, P.M., Delaruelle, C., Detter, J.C., Deveau, A., DiFazio, S., Duplessis, S., Fraissinet-Tachet, L., Lucic, E., Frey-Klett, P., Fourrey, C., Feussner, I., Gay, G., Grimwood, J., Hoegger, P.J., Jain, P., Kilaru, S., Labbe, J., Lin, Y.C., Legue, V., Le Tacon, F., Marmeisse, R., Melayah, D., Montanini, B., Muratet, M., Nehls, U., Niculita-Hirzel, H., Oudot-Le Secq, M.P., Peter, M., Quesneville, H., Rajashekar, B., Reich, M., Rouhier, N., Schmutz, J., Yin, T., Chalot, M., Henrissat, B., Kues, U., Lucas, S., Van de Peer, Y., Podila, G.K., Polle, A., Pukkila, P.J., Richardson, P.M., Rouze, P., Sanders, I.R., Stajich, J.E., Tunlid, A., Tuskan, G., and Grigoriev, I.V. (2008). The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452, 88-92. Mira, H., Martinez-Garcia, F,. and Penarrubia, L. (2001). Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J 25, 521-528. Moons, A. (2005). Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm 72: 155-202. Noctor, G., and Foyer, C.H. (1998). ASCORBATE AND GLUTATHIONE: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49, 249-279. Noctor, G., Mhamdi, A., Chaouch, S., Han, Y., Neukermans, J., Marquez-Garcia, B., Queval, G., and Foyer, C.H. (2012). Glutathione in plants: an integrated overview. Plant Cell Environ 35, 454-484. Nutricati, E., Miceli, A., Blando, F., and De Bellis, L. (2006). Characterization of two Arabidopsis thaliana glutathione S-transferases. Plant Cell Rep 25, 997-1005. Pantelides, I.S., Tjamos, S.E., Paplomatas, E.J. (2010). Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahlia. Mol Plant Pathol 11, 191-202. Pickett, F.B., Wilson, A.K., and Estelle, M. (1990). The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant physiol 94, 1462-1466. Pieterse, C. M., Van der Does, D., Zamioudis, C., Leon-Reyes, A., and Van Wees, S. C. (2012). Hormonal modulation of plant immunity. Annual review of cell and developmental biology 28, 489-521. Plett, J.M., Kemppainen, M., Kale, S.D., Kohler, A., Legue, V., Brun, A., Tyler, B.M., Pardo, A.G., and Martin, F. (2011). A secreted effector protein of Laccaria bicolor is required for symbiosis development. Current biology 21, 1197-1203. Plett, J.M., Daguerre, Y., Wittulsky, S., Vayssieres, A., Deveau, A., Melton, S.J., Kohler, A., Morrell-Falvey, J.L., Brun, A., Veneault-Fourrey, C., and Martin, F. (2014). Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proceedings of the National Academy of Sciences of the United States of America 111, 8299-8304. Puig, S., Andres-Colas, N., Garacia-Molina, A., and Penarrubia, L.(2007a). Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 30, 271-290. Puig, S., Mira, H., Dorcey, E., Sancenon, V., Andres-Colas, N., Garcia-Molina, A., Burkhead, J.L., Gogolin, K.A., Abdel-Ghanny, S.E., and Thiele, D.J. (2007b). Higher plants possess two different types of ATX1-like copper chaperones. Biochem Biophys Res Commun 354, 385-390. Puig, S., and Thiele, D.J. (2002). Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6, 171-180. Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C., and O’Halloran, T.V. (1999). Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805-808. Rafiqi, M., Jelonek, L., Akum, N.F., Zhang, F., and Kogel, K.H. (2013). Effector candidates in the secretome of Piriformospora indica, a ubiquitous plant-associated fungus. Frontiers in plant science 4, 228. Raven, J.A. (1975). Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74, 163-172. Rubery, P.H., and Sheldrake, A.R. (1974). Carrier-mediated auxin transport. Planta 118, 101-121. Sancenon, V., Puig, S., Meteu-Andres, I., Dorcey, E., Thiele, D.J., and Penarrubia, L. (2004). The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279, 15348-15355. Sancenon, V., Puig, S., Mira, H.M., Thiele, D.J., and Penarrubia, L. (2003). Identification of a copper transporter family in Arabidopsis thaliana. Pkant Mol Biol 51, 577-587. Sappl, P.G., Heazlewood, J.L., and Millar, A.H. (2004). Untangling multi-gene families in plants by integrating proteomics into functional genomics. Phytochemistry 65: 1517-1530. Sarry, J.E., Kuhn, L., Ducruix, C., Lafaye, A., Junot, C., Hugouvieux, V., Jourdain, A., Bastien, O., Fievet, J.B., Vailhen, D., Amekraz, B., Moulin, C., Ezan, E., Garin, J., and Bourguignon, J. (2006). The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analysis. Proteomics 6, 2180-2198. Schafer, P., Pfiffi, S., Voll, L.M., Zajic, D., Chandler, P.M., Waller, F., Scholz, U., Pons-Kuhnemann, J., Sonnewald, S., Sonnewald, U., and Kogel, K.H. (2009). Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. The Plant journal 59, 461-474. Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A., and Oelmuller, R. (2005). The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. The Journal of biological chemistry 280, 26241-26247. Stein, E., Molitor, A., Kogel, K.H., and Waller, F. (2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant and cell physiology 49, 1747-1751. Swindell, W.R., Huebner, M., and Weber, A.P. (2007). Plastic and adaptive gene expression patterns associated with temperature stress in Arabidopsis thaliana. Heredity 99, 143-150. Ton, J., Flors, V., and Mauch-Mani, B. (2009). The multifaceted role of ABA in disease resistance. Trends Plant Sci 14, 310-317. Tseng, T.-T., Tyler, B.M., and Setubal, J.C. (2009). Protein secretion systems in bacterial-host associations, and their description in the Gene Ontology. BMC microbiology 9, S2-S2. Vanneste, S., and Friml, J. (2009). Auxin: a trigger for change in plant development. Cell 136, 1005-1016. Varma, A., Bakshi, M., Lou, B., Hartmann, A., and Oelmueller, R. (2012). Piriformospora indica: A Novel Plant Growth-Promoting Mycorrhizal Fungus. Agricultural Research 1, 117-131. Varma, A., Savita, V., Sudha, Sahay, N., Bütehorn, B., and Franken, P. (1999). Piriformospora indica, a Cultivable Plant-Growth-Promoting Root Endophyte. Applied and Environmental Microbiology 65, 2741-2744. Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., Bütehorn, B., and Franken, P. (1998). Piriformospora indica, gen. et sp. nov., a New Root-Colonizing Fungus. Mycologia 90, 896-903. Wagner, U., Edwards, R., Dixon, D.P., and Mauch, F. (2002). Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Mol Biol 49, 515-532. Waller, F., Achatz, B., and Kogel, K.-H. (2007). Analysis of the Plant Protective Potential of the Root Endophytic Fungus Piriformospora indica in Cereals. In Advanced Techniques in Soil Microbiology, A. Varma and R. Oelmüller, eds (Springer Berlin Heidelberg), pp. 343-354. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., von Wettstein, D., Franken, P., and Kogel, K.H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences of the United States of America 102, 13386-13391. Weiß, M., Waller, F., Zuccaro, A., and Selosse, M. A. (2016). Sebacinales–one thousand and one interactions with land plants. New Phytol. 211, 20-40. Weiss, M., Selosse, M.-A., Rexer, K.-H., Urban, A., and Oberwinkler, F. (2004). Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycological Research 108, 1003-1010. Win, J., Chaparro-Garcia, A., Belhaj, K., Saunders, D.G., Yoshida, K., Dong, S., Schornack, S., Zipfel, C., Robatzek, S., Hogenhout, S.A., and Kamoun, S. (2012). Effector biology of plant-associated organisms: concepts and perspectives. Cold Spring Harbor symposia on quantitative biology 77, 235-247. Yadav, V., Kumar, M., Deep, D.K., Kumar, H., Sharma, R., Tripathi, T., Tuteja, N., Saxena, A.K., and Johri, A.K. (2010). A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. The Journal of biological chemistry 285, 26532-26544. Yang, G., Xu, Z., Peng, S., Sun, Y., Jia, C., and Zhai, M. (2016). In planta characterization of tau class glutathione S-transferase gene from Juglans regia(JrGSTTau1) involved in chilling tolerance. Plant Cell Rep 35, 681-692. Yang, Y., Hammes, U.Z., Taylor, C.G., Schachtman, D.P., and Nielsen, E. (2006). High-affinity auxin transport by the AUX1 influx carrier protein. Curr.Biol 16, 1123-1127. Zuccaro, A., Lahrmann, U., Guldener, U., Langen, G., Pfiffi, S., Biedenkopf, D., Wong, P., Samans, B., Grimm, C., Basiewicz, M., Murat, C., Martin, F., and Kogel, K.H. (2011). Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS pathogens 7, e1002290. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73496 | - |
dc.description.abstract | 印度梨型孢真菌,為一內生性共生真菌且能與許多不同種類之植物建立共生,在實驗室過去的研究中發現,當小白菜與Piriformospora. indica建立共生後,會促進植物的生長及提高其對於生物與非生物性逆境之抵抗力。雖然已有許多報導指出P. indica與植物共生後對於植物具有多種效益,但對於其中的分子機制尚不瞭解,有鑑於此,本研究利用過去實驗室所建立之效應蛋白生物資訊篩選方法,從中鎖定了4個候選基因PIIN_04020, PIIN_04363, PIIN_07152及PIIN_08445,並利用小白菜毛狀根及過表現轉殖阿拉伯芥的方式,試圖找出效應蛋白可能之功能,另外亦透過酵母菌雙雜交試驗找到PIIN_04363及PIIN_07152的交互作用蛋白,分別為銅伴護蛋白(BrCCH)及穀胱苷肽S-轉移酶(BrGSTU24)。本研究發現,在P.indica與小白菜共生階段的早期便會大幅提高效應蛋白基因PIIN_04363之表現,並且將PIIN_04363過表現於毛狀根及阿拉伯芥中,可使水楊酸SA路徑的指標基因PR-1下降,且因而提高了P. indica與植物的共生效率。而在PIIN_07152方面,則在共生階段的晚期才提高表現,並且PIIN_07152於毛狀根及阿拉伯芥中過表現時, JA路徑指標基因LOX2及VSP2的表現量被提高,而氧化還原相關基因DHAR及MDAR之表現量亦有顯著的提升。最後透過觀察PIIN_04363、PIIN_07152及PIIN_08445的過表現轉殖阿拉伯芥7天大幼苗發現,PIIN_07152 OE的生長勢有較為遲緩的趨勢,推論可能是因為植株中JA路徑較高的表現抑制了植株的生長,另外在PIIN_08445 OE方面,發現其轉殖株幼苗時期的生長勢相較於EV control似乎有些許提升,推論該現象或許是因為生長素相關基因的提升導致。 | zh_TW |
dc.description.abstract | Piriformospora indica, an endophytic root-colonizing fungus, interacts with various plants species. From our previous researches, Chinese cabbage root colonization by P. indica results in an increase in plant growth, root propagation and adaptation to abiotic stress. Although P. indica has been reported to colonize and cause various beneficial function on plants, little is known about its early colonizeal mechanism. Previously, we screened several putative effector genes of