Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73466
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙聖德(Sheng-Der Chao)
dc.contributor.authorYu-An Tsaien
dc.contributor.author蔡育安zh_TW
dc.date.accessioned2021-06-17T07:36:31Z-
dc.date.available2022-05-10
dc.date.copyright2019-05-10
dc.date.issued2019
dc.date.submitted2019-04-12
dc.identifier.citation[1] E.C Kemble,”A Contribution to the Theory of the B.W.K Method”,Physical Review, vol. 48, no. 6, pp. 549, September 1935
[2] E.C Kemble, The Fundamental Principles of Quantum Mechanics With Elementary
Applications, Dover, New York 1958
[3] D.J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. Pearson Prentice Hall,
Upper Saddle River, New Jersey, 2005
[4] B.R Holstein, ”Understanding alpha decay”, Am. J. Phys. 64(8), August 1996
[5] C.M Bender and S.A. Orszag, Advanced Mathematical Methods For Scientists And
Engineers,McGraw-Hill, Inc. 1978
[6] 趙聖德, 應用量子力學 , 五南圖書出版公司, 2010
[7] R. Snieder and K.V. Wijk, A Guided Tour of Mathematical Methods for the Physical
Sciences, 3rd ed. Cambridge University Press, New York 2015
[8] B. Kusse and E. Westwig, Mathematical Physics: Applied Mathematics for Scientists
and Engineers, John Wiley and Sons, Inc, 1998
[9] P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, G. Vattay, N. Whelan, A. Wirzba,
Chaos: Classical and Quantum[Online]. Available:http://chaosbook.org
[10] D.A. Park, Introduction to the Quantum Theory, 3rd ed. Dover, New York 2005
[11] M. Razavy, Quantum Theory of Tunneling, World Scientific, London 2003
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73466-
dc.description.abstractWKB近似是一個在求解一維與時間無關之薛丁格方程式時很好用的方法,以 ℏ 為基底做指數型微擾級數展開。但WKB近似的困難點在我們想進一步得到高階近似時出現。不只因為WKB近似隨著階數增加其連接公式變得冗長且極難推導,也因為高階近似在反曲點比起低階近似有更劇烈的發散行為。因此本論文中我們嘗試重新審視第一階WKB近似的函數結構。藉由對波函數給出一個猜想且搭配針對波函數一階與二階微分的條件得到一組交叉耦合微分方程組。我們使用微擾法求解此耦合方程組並且發展出一個具有第一階WKB近似基本型式另加上額外修正項的新的近似方法作為第一階微擾解,我們稱其為交叉型WKB。首先,我們將AWKB應用於簡諧振子及具有 Morse 位能勢的非簡諧振子系統。接著說明AWKB與WKB近似在穿隧問題上的不同處。比起第一階WKB近似解,AWKB不僅在前兩個束縛態模型的反曲點附近較緩和地發散,提供更好的近似,此新的技巧在求解高階近似時也不需要再處理複雜冗長的連接公式。zh_TW
dc.description.abstractWKB approximation is a useful technique to solve the one dimensional time independent Schrödinger equation in the form of exponential perturbative series, order by order in powers of ℏ. But the difficulty of WKB theory emerges as one proceed to higher order WKB approximation. Not only because its connection formulas becomes cumbersome to derive as the order of WKB approximation increases but also because higher order WKB approximation usually has stronger divergent behavior than lower order one in the
neighborhood of turning points. In this thesis we attempt to re-examine the functional form of first order WKB approximation. A set of coupled differential equations is obtained by considering an ansatz of wave function with two suitable conditions on both first and second order derivative of wave function. And we use the perturbation method to tackle the coupled differential equations and develop a new approximation, consisting of basic formulation of first order WKB approximation with extra correction terms as the first order perturbation solution, called Alternating WKB (AWKB) approximation. First, the AWKB method is applied to the harmonic oscillator and anharmonic oscillator with Morse potential. Next, we show the difference between WKB and AWKB approximation in the tunneling problem. Compared with the first order WKB approximate solution, not only does the AWKB method provide the better approximation, which diverges slower than first order WKB approximation near the turning points in the first two bound state models, but this new scheme does also has no necessity to deal with the complicate connection formulas as one resort to the higher order approximation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:36:31Z (GMT). No. of bitstreams: 1
ntu-108-R04543063-1.pdf: 2273194 bytes, checksum: 41c94512186a8c5ac335d7af0edcdbc8 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsContents
口試委員會審定書 i
致謝 ii
中文摘要 iv
Abstract v
Contents vii
List of Figures ix
List of Tables x
1 Introduction 1
2 Theoretical Studies on the Alternating WKB(AWKB) theory
2.1 Review of the WKB theory . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Alternating WKB(AWKB) Theory . . . . . . . . . . . . . . . . . . . . . 12
2.3 Quantization Condition: Maslov Correction . . . . . . . . . . . . . . . . 21
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3 Application of AWKB Approximation 27
3.1 Harmonic Oscillator (Ground state) . . . . . . . . . . . . . . . . . . . . 27
3.2 Anharmonic Oscillator: Morse Potential . . . . . . . . . . . . . . . . . . 30
3.3 Tunneling problem: Triangle Barrier . . . . . . . . . . . . . . . . . . . . 32
3.4 WKB Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 AWKB Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4 Conclusions and Future Works 40
A Second order of WKB Approximation 41
B Coupled Differential Equations 44
Bibliography 49
dc.language.isoen
dc.subject連接攻式zh_TW
dc.subject穿隧zh_TW
dc.subjectMorse位能勢zh_TW
dc.subject交叉型WKB近似zh_TW
dc.subject簡諧振子zh_TW
dc.subject耦合方程組zh_TW
dc.subjectConnection formulasen
dc.subjectMorse Potentialen
dc.subjectHarmonic Oscillatoren
dc.subjectCoupled differential equationsen
dc.subjectTunnelingen
dc.subjectAWKBen
dc.title交叉型WKB(AWKB)近似對薛丁格方程式之理論研究zh_TW
dc.titleTheoretical Studies on the Alternating WKB Approximation to the Schrödinger Equationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳義裕(Yih-Yuh Chen),張建成(Chien-Cheng Chang),陳國慶(Kuo-Ching Chen),陳志鴻(Chih-Hung Chen)
dc.subject.keyword交叉型WKB近似,連接攻式,耦合方程組,簡諧振子,Morse位能勢,穿隧,zh_TW
dc.subject.keywordAWKB,Connection formulas,Coupled differential equations,Harmonic Oscillator,Morse Potential,Tunneling,en
dc.relation.page50
dc.identifier.doi10.6342/NTU201900701
dc.rights.note有償授權
dc.date.accepted2019-04-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved