請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73494
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 魏宏宇(Hung-Yu Wei) | |
dc.contributor.author | Chien-Hao Lee | en |
dc.contributor.author | 李建皜 | zh_TW |
dc.date.accessioned | 2021-06-17T07:38:08Z | - |
dc.date.available | 2024-03-26 | |
dc.date.copyright | 2019-03-26 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2019-03-21 | |
dc.identifier.citation | [1] 3GPP. Evolved Universal Terrestrial Radio Access Network (E-UTRAN). TS 36.300, 2010.
[2] Chien-Hao Lee, Kai-Wen Cheng, Kuang-Hsun Lin, and Hung-Yu Wei. Scheduling and adaptive resource allocation on icic with testbed implementation. In Wireless and Optical Communication Conference (WOCC), 2018 27th, pages 1–6. IEEE, 2018. [3] Emmanouil Pateromichelakis, Mehrdad Shariat, Atta ul Quddus, and Rahim Tafazolli. On the evolution of multi-cell scheduling in 3gpp lte/lte-a. IEEE Communications Surveys & Tutorials, 15(2):701–717, 2013. [4] E Ahmed, A Gani, S Abolfazli, LJ Yao, and SU Khan. Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1):795–823, 2016. [5] Yiwei Yu, Eryk Dutkiewicz, Xiaojing Huang, Markus Mueck, and Gengfa Fang. Performance analysis of soft frequency reuse for inter-cell interference coordination in lte networks. In Communications and Information Technologies (ISCIT), 2010 International Symposium on, pages 504–509. IEEE, 2010. [6] Thomas Novlan, Jeffrey G Andrews, Illsoo Sohn, Radha Krishna Ganti, and Arunabha Ghosh. Comparison of fractional frequency reuse approaches in the ofdma cellular downlink. In Global telecommunications conference (GLOBECOM 2010), 2010 IEEE, pages 1–5. IEEE, 2010. [7] Thomas David Novlan, Radha Krishna Ganti, Arunabha Ghosh, and Jeffrey G Andrews. Analytical evaluation of fractional frequency reuse for ofdma cellular networks. IEEE Transactions on wireless communications, 10(12):4294–4305, 2011. [8] Nur Oyku Tuncel and Mutlu Koca. Joint ICIC and Mobility Management Optimization in Self-Organizing Networks. In IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6, 2017. [9] Yu-ChiehChen,Jen-WeiChang,Cho-HsinTsai,Guang-XunLin,Hung-YuWei,and Fu-Ming Yeh. Max-utility resource allocation for indoor small cell networks. IET Communications, 11(2):267–272, 2017. [10] Chih-YuWang,Chun-HanKo,Hung-YuWei,andAthanasiosVVasilakos.Avoting- based femtocell downlink cell-breathing control mechanism. IEEE/ACM Transactions on Networking (TON), 24(1):85–98, 2016. [11] Xinchen Lyu, Hui Tian, Wei Ni, Ren Ping Liu, and Ping Zhang. Adaptive central- ized clustering framework for software-defined ultra-dense wireless networks. IEEE Transactions on Vehicular Technology, 66(9):8553–8557, 2017. [12] Jinbo Liu, Shaohui Sun, Jiamin Liu, and Yuan He. Hypergraph-based intercell interference coordination for qos guarantees in dense femtocell networks. In IEEE 81st Vehicular Technology Conference (VTC Spring), pages 1–6. IEEE, 2015. [13] Kaixiong Zhou, Chen Gong, and Zhengyuan Xu. Color planning and intercell interference coordination for multicolor visible light communication networks. Journal of Lightwave Technology, 35(22):4980–4993, 2017. [14] Wenjuan Lu, Qiang Fan, Zexue Li, and Hancheng Lu. Power control based time- domain inter-cell interference coordination scheme in dscns. In IEEE International Conference on Communications (ICC), pages 1–6, 2016. [15] Kuang-Hsun Lin, Cho-Hsin Tsai, Jen-Wei Chang, Yu-Chieh Chen, Hung-Yu Wei, and Fu-Ming Yeh. Max-throughput interference avoidance mechanism for indoor self-organizing small cell networks. ICT Express, 3(3):132–136, 