P. indica by the bioinformatics screening system established from previous researchers. Further to characterize the function of P. indica effector proteins, four candidate genes PIIN_04020, PIIN_04363, PIIN_07152 and PIIN_08445 were chosen to establish Chinese cabbage transgenic hairy-root system、transgenic Arabidopsis thaliana for further investigation. Yeast two hybrid screening were used to screen the target interacting proteins against the effector proteins. B. rapa’s copper chaperone (CCH) against PIIN_04363 and glutathione S-transferase U24 (GSTU24) against PIIN_07152 were found. In this study, we found that PIIN_04363 gene expression was upregulated in the early colonized stages. Transgenic hairy-root system and transgenic Arabidopsis thaliana showed that PIIN_04363 suppress the expression level of SA pathway marker gene, PR-1 and cause a promotion of colonization efficiency. PIIN_07152 enhances the expression level of JA pathway marker genes, LOX2 and VSP2. Redox status relative genes DHAR and MDAR are also upregulated. From the observation of 7days-old transgenic Arabidopsis thaliana, the growth rate of PIIN_07152 OE was retard. It suggests that it is caused by the up-regulation of JA pathway. On the other hand, 7days-old transgenic Arabidopsis thaliana of PIIN_08445 OE show the higher growth rate in seedling stage, suggesting the effects of the up-regulation of auxin-related genes. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:38:16Z (GMT). No. of bitstreams: 1 ntu-108-R05b42025-1.pdf: 5450423 bytes, checksum: b180104724ca8314fdfed37708dcfd7a (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv 目錄 v 圖表目錄 vii 附錄圖表目錄 ix 第一章 前言 1 第一節 印度梨型孢真菌簡介 1 第二節 植物的生長與對環境逆境之調控及反應 4 第三節 效應蛋白(effector proteins) 7 第四節 銅伴護蛋白(copper chaperone, CCH) 10 第五節 穀胱苷肽S-轉移酶(glutathione S-transferase, GST) 13 第六節 研究目的與方向 14 第二章 材料與方法 15 第一節 實驗材料 15 第二節 P. indica與小白菜之共生 15 第三節 基因表現量測定 18 第四節 全長基因序列釣取 20 第五節 酵母菌雙雜合及次細胞定位之載體構築 22 第六節 阿拉伯芥基因轉殖與農桿菌注射 24 第七節 小白菜轉殖毛狀根之建立 27 第八節 酵母菌雙雜合篩選實驗 29 第九節 原生質體次細胞定位分析(subcellular localizatioon) 34 第三章 結果 37 第一節 P. indica效應蛋白候選基因之篩選 37 第二節 P. indica效應蛋白之功能探討 39 第三節 以酵母菌雙雜合實驗篩選效應蛋白之交互作用蛋白 45 第四章 討論 49 第一節 效應蛋白的次細胞定位及其基因之核苷酸序列特性 49 第二節 PIIN_04363與PIIN_07152對植物氧化還原態相關基因、防禦反應相關基因與逆境抵抗之影響 49 第三節 PIIN_04363對植物防禦反應相關基因與共生效率之影響 51 第四節 PIIN_08445對植物生長素反應相關基因之影響 52 第五節 PIIN_04363、PIIN_07152與BrCCH、BrGSTU24間之交互作用 53 第六節 未來展望 53 參考文獻 55 圖表 66 附錄圖表 93 | |
dc.language.iso | zh-TW | |
dc.title | 印度梨型孢真菌的效應蛋白對其宿主小白菜之功能性探討 | zh_TW |
dc.title | Functional characterization of putative effector proteins of Piriformospora indica during colonization with Brassica rapa cv. Chinensis | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王啟正,楊藹華,王淑珍,靳宗洛 | |
dc.subject.keyword | 印度梨型孢真菌,效應蛋白,銅伴護蛋白,穀胱??S-轉移?,共生, | zh_TW |
dc.subject.keyword | Piriformospora. indica,effector proteins,copper chaperone,glutathione S-transferase,symbiotic, | en |
dc.relation.page | 109 | |
dc.identifier.doi | 10.6342/NTU201900644 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-03-20 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 植物科學研究所 | zh_TW |
顯示於系所單位: | 植物科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 5.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。