請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73463
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 方俊民 | |
dc.contributor.author | Chi-Jiun Peng | en |
dc.contributor.author | 彭啟鈞 | zh_TW |
dc.date.accessioned | 2021-06-17T07:36:20Z | - |
dc.date.available | 2024-04-19 | |
dc.date.copyright | 2019-04-19 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-04-15 | |
dc.identifier.citation | 1. Antibiotic Resistance Threats in the United States, 2013. CDC. U.S. Department of Health & Human Services 2013.
2. Willyard, C., Drug-resistant bacteria ranked. Nature 2017, 543 (7643), 15-15. 3. Landsteiner, K., The Specificity of Serological Reactions. Harvard Univ. Press: Cambridge, Mass., 1945. 4. Avery, O. T.; Goebel, W. F., Chemo-immunological studies on conjugated carbohydrate-proteins II. Immunological specificity of synthetic sugar-protein antigens. J. Exp. Med. 1929, 50 (4), 533-550. 5. Mazmanian, S. K.; Kasper, D. L., The love-hate relationship between bacterial polysaccharides and the host immune system. Nat. Rev. Immunol. 2006, 6 (11), 849-858. 6. Adamo, R., Advancing homogeneous antimicrobial glycoconjugate vaccines. Acc. Chem. Res. 2017, 50 (5), 1270-1279. 7. Robbins, J. B.; Schneerson, R., Polysaccharide-protein conjugates: a new generation of vaccines. J. Infect. Dis. 1990, 161 (5), 821-832. 8. Broker, M.; Berti, F.; Schneider, J.; Vojtek, I., Polysaccharide conjugate vaccine protein carriers as a 'neglected valency' - Potential and limitations. Vaccine 2017, 35 (25), 3286-3294. 9. Cryz, S. J., Jr.; Lang, A.; Rudeberg, A.; Wedgwood, J.; Que, J. U.; Furer, E.; Schaad, U., Immunization of cystic fibrosis patients with a Pseudomonas aeruginosa O-polysaccharide-toxin A conjugate vaccine. Behring Inst. Mitt. 1997, (98), 345-349. 10. Simon, R.; Wang, J. Y.; Boyd, M. A.; Tulapurkar, M. E.; Ramachandran, G.; Tennant, S. M.; Pasetti, M.; Galen, J. E.; Levine, M. M., Sustained protection in mice immunized with fractional doses of Salmonella enteritidis core and O polysaccharide-flagellin glycoconjugates. Plos One 2013, 8 (5), e64680. 11. Altman, E.; Chandan, V.; Harrison, B. A.; Vinogradov, E., Structural and immunological characterization of a glycoconjugate based on the delipidated lipopolysaccharide from a nontypeable Helicobacter pylori strain PJ1 containing an extended D-glycero-D-manno-heptan. Carbohydr. Res. 2018, 456, 19-23. 12. Monteiro, M. A.; Britton, S.; Applebee, L. A.; Baqar, S., Synthesis and immunogenicity of a Helicobacter pylori lipopolysaccharide-based conjugate. Vaccine 2011, 29 (17), 3098-3102. 13. Farzam, N.; Ramon-Saraf, R.; Banet-Levi, Y.; Lerner-Geva, L.; Ashkenazi, S.; Kubler-Kielb, J.; Vinogradov, E.; Robbins, J. B.; Schneerson, R., Vaccination with Shigella flexneri 2a conjugate induces type 2a and cross-reactive type 6 antibodies in humans but not in mice. Vaccine 2017, 35 (37), 4990-4996. 14. Cryz, S. J., Jr.; Que, J. O.; Cross, A. S.; Furer, E., Synthesis and characterization of a polyvalent Escherichia coli O-polysaccharide-toxin A conjugate vaccine. Vaccine 1995, 13 (5), 449-453. 15. Micoli, F.; Rondini, S.; Pisoni, I.; Proietti, D.; Berti, F.; Costantino, P.; Rappuoli, R.; Szu, S.; Saul, A.; Martin, L. B., Vi-CRM 197 as a new conjugate vaccine against Salmonella typhi. Vaccine 2011, 29 (4), 712-720. 16. Fiorino, F.; Ciabattini, A.; Rondini, S.; Pozzi, G.; Martin, L. B.; Medaglini, D., Immunization with the conjugate vaccine Vi-CRM(1)(9)(7) against Salmonella typhi induces Vi-specific mucosal and systemic immune responses in mice. Vaccine 2012, 30 (43), 6111-6114. 17. Chabot, D. J.; Ribot, W. J.; Joyce, J.; Cook, J.; Hepler, R.; Nahas, D.; Chua, J.; Friedlander, A. M., Protection of rhesus macaques against inhalational anthrax with a Bacillus anthracis capsule conjugate vaccine. Vaccine 2016, 34 (34), 4012-4016. 18. Tollersrud, T.; Zernichow, L.; Andersen, S. R.; Kenny, K.; Lund, A., Staphylococcus aureus capsular polysaccharide type 5 conjugate and whole cell vaccines stimulate antibody responses in cattle. Vaccine 2001, 19 (28-29), 3896-3903. 