2017. [16] Usama Sallakh, Stephen S Mwanje, and Andreas Mitschele-Thiel. Multi-parameter q-learning for downlink inter-cell interference coordination in lte son. In IEEE Symposium on Computers and Communication (ISCC), pages 1–6, 2014. [17] Nils Morozs, Tim Clarke, and David Grace. Distributed heuristically accelerated q-learning for robust cognitive spectrum management in lte cellular systems. IEEE Transactions on Mobile Computing, 15(4):817–825, 2016. [18] Ming Chen, Ye Hua, Xinyu Gu, Shiwen Nie, and Zhiqiang Fan. A self-organizing resource allocation strategy based on q-learning approach in ultra-dense networks. In Network Infrastructure and Digital Content (IC-NIDC), 2016 IEEE International Conference on, pages 155–160. IEEE, 2016. [19] Rico Mendrzik, Rodrigo A Justavino Castillo, Gerhard Bauch, and Eiko Seidel. Interference coordination-based downlink scheduling for heterogeneous lte-a networks. In IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6, 2016. [20] Obinna Oguejiofor, Li Zhang, and Mohanad Alhabo. Decentralized resource allocation for heterogeneous cellular networks. In Wireless Communication Systems (ISWCS), 2017 International Symposium on, pages 158–163. IEEE, 2017. [21] Qinyun Zhu and Jae C Oh. Learning fairness under constraints: A decentralized resource allocation game. In Machine Learning and Applications (ICMLA), 2016 15th IEEE International Conference on, pages 214–221. IEEE, 2016. [22] Furqan Ahmed, Alexis Alfredo Dowhuszko, and Olav Tirkkonen. Self-organizing algorithms for interference coordination in small cell networks. IEEE Transactions on Vehicular Technology, 66(9):8333–8346, 2017. [23] Francesc Wilhelmi, Boris Bellalta, Cristina Cano, and Anders Jonsson. Implications of decentralized q-learning resource allocation in wireless networks. arXiv preprint arXiv:1705.10508, 2017. [24] Guogang Huang and Jiandong Li. Interference mitigation for femtocell networks via adaptive frequency reuse. IEEE Transactions on Vehicular Technology, 65(4):2413– 2423, 2016. [25] Biyuan Yao, Jianhua Yin, Hui Li, Hui Zhou, and Wei Wu. Channel resource allocation based on graph theory and coloring principle in cellular networks. In 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (IC- CCBDA), pages 439–445. IEEE, 2018. [26] Pingping Ji and Qi Zhu. Graph-based resource allocation scheme in interference- restricted two-tier ofdma femtocell networks. In Wireless Communications, Signal Processing and Networking (WiSPNET), 2017 International Conference on, pages 1871–1877. IEEE, 2017. [27] Yan Lin, Rong Zhang, Chunguo Li, Luxi Yang, and Lajos Hanzo. Graph-based joint user-centric overlapped clustering and resource allocation in ultradense networks.IEEE Transactions on Vehicular Technology, 67(5):4440–4453, 2018. [28] Gerrit Anders and Patrick Lehner. Self-organized graph-based resource allocation. In Self-Adaptive and Self-Organizing Systems (SASO), 2016 IEEE 10th International Conference on, pages 120–129. IEEE, 2016. [29] Vladimir M Vishnevsky, Andrey A Larionov, Roman E Ivanov, and Maxim Dudin. Applying graph-theoretic approach for time-frequency resource allocation in 5g mmwave backhaul network. In Advances in Wireless and Optical Communications (RTUWO), 2016, pages 221–224. IEEE, 2016. [30] Suzan Basloom, Amani Nazar, Ghadah Aldabbagh, Manal Abdullah, and Nikos Dimitriou. Resource allocation using graph coloring for dense cellular networks. In 2016 International Conference on Computing, Networking and Communications (ICNC), pages 1–5. IEEE, 2016. [31] Qian Mao, Fei Hu, and Qi Hao. Deep learning for intelligent wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 2018. [32] Ji Li, Hui Gao, Tiejun Lv, and Yueming Lu. Deep reinforcement learning based computation offloading and resource allocation for mec. In Wireless Communications and Networking Conference (WCNC), 2018 IEEE, pages 1–6. IEEE, 2018. [33] Hao Ye, Geoffrey Ye Li, and Biing-Hwang Fred Juang. Deep reinforcement learning based resource allocation for v2v communications. arXiv preprint arXiv:1805.07222, 2018. [34] Ning Liu, Zhe Li, Jielong Xu, Zhiyuan Xu, Sheng Lin, Qinru Qiu, Jian Tang, and Yanzhi Wang. A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th International Conference on, pages 372–382. IEEE, 2017. [35] Yu Zhang, Jianguo Yao, and Haibing Guan. Intelligent cloud resource management with deep reinforcement learning. IEEE Cloud Computing, 4(6):60–69, 2018. [36] 3GPP. Radio Resource Control (RRC). TS 36.331, 2009. [37] 3GPP. Physical layer procedures. TS 36.213, 2009. [38] Manli Qian, Wibowo Hardjawana, Yonghui Li, Branka Vucetic, Xuezhi Yang, and Jinglin Shi. Adaptive soft frequency reuse scheme for wireless cellular networks.IEEE Transactions on Vehicular Technology, 64(1):118–131, 2015. [39] Lin Tian, Yiqing Zhou, Yucheng Zhang, Gang Sun, and Jinglin Shi. Resource allocation for multicast services in distributed antenna systems with quality of services guarantees. IET communications, 6(3):264–271, 2012. [40] Megumi Kaneko, Petar Popovski, and Joachim Dahl. Proportional fairness in multi- carrier system: upper bound and approximation algorithms. IEEE Communications Letters, 10(6):462–464, 2006. [41] Lata Narayanan. Channel assignment and graph multicoloring. Handbook of wireless networks and mobile computing, 8:71–94, 2002. [42] Yu-Jung Chang, Zhifeng Tao, Jinyun Zhang, and C-C Jay Kuo. A graph-based approach to multi-cell ofdma downlink resource allocation. In IEEE Global Telecommunications Conference (GLOBECOM), pages 1–6, 2008. [43] Ronald Y Chang, Zhifeng Tao, Jinyun Zhang, and C-C Kuo. A graph approach to dynamic fractional frequency reuse (ffr) in multi-cell ofdma networks. In IEEE International Conference on Communications (ICC), pages 1–6, 2009. [44] 3GPP. Further advancements for E-UTRA physical layer aspects. TR 36.814, 2010. [45] Raj Jain, Dah-Ming Chiu, and William R Hawe. A quantitative measure of fairness and discrimination for resource allocation in shared computer system, volume 38. Eastern Research Laboratory, Digital Equipment Corporation Hudson, MA, 1984. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73494 | - |
dc.description.abstract | 基地台干擾協調,旨在於減輕細胞邊緣使用者所受到的干擾影響。過去有許多論文,提出了各種基地台干擾協調的方法,我們在這些論文之中發現了兩個主要缺陷。其一是部分論文僅針對系統整體總吞吐量進行最佳化,對於細胞邊緣使用者的表現並無顯著的提升。另一是部分論文沒有考慮到基地台干擾協調的設定必須維持一段較長的期間,這一點使得這些論文提出的方法難以在真實系統中實作。我們參考一些近年來相關的論文,設計了一個圖論的基地台干擾協調方法,以及一個深度強化學習網路的基地台干擾協調方法。這兩種方法分別包含一個資源分配最佳化演算法與一個使用者分群演算法。在圖論的基地台干擾協調方法中,我們設計了一個廣度優先搜尋資源分配最佳化演算法,以及一個加強細胞邊緣使用者分群演算法。在深度強化學習網路的基地台干擾協調方法中,我們設計了一個深度強化學習網路,以及一個平衡使用者類別分群演算法。根據模擬結果,使用加強細胞邊緣使用者分群演算法,能夠有效提升廣度優先搜尋資源分配最佳化演算法的表現;而採取平衡使用者類別分群演算法,則能夠使深度強化學習網路有更佳的結果。在使用者數量少時,深度強化學習網路的基地台干擾協調方法擁有最佳的表現;而在使用者數量多時,圖論的基地台干擾協調方法表現更為出色。整體而言,不論是在使用者數量少,或是使用者數量多的情況下,本篇論文提出的兩種方法都能夠顯著提升基地台干擾協調的效果。 | zh_TW |