19. Bertolo, L.; Ewing, C. P.; Maue, A.; Poly, F.; Guerry, P.; Monteiro, M. A., The design of a capsule polysaccharide conjugate vaccine against Campylobacter jejuni serotype HS15. Carbohydr. Res. 2013, 366, 45-49. 20. Pichichero, M. E., Protein carriers of conjugate vaccines: characteristics, development, and clinical trials. Hum. Vaccines Immunother. 2013, 9 (12), 2505-2523. 21. Dagan, R.; Poolman, J.; Siegrist, C. A., Glycoconjugate vaccines and immune interference: A review. Vaccine 2010, 28 (34), 5513-5523. 22. McCluskie, M. J.; Evans, D. M.; Zhang, N.; Benoit, M.; McElhiney, S. P.; Unnithan, M.; DeMarco, S. C.; Clay, B.; Huber, C.; Deora, A.; Thorn, J. M.; Stead, D. R.; Merson, J. R.; Davis, H. L., The effect of preexisting anti-carrier immunity on subsequent responses to CRM197 or Qb-VLP conjugate vaccines. Immunopharmcol. Immunotoxicol. 2016, 38 (3), 184-196. 23. Schutze, M. P.; Leclerc, C.; Jolivet, M.; Audibert, F.; Chedid, L., Carrier-induced epitopic suppression, a major issue for future synthetic vaccines. J. Immunol. 1985, 135 (4), 2319-2322. 24. Tashani, M.; Heron, L.; Wong, M.; Rashid, H.; Booy, R., Tetanus-diphtheria-pertussis vaccine may suppress the immune response to subsequent immunization with pneumococcal CRM197-conjugate vaccine (coadministered with quadrivalent meningococcal TT-conjugate vaccine): a randomized, controlled trial small star, filled. J. Travel Med. 2017, 24 (4), 1-7. 25. Brett, P. J.; Woods, D. E., Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide-flagellin protein conjugates. Infect. Immun. 1996, 64 (7), 2824-2828. 26. Schaad, U. B.; Lang, A. B.; Wedgwood, J.; Ruedeberg, A.; Que, J. U.; Furer, E.; Cryz, S. J., Jr., Safety and immunogenicity of Pseudomonas aeruginosa conjugate A vaccine in cystic fibrosis. Lancet 1991, 338 (8777), 1236-1237. 27. Ahmed, A.; Li, J.; Shiloach, Y.; Robbins, J. B.; Szu, S. C., Safety and immunogenicity of Escherichia coli O157 O-specific polysaccharide conjugate vaccine in 2-5-year-old children. J. Infect. Dis. 2006, 193 (4), 515-521. 28. Mai, N. L.; Phan, V. B.; Vo, A. H.; Tran, C. T.; Lin, F. Y.; Bryla, D. A.; Chu, C.; Schiloach, J.; Robbins, J. B.; Schneerson, R.; Szu, S. C., Persistent efficacy of Vi conjugate vaccine against typhoid fever in young children. N. Engl. J. Med. 2003, 349 (14), 1390-1391. 29. Fattom, A. I.; Horwith, G.; Fuller, S.; Propst, M.; Naso, R., Development of StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: from the lab bench to phase III clinical trials. Vaccine 2004, 22 (7), 880-887. 30. Romano, M. R.; Leuzzi, R.; Cappelletti, E.; Tontini, M.; Nilo, A.; Proietti, D.; Berti, F.; Costantino, P.; Adamo, R.; Scarselli, M., Recombinant Clostridium difficile toxin fragments as carrier protein for PSII surface polysaccharide preserve their neutralizing activity. Toxins (Basel) 2014, 6 (4), 1385-1396. 31. Pavliakova, D.; Moncrief, J. S.; Lyerly, D. M.; Schiffman, G.; Bryla, D. A.; Robbins, J. B.; Schneerson, R., Clostridium difficile recombinant toxin A repeating units as a carrier protein for conjugate vaccines: studies of pneumococcal type 14, Escherichia coli K1, and Shigella flexneri type 2a polysaccharides in mice. Infect. Immun. 2000, 68 (4), 2161-2166. 32. Nilo, A.; Morelli, L.; Passalacqua, I.; Brogioni, B.; Allan, M.; Carboni, F.; Pezzicoli, A.; Zerbini, F.; Maione, D.; Fabbrini, M.; Romano, M. R.; Hu, Q. Y.; Margarit, I.; Berti, F.; Adamo, R., Anti-group B Streptococcus glycan-conjugate vaccines using pilus protein GBS80 as carrier and antigen: comparing lysine and tyrosine-directed conjugation. ACS Chem. Biol. 2015, 10 (7), 1737-1746. 33. Perciani, C. T.; Barazzone, G. C.; Goulart, C.; Carvalho, E.; Cabrera-Crespo, J.; Goncalves, V. M.; Leite, L. C.; Tanizaki, M. M., Conjugation of polysaccharide 6B from Streptococcus pneumoniae with pneumococcal surface protein A: PspA conformation and its effect on the immune response. Clin. Vaccine Immunol. 2013, 20 (6), 858-866. 34. Santamaria, R.; Goulart, C.; Perciani, C. T.; Barazzone, G. C.; Carvalho, R.; Goncalves, V. M.; Leite, L. C.; Tanizaki, M. M., Humoral immune response of a pneumococcal conjugate vaccine: capsular polysaccharide serotype 14-lysine modified PspA. Vaccine 2011, 29 (47), 8689-8695. 35. Pauksens, K.; Nilsson, A. C.; Caubet, M.; Pascal, T. G.; Van Belle, P.; Poolman, J. T.; Vandepapeliere, P. G.; Verlant, V.; Vink, P. E., Randomized controlled study of the safety and immunogenicity of pneumococcal vaccine formulations containing PhtD and detoxified pneumolysin with alum or adjuvant system AS02V in elderly adults. Clin. Vaccine Immunol. 2014, 21 (5), 651-660. 36. Wacker, M.; Wang, L.; Kowarik, M.; Dowd, M.; Lipowsky, G.; Faridmoayer, A.; Shields, K.; Park, S.; Alaimo, C.; Kelley, K. A.; Braun, M.; Quebatte, J.; Gambillara, V.; Carranza, P.; Steffen, M.; Lee, J. C., Prevention of Staphylococcus aureus infections by glycoprotein vaccines synthesized in Escherichia coli. J. Infect. Dis. 2014, 209 (10), 1551-1561. 37. Konadu, E.; Donohue-Rolfe, A.; Calderwood, S. B.; Pozsgay, V.; Shiloach, J.; Robbins, J. B.; Szu, S. C., Syntheses and immunologic properties of Escherichia coli O157 O-specific polysaccharide and Shiga toxin 1 B subunit conjugates in mice. Infect. Immun. 1999, 67 (11), 6191-6193. 38. Kaisho, T.; Akira, S., Toll-like receptor function and signaling. J. Allergy Clin. Immunol. 2006, 117 (5), 979-988. 39. Kawai, T.; Akira, S., Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011, 34 (5), 637-650. 40. Reed, S. G.; Orr, M. T.; Fox, C. B., Key roles of adjuvants in modern vaccines. Nature Medicine 2013, 19 (12), 1597-1608. 41. Netea, M. G.; Van der Meer, J. W.; Sutmuller, R. P.; Adema, G. J.; Kullberg, B. J., From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob. Agents Chemother. 2005, 49 (10), 3991-3996. 42. Wille-Reece, U.; Flynn, B. J.; Lore, K.; Koup, R. A.; Kedl, R. M.; Mattapallil, J. J.; Weiss, W. R.; Roederer, M.; Seder, R. A., HIV Gag protein conjugated to a toll-like receptor 7/8 agonist improves the magnitude and quality of Th1 and CD8+ T cell responses in nonhuman primates. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (42), 15190-15194. 43. Lopez-Yglesias, A. H.; Zhao, X.; Quarles, E. K.; Lai, M. A.; VandenBos, T.; Strong, R. K.; Smith, K. D., Flagellin induces antibody responses through a TLR5-and inflammasome-independent pathway. J. Immunol. 2014, 192 (4), 1587-1596. 44. Sun, J.; Walsh, M.; Villarino, A. V.; Cervi, L.; Hunter, C. A.; Choi, Y. W.; Pearce, E. J., TLR ligands can activate dendritic cells to provide a MyD88-dependent negative signal for Th2 cell development. J. Immunol. 2005, 174 (2), 742-751. 45. Ghosh, T. K.; Mickelson, D. J.; Solberg, J. C.; Lipson, K. E.; Inglefield, J. R.; Alkan, S. S., TLR-TLR cross talk in human PBMC resulting in synergistic and antagonistic regulation of type-1 and 2 interferons, IL-12 and TNF-alpha. Int. Immunopharmacol. 2007, 7 (8), 1111-1121. 46. Mirotti, L.; Alberca Custodio, R. W.; Gomes, E.; Rammauro, F.; de Araujo, E. F.; Garcia Calich, V. L.; Russo, M., CpG-ODN shapes Alum adjuvant activity signaling via MyD88 and IL-10. Front. Immunol. 2017, 8, 47. 47. Kimishima, A.; Wenthur, C. J.; Eubanks, L. M.; Sato, S.; Janda, K. D., Cocaine vaccine development: evaluation of carrier and adjuvant combinations that activate multiple toll-like receptors. Mol. Pharmaceutics 2016, 13 (11), 3884-3890. 48. Lockner, J. W.; Eubanks, L. M.; Choi, J. L.; Lively, J. M.; Schlosburg, J. E.; Collins, K. C.; Globisch, D.; Rosenfeld-Gunn, R. J.; Wilson, I. A.; Janda, K. D., Flagellin as carrier and adjuvant in cocaine vaccine development. Mol. Pharmaceutics 2015, 12 (2), 653-662. 49. Campodonico, V. L.; Llosa, N. J.; Grout, M.; Doring, G.; Maira-Litran, T.; Pier, G. B., Evaluation of flagella and flagellin of Pseudomonas aeruginosa as vaccines. Infect. Immun. 2010, 78 (2), 746-755. 50. Landsperger, W. J.; Kelly-Wintenberg, K. D.; Montie, T. C.; Knight, L. S.; Hansen, M. B.; Huntenburg, C. C.; Schneidkraut, M. J., Inhibition of bacterial motility with human antiflagellar monoclonal antibodies attenuates Pseudomonas aeruginosa-induced pneumonia in the immunocompetent rat. Infect. Immun. 1994, 62 (11), 4825-4830. 51. Cui, B. F.; Liu, X. S.; Fang, Y. Z.; Zhou, P.; Zhang, Y. G.; Wang, Y. L., Flagellin as a vaccine adjuvant. Expert Rev. Vaccines 2018, 17 (4), 335-349. 52. Skountzou, I.; Martin Mdel, P.; Wang, B.; Ye, L.; Koutsonanos, D.; Weldon, W.; Jacob, J.; Compans, R. W., Salmonella flagellins are potent adjuvants for intranasally administered whole inactivated influenza vaccine. Vaccine 2010, 28 (24), 4103-4112. 53. Stocker, B. A.; Newton, S. M., Immune responses to epitopes inserted in Salmonella flagellin. Int. Rev. Immunol. 1994, 11 (2), 167-178. 54. Huleatt, J. W.; Jacobs, A. R.; Tang, J.; Desai, P.; Kopp, E. B.; Huang, Y.; Song, L.; Nakaar, V.; Powell, T. J., Vaccination with recombinant fusion proteins incorporating Toll-like receptor ligands induces rapid cellular and humoral immunity. Vaccine 2007, 25 (4), 763-775. 55. Iwasaki, A.; Medzhitov, R., Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 2004, 5 (10), 987-995. 56. Banchereau, J.; Steinman, R. M., Dendritic cells and the control of immunity. Nature 1998, 392 (6673), 245-252. 57. Blander, J. M.; Medzhitov, R., Toll-dependent selection of microbial antigens for presentation by dendritic cells. Nature 2006, 440 (7085), 808-812. 58. Qian, F.; Guo, A.; Li, M.; Liu, W.; Pan, Z.; Jiang, L.; Wu, X.; Xu, H., Salmonella flagellin is a potent carrier-adjuvant for peptide conjugate to induce peptide-specific antibody response in mice. Vaccine 2015, 33 (17), 2038-2044. 59. Liu, H.; Irvine, D. J., Guiding principles in the design of molecular bioconjugates for vaccine applications. Bioconjugate Chem. 2015, 26 (5), 791-801. 60. Kreutz, M.; Giquel, B.; Hu, Q.; Abuknesha, R.; Uematsu, S.; Akira, S.; Nestle, F. O.; Diebold, S. S., Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity. PLoS One 2012, 7 (7), e40208. 61. Maurer, T.; Heit, A.; Hochrein, H.; Ampenberger, F.; O'Keeffe, M.; Bauer, S.; Lipford, G. B.; Vabulas, R. M.; Wagner, H., CpG-DNA aided cross-presentation of soluble antigens by dendritic cells. Eur. J. Immunol. 2002, 32 (8), 2356-2364. 62. Mizel, S. B.; Bates, J. T., Flagellin as an adjuvant: cellular mechanisms and potential. J. Immunol. 2010, 185 (10), 5677-5682. 63. Campodonico, V. L.; Llosa, N. J.; Bentancor, L. V.; Maira-Litran, T.; Pier, G. B., Efficacy of a conjugate vaccine containing polymannuronic acid and flagellin against experimental Pseudomonas aeruginosa lung infection in mice. Infect. Immun. 2011, 79 (8), 3455-3464. 64. Boutureira, O.; Bernardes, G. J., Advances in chemical protein modification. Chem. Rev. 2015, 115 (5), 2174-2195. 65. Chen, X.; Muthoosamy, K.; Pfisterer, A.; Neumann, B.; Weil, T., Site-selective lysine modification of native proteins and peptides via kinetically controlled labeling. Bioconjugate Chem. 2012, 23 (3), 500-508. 66. Popp, B. V.; Ball, Z. T., Proximity-driven metallopeptide catalysis: Remarkable side-chain scope enables modification of the Fos bZip domain. Chem. Sci. 2011, 2 (4), 690-695. 67. Ball, Z. T., Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study. Acc. Chem. Res. 2013, 46 (2), 560-570. 68. Song, W. S.; Jeon, Y. J.; Namgung, B.; Hong, M.; Yoon, S. I., A conserved TLR5 binding and activation hot spot on flagellin. Sci. Rep. 2017, 7, 40878. 69. Song, W. S.; Yoon, S. I., Crystal structure of FliC flagellin from Pseudomonas aeruginosa and its implication in TLR5 binding and formation of the flagellar filament. Biochem. Biophys. Res. Commun. 2014, 444 (2), 109-115. 70. Yoon, S. I.; Kurnasov, O.; Natarajan, V.; Hong, M.; Gudkov, A. V.; Osterman, A. L.; Wilson, I. A., Structural basis of TLR5-flagellin recognition and signaling. Science 2012, 335 (6070), 859-864. 71. Smith, K. D.; Andersen-Nissen, E.; Hayashi, F.; Strobe, K.; Bergman, M. A.; Barrett, S. L. R.; Cookson, B. T.; Aderem, A., Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 2003, 4 (12), 1247-1253. 72. Yonekura, K.; Maki-Yonekura, S.; Namba, K., Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 2003, 424 (6949), 643-650. 73. Samatey, F. A.; Imada, K.; Nagashima, S.; Vonderviszt, F.; Kumasaka, T.; Yamamoto, M.; Namba, K., Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling. Nature 2001, 410 (6826), 331-337. 74. Crotti, S.; Zhai, H.; Zhou, J.; Allan, M.; Proietti, D.; Pansegrau, W.; Hu, Q. Y.; Berti, F.; Adamo, R., Defined conjugation of glycans to the lysines of CRM197 guided by their reactivity mapping. ChemBioChem 2014, 15 (6), 836-843. 75. Moginger, U.; Resemann, A.; Martin, C. E.; Parameswarappa, S.; Govindan, S.; Wamhoff, E. C.; Broecker, F.; Suckau, D.; Pereira, C. L.; Anish, C.; Seeberger, P. H.; Kolarich, D., Cross Reactive Material 197 glycoconjugate vaccines contain privileged conjugation sites. Sci. Rep. 2016, 6, 20488. 76. Hayakawa, J.; Ishizuka, M., Flagellar glycosylation : current advances. In Glycosylation, InTech: 2012; pp 127-152. 77. Logan, S. M., Flagellar glycosylation - a new component of the motility repertoire? Microbiology 2006, 152 (Pt 5), 1249-1262. 78. van Dongen, S. F.; Teeuwen, R. L.; Nallani, M.; van Berkel, S. S.; Cornelissen, J. J.; Nolte, R. J.; van Hest, J. C., Single-step azide introduction in proteins via an aqueous diazo transfer. Bioconjugate Chem. 2009, 20 (1), 20-23. 79. Lee, Y. C.; Lee, R. T., Carbohydrate-protein interactions - basis of glycobiology. Acc. Chem. Res. 1995, 28 (8), 321-327. 80. Lundquist, J. J.; Toone, E. J., The cluster glycoside effect. Chem. Rev. 2002, 102 (2), 555-578. 81. Cohen, M.; Varki, A., Modulation of glycan recognition by clustered saccharide patches. Int. Rev. Cell Mol. Biol. 2014, 308, 75-125. 82. Zanini, D.; Roy, R., Architectonic neoglycoconjugates: effects of shapes and valencies in multiple carbohydrate-protein interactions. Carbohydrate Mimics: Concepts and Methods. 2005, 385-415. 83. Broker, M.; Berti, F.; Costantino, P., Factors contributing to the immunogenicity of meningococcal conjugate vaccines. Hum. Vaccin. Immunother. 2016, 12 (7), 1808-1824. 84. Peri, F., Clustered carbohydrates in synthetic vaccines. Chem. Soc. Rev. 2013, 42 (11), 4543-4556. 85. Puffer, E. B.; Pontrello, J. K.; Hollenbeck, J. J.; Kink, J. A.; Kiessling, L. L., Activating B cell signaling with defined multivalent ligands. ACS Chem. Biol. 2007, 2 (4), 252-262. 86. Francis, M. J.; Hastings, G. Z.; Brown, F.; McDermed, J.; Lu, Y. A.; Tam, J. P., Immunological evaluation of the multiple antigen peptide (MAP) system using the major immunogenic site of foot-and-mouth disease virus. Immunology 1991, 73 (3), 249-254. 87. Liu, T. Y.; Hussein, W. M.; Jia, Z.; Ziora, Z. M.; McMillan, N. A.; Monteiro, M. J.; Toth, I.; Skwarczynski, M., Self-adjuvanting polymer-peptide conjugates as therapeutic vaccine candidates against cervical cancer. Biomacromolecules 2013, 14 (8), 2798-2806. 88. Dixon, D. R.; Darveau, R. P., Lipopolysaccharide heterogeneity: innate host responses to bacterial modification of lipid a structure. J. Dent. Res. 2005, 84 (7), 584-595. 89. Silipo, A.; Molinaro, A., The diversity of the core oligosaccharide in lipopolysaccharides. In Endotoxins: Structure, Function and Recognition, Wang, X.; Quinn, P. J., Eds. Springer Netherlands: Dordrecht, 2010; pp 69-99. 90. Micoli, F.; Ravenscroft, N.; Cescutti, P.; Stefanetti, G.; Londero, S.; Rondini, S.; Maclennan, C. A., Structural analysis of O-polysaccharide chains extracted from different Salmonella typhimurium strains. Carbohydr. Res. 2014, 385, 1-8. 91. Bacterial Lipopolysaccharides Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells. Springer-Verlag/Wien: Vienna, 2011. 92. Ilg, K.; Zandomeneghi, G.; Rugarabamu, G.; Meier, B. H.; Aebi, M., HR-MAS NMR reveals a pH-dependent LPS alteration by de-O-acetylation at abequose in the O-antigen of Salmonella enterica serovar typhimurium. Carbohydr. Res. 2013, 382, 58-64. 93. Park, B. S.; Song, D. H.; Kim, H. M.; Choi, B. S.; Lee, H.; Lee, J. O., The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009, 458 (7242), 1191-1195. 94. Zhang, L., Multi-epitope vaccines: a promising strategy against tumors and viral infections. Cell. Mol. Immunol. 2018, 15 (2), 182-184. 95. Tobias, J.; Jasinska, J.; Baier, K.; Kundi, M.; Ede, N.; Zielinski, C.; Wiedermann, U., Enhanced and long term immunogenicity of a Her-2/neu multi-epitope vaccine conjugated to the carrier CRM197 in conjunction with the adjuvant Montanide. BMC Cancer 2017, 17 (1), 118-130. 96. Hassan, A. O.; Amen, O.; Sayedahmed, E. E.; Vemula, S. V.; Amoah, S.; York, I.; Gangappa, S.; Sambhara, S.; Mittal, S. K., Adenovirus vector-based multi-epitope vaccine provides partial protection against H5, H7, and H9 avian influenza viruses. Plos One 2017, 12 (10), e0186244. 97. Soria-Guerra, R. E.; Nieto-Gomez, R.; Govea-Alonso, D. O.; Rosales-Mendoza, S., An overview of bioinformatics tools for epitope prediction: implications on vaccine development. J. Biomed. Inform. 2015, 53, 405-414. 98. Theilacker, C.; Coleman, F. T.; Mueschenborn, S.; Llosa, N.; Grout, M.; Pier, G. B., Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine. Infect. Immun. 2003, 71 (7), 3875-3884. 99. Kashef, N.; Behzadian-Nejad, Q.; Najar-Peerayeh, S.; Mousavi-Hosseini, K.; Moazzeni, M.; Djavid, G. E., Synthesis and characterization of Pseudomonas aeruginosa alginate-tetanus toxoid conjugate. J. Med. Microbiol. 2006, 55 (Pt 10), 1441-1446. 100. Lapidot, A.; Romling, U.; Yaron, S., Biofilm formation and the survival of Salmonella typhimurium on parsley. Int. J. Food Microbiol. 2006, 109 (3), 229-233. 101. Scher, K.; Romling, U.; Yaron, S., Effect of heat, acidification, and chlorination on Salmonella enterica serovar typhimurium cells in a biofilm formed at the air-liquid interface. Appl. Environ. Microbiol. 2005, 71 (3), 1163-1168. 102. Monteiro, C.; Fang, X.; Ahmad, I.; Gomelsky, M.; Romling, U., Regulation of biofilm components in Salmonella enterica serovar typhimurium by lytic transglycosylases involved in cell wall turnover. J. Bacteriol. 2011, 193 (23), 6443-6451. 103. Pone, E. J.; Zan, H.; Zhang, J.; Al-Qahtani, A.; Xu, Z.; Casali, P., Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit. Rev. Immunol. 2010, 30 (1), 1-29. 104. Hajam, I. A.; Dar, P. A.; Shahnawaz, I.; Jaume, J. C.; Lee, J. H., Bacterial flagellin-a potent immunomodulatory agent. Exp. Mol. Med. 2017, 49 (9), e373. 105. Nossal, G. J.; Ada, G. L.; Austin, C. M., Antigens in immunity. II. immunogenic properties of flagella, polymerized flagellin and flagellin in the primary response. Aust. J. Exp. Biol. Med. Sci. 1964, 42, 283-294. 106. Cho, C. C.; Liu, J. N.; Chien, C. H.; Shie, J. J.; Chen, Y. C.; Fang, J. M., Direct amidation of aldoses and decarboxylative amidation of alpha-keto acids: an efficient conjugation method for unprotected carbohydrate molecules. J. Org. Chem. 2009, 74 (4), 1549-1556. 107. Yin, Z. J.; Nguyen, H. G.; Chowdhury, S.; Bentley, P.; Bruckman, M. A.; Miermont, A.; Gildersleeve, J. C.; Wang, Q.; Huang, X. F., Tobacco mosaic virus as a new carrier for tumor associated carbohydrate antigens. Bioconjugate Chem. 2012, 23 (8), 1694-1703. 108. Buskas, T.; Li, Y. H.; Boons, G. J., The immunogenicity of the tumor-associated antigen Lewis(y) may be suppressed by a bifunctional cross-linker required for coupling to a carrier protein. Chem. - Eur. J. 2004, 10 (14), 3517-3524. 109. Nilo, A.; Passalacqua, I.; Fabbrini, M.; Allan, M.; Usera, A.; Carboni, F.; Brogioni, B.; Pezzicoli, A.; Cobb, J.; Romano, M. R.; Margarit, I.; Hu, Q. Y.; Berti, F.; Adamo, R., Exploring the effect of conjugation site and chemistry on the immunogenicity of an anti-group B Streptococcus glycoconjugate vaccine based on GBS67 pilus protein and type V polysaccharide. Bioconjugate Chem. 2015, 26 (8), 1839-1849. 110. Boeckler, C.; Frisch, B.; Muller, S.; Schuber, F., Immunogenicity of new heterobifunctional cross-linking reagents used in the conjugation of synthetic peptides to liposomes. J. Immunol. Methods 1996, 191 (1), 1-10. 111. Sletten, E. M.; Bertozzi, C. R., Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem., Int. Ed. 2009, 48 (38), 6974-6998. 112. Patterson, D. M.; Nazarova, L. A.; Prescher, J. A., Finding the right (bioorthogonal) chemistry. ACS Chem. Biol. 2014, 9 (3), 592-605. 113. Saxon, E.; Armstrong, J. I.; Bertozzi, C. R., A 'traceless' Staudinger ligation for the chemoselective synthesis of amide bonds. Org. Lett. 2000, 2 (14), 2141-2143. 114. Saxon, E.; Bertozzi, C. R., Cell surface engineering by a modified Staudinger reaction. Science 2000, 287 (5460), 2007-2010. 115. Nilsson, B. L.; Kiessling, L. L.; Raines, R. T., Staudinger ligation: a peptide from a thioester and azide. Org. Lett. 2000, 2 (13), 1939-1941. 116. Nilsson, B. L.; Kiessling, L. L.; Raines, R. T., High-yielding Staudinger ligation of a phosphinothioester and azide to form a peptide. Org. Lett. 2001, 3 (1), 9-12. 117. Grandjean, C.; Boutonnier, A.; Guerreiro, C.; Fournier, J. M.; Mulard, L. A., On the preparation of carbohydrate-protein conjugates using the traceless Staudinger ligation. J. Org. Chem. 2005, 70 (18), 7123-7132. 118. Goddard-Borger, E. D.; Stick, R. V., An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org. Lett. 2007, 9 (19), 3797-3800. 119. Cavender, C. J.; Shiner, V. J., Trifluoromethanesulfonyl azide - its reaction with alkyl amines to form alkyl azides. J. Org. Chem. 1972, 37 (22), 3567-3569. 120. Potter, G. T.; Jayson, G. C.; Miller, G. J.; Gardiner, J. M., An updated synthesis of the diazo-transfer reagent imidazole-1-sulfonyl azide hydrogen sulfate. J. Org. Chem. 2016, 81 (8), 3443-3446. 121. Barbosa, M.; Vale, N.; Costa, F. M.; Martins, M. C.; Gomes, P., Tethering antimicrobial peptides onto chitosan: Optimization of azide-alkyne 'click' reaction conditions. Carbohydr. Polym. 2017, 165, 384-393. 122. Roy, B.; Mukhopadhyay, B., Sulfuric acid immobilized on silica: an excellent catalyst for Fischer type glycosylation. Tetrahedron Lett. 2007, 48 (22), 3783-3787. 123. Ibrahim, G. F.; Fleet, G. H.; Lyons, M. J.; Walker, R. A., Method for the isolation of highly purified salmonella flagellins. J. Clin. Microbiol. 1985, 22 (6), 1040-1044. 124. Silva, J. C.; Gorenstein, M. V.; Li, G. Z.; Vissers, J. P.; Geromanos, S. J., Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell. Proteomics 2006, 5 (1), 144-156. 125. Lu, Y.; Swartz, J. R., Functional properties of flagellin as a stimulator of innate immunity. Sci. Rep. 2016, 6, 18379. 126. Lu, Y.; Welsh, J. P.; Chan, W.; Swartz, J. R., Escherichia coli-based cell free production of flagellin and ordered flagellin display on virus-like particles. Biotechnol. Bioeng. 2013, 110 (8), 2073-2085. 127. Seki, Y.; Ishiyama, T.; Sasaki, D.; Abe, J.; Sohma, Y.; Oisaki, K.; Kanai, M., Transition metal-free tryptophan-selective bioconjugation of proteins. J. Am. Chem. Soc. 2016, 138 (34), 10798-10801. 128. McFarland, J. M.; Joshi, N. S.; Francis, M. B., Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 2008, 130 (24), 7639-7644. 129. Chan, A. O. Y.; Ho, C. M.; Chong, H. C.; Leung, Y. C.; Huang, J. S.; Wong, M. K.; Che, C. M., Modification of N-terminal alpha-amino groups of peptides and proteins using ketenes. J. Am. Chem. Soc. 2012, 134 (5), 2589-2598. 130. Hofmeister, F., Zur Lehre von der Wirkung der Salze. Archiv für experimentelle Pathologie und Pharmakologie 1888, 24 (4), 247-260. 131. Ciscato, L. F. M. L.; Weiss, D.; Beckert, R.; Baader, W. J., Fenchyl substituted 1,2-dioxetanes as an alternative to adamantyl derivatives for bioanalytical applications. J. Photochem. Photobiol., A 2011, 218 (1), 41-47. 132. Beatson, S. A.; Minamino, T.; Pallen, M. J., Variation in bacterial flagellins: from sequence to structure. Trends Microbiol. 2006, 14 (4), 151-155. 133. Farrington, G. K.; Kumar, A.; Wedler, F. C., A convenient synthesis of diethyl (mercaptomethyl)phosphonate. Org. Prep. Proced. Int. 1989, 21 (3), 390-392. 134. Parkhouse, S. M.; Garnett, M. C.; Chan, W. C., Targeting of polyamidoamine-DNA nanoparticles using the Staudinger ligation: attachment of an RGD motif either before or after complexation. Bioorg. Med. Chem. 2008, 16 (13), 6641-6650. 135. Muhlberg, M.; Jaradat, D. M.; Kleineweischede, R.; Papp, I.; Dechtrirat, D.; Muth, S.; Broncel, M.; Hackenberger, C. P., Acidic and basic deprotection strategies of borane-protected phosphinothioesters for the traceless Staudinger ligation. Bioorg. Med. Chem. 2010, 18 (11), 3679-3686. 136. Lloyd-Jones, G. C.; Taylor, N. P., Mechanism of phosphine borane deprotection with amines: the effects of phosphine, solvent and amine on rate and efficiency. Chem. Eur. J. 2015, 21 (14), 5423-5428. 