dc.description.abstract | Inter-Cell Interference Coordination (ICIC) is aimed at mitigate interference at cell-edge users. A variety of ICIC methods are proposed in previous literature. However, we find two main drawbacks in those works. Some of them can maximize the overall system throughput but do not have enough enhancement of the performance at cell-edge users. Some of them do not consider that ICIC configuration should be effective in a longer period, which is the issue of real-world implementation. To overcome these two drawbacks, we propose several algorithms for a centralized dynamic ICIC scheme. Inspired by some recent works, we design a graph based ICIC scheme and a Deep Q-Network (DQN) based ICIC scheme. Each of them includes a resource optimization algorithm and a user grouping algorithm. The graph based ICIC scheme consists of Breadth-First Search Resource Optimization Algorithm (bfsOpt) and Edge-Enhanced User Grouping (EEUG). The DQN based ICIC scheme is made up of a DQN and Type-Balanced User Grouping (TBUG). Simulation results show that EEUG is the optimal user grouping algorithm for bfsOpt and TBUG is the optimal user grouping algorithm for the DQN. The DQN based ICIC scheme has the best performance when the number of users is low, while the graph based ICIC scheme has better performance when the number of users is high. Overall, the two proposed schemes outperforms the benchmarks in both sparse and dense user distribution. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:38:08Z (GMT). No. of bitstreams: 1 ntu-107-R05921049-1.pdf: 1943526 bytes, checksum: f45270b77988b8cb01b0642c972490a0 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 1 Introduction 1 2 Related Works 3 2.1 StaticICIC ……….………. 3 2.2 DynamicICIC ……….………. 5 2.3 Graph based and Deep Reinforcement Learning based Resource Allocation 6 3 Problem Formulation 8 4 Proposed Graph based ICIC 12 4.1 UE Classification ……….………. 13 4.2 Resource Optimization Algorithm: bfsOpt ……….………. 14 4.3 Edge-Enhanced User Grouping (EEUG) ……….………. 19 5 Proposed Deep Q-Network based ICIC 26 5.1 The Q-Learning Scheme ……….………. 28 5.1.1 Format of UE Power ……….………. 29 5.1.2 Format of RBG Allocation ……….………. 29 5.1.3 Initialization of Q-Value ……….………. 32 5.1.4 Optimization of Q-Value ……….………. 33 5.2 The Deep Learning Scheme ……….………. 34 5.2.1 Data Preprocessing ……….………. 35 5.2.2 Model Design ……….………. 36 5.3 Type-Balanced User Grouping (TBUG) ……….………. 42 6 Simulation Setup 47 6.1 Simulation Model ……….………. 47 6.2 Simulation Parameters ……….………. 50 6.3 Compared Schemes ……….………. 51 7 Simulation Results 53 7.1 Training History of the DQN Model ……….………. 53 7.2 Sparse UE Distribution ……….………. 58 7.3 bfsOpt in Dense UE Distribution ……….………. 66 7.4 DQN in Dense UE Distribution ……….………. 70 7.5 SFR in Dense UE Distribution ……….………. 75 7.6 MPESFR in Dense UE Distribution ……….………. 78 7.7 Q-ICIC in Dense UE Distribution ……….………. 82 7.8 H-ICIC in Dense UE Distribution ……….………. 85 7.9 Full Power Scheme in Dense UE Distribution ……….………. 88 7.10 No ICIC Scheme in Dense UE Distribution ……….………. 91 7.11 All Schemes in Dense UE Distribution ……….………. 94 8 Conclusion 100 Bibliography 102 | |
dc.language.iso | en | |
dc.title | 以圖論與深度強化學習網路的動態資源分配並將使用者分群來實現基地台干擾協調 | zh_TW |
dc.title | Graph based and Deep Q-Network based Adaptive Resource Allocation with User Grouping on ICIC | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蔡華龍,周敬淳,王志宇,謝秉融 | |
dc.subject.keyword | 基地台干擾協調,圖論,深度強化學習網路,資源分配,功率控制,使用者分群, | zh_TW |
dc.subject.keyword | Inter-Cell Interference Coordination (ICIC),Graph Theory,Deep Q-Network (DQN),Resource Allocation,Power Control,User Grouping, | en |
dc.relation.page | 107 | |
dc.identifier.doi | 10.6342/NTU201801335 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-03-21 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 1.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。