137. Chen, M. C. Synthesis, characterization, and immunogenicity of O-specific polysaccharide based glycan vaccine against Salmonella typhimurium. National Taiwan University, 2011. 138. Boivin, A.; Mesrobeanu, I.; Mesrobeanu, L., Extraction d'un complexe toxique et antigénique à partir du Bascule d'Aertrycke. Compt. Rend. Soc. Biol. 1933, 114, 307-310. 139. Zahringer, U.; Lindner, B.; Rietschel, E. T., Molecular structure of lipid A, the endotoxic center of bacterial lipopolysaccharides. Adv. Carbohydr. Chem. Biochem. 1994, 50, 211-276. 140. Liu, B.; Knirel, Y. A.; Feng, L.; Perepelov, A. V.; Senchenkova, S. N.; Reeves, P. R.; Wang, L., Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol. Rev. 2014, 38 (1), 56-89. 141. Peterson, A. A.; McGroarty, E. J., High-molecular-weight components in lipopolysaccharides of Salmonella typhimurium, Salmonella minnesota, and Escherichia coli. J. Bacteriol. 1985, 162 (2), 738-745. 142. Wingfield, P., Protein precipitation using ammonium sulfate. Curr. Protoc. Protein Sci. 2001, Appendix 3, Appendix 3F. 143. Duong-Ly, K. C.; Gabelli, S. B., Salting out of proteins using ammonium sulfate precipitation. Method Enzymol 2014, 541, 85-94. 144. Bally, R. W.; Gribnau, T. C. J., Some Aspects of the Chromogen 3,3',5,5'-Tetramethylbenzidine as Hydrogen Donor in a Horseradish-Peroxidase Assay. J. Clin. Chem. Clin. Biochem. 1989, 27 (10), 791-796. 145. Orenstein, W. A.; Bernier, R. H.; Dondero, T. J.; Hinman, A. R.; Marks, J. S.; Bart, K. J.; Sirotkin, B., Field evaluation of vaccine efficacy. Bull. W. H. O. 1985, 63 (6), 1055-1068. 146. King, N. P.; Bale, J. B.; Sheffler, W.; McNamara, D. E.; Gonen, S.; Gonen, T.; Yeates, T. O.; Baker, D., Accurate design of co-assembling multi-component protein nanomaterials. Nature 2014, 510 (7503), 103-108. 147. Peng, C. J.; Chen, H. L.; Chiu, C. H.; Fang, J. M., Site-selective functionalization of flagellin by steric self-protection: a strategy to facilitate flagellin as a self-adjuvanting carrier in conjugate vaccine. ChemBioChem 2018, 19 (8), 805-814. 148. Asakura, S.; Eguchi, G.; Iino, T., Reconstitution of bacterial flagella in vitro. J. Mol. Biol. 1964, 10 (1), 42-56. 149. Bewick, V.; Cheek, L.; Ball, J., Statistics review 12: survival analysis. Crit. Care 2004, 8 (5), 389-394. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73463 | - |
dc.description.abstract | 細菌鞭毛蛋白 (flagellin, FliC) 可以作為共軛疫苗 (conjugate vaccine) 載運抗原的載體蛋白,亦為類鐸受體 (toll-like receptor 5, TLR5) 之配位體,可以透過其自佐劑 (self-adjuvnat) 活性有效提高疫苗效力。鞭毛蛋白的佐劑效力來自其 D1 結構域與 TLR5 辨識結合後,再由 D0 結構域負責活化後續的訊息傳遞鏈。若以傳統不具位置選擇性的化學方法連結標的抗原與鞭毛載體生產共軛疫苗,結果將導致 D0 與 D1 結構域的過度修飾,造成鞭毛共軛產物 (conjugates) 喪失其佐劑活性。為使鞭毛蛋白能夠有效作為自佐劑載體,本研究首先利用鞭毛單體聚合鞭毛絲時產生的立體自我保護效應 (steric self-protection effect),開發一個具有位置選擇性的化學修飾方法 (site-selective modification, SSM),選擇性地於鞭毛蛋白中的 D2 與 D3 結構域建構生物正交官能基 (bioorthogonal groups) 以供後續抗原結合之用,有效避免 D0 和 D1 結構域的過度修飾,保留了鞭毛蛋白之自佐劑活性。
革蘭氏陰性菌表面具有獨特的脂多醣 (lipopolysaccharides, LPS)。這些具有輕度免疫原性的多醣是疫苗的合適抗原。本研究的第二個目的是利用去脂多醣 (lipid-A free LPS, LFPS) 結合前述細菌鞭毛蛋白,製備並評估一個新型抗傷寒沙門氏菌共軛疫苗。我們透過使用碘促進去羧基醯胺化反應 (iodine-promoted decarboxylative amidation) 與無痕跡 Staudinger 連接 (traceless Staudinger ligation),運用不同的連結分子製備了三種保留了自佐劑活性的 stLFPS-stFliC 共軛疫苗(11)、(12)與(13)。動物實驗結果表明,以三種不同的共軛疫苗免疫的小鼠均能產生對脂多醣和鞭毛蛋白的特異性免疫反應。而用來連接去脂多醣和鞭毛蛋白的連結分子則不具有明顯的免疫原性。施打疫苗顯著延長了小鼠的存活時間並提升了存活率,這可能說明了 stLFPS-stFliC 共軛產物的自佐劑活性和多抗原表位特性確實如預期提高了疫苗效力。本研究的結果為開發具有自佐劑活性的 LFPS-FliC 共軛疫苗提供了可行的方法,並對疫苗發展提供了另外一個具有潛力的方向。 | zh_TW |
dc.description.abstract | Flagellin (FliC) can act as a carrier protein in the preparation of conjugate vaccines and as an intrinsic adjuvant to activate the toll-like receptor 5 (TLR5) to enhance vaccine potency. The adjuvant activity of flagellin is derived from the binding of the D1 domain to TLR5 recognition site along with the subsequent signaling cascades activated by D0 domain. If a conventional conjugation method is used to link antigens to flagellin to produce a conjugate vaccine, over-modification of the D0 and D1 domains will result in the loss of adjuvant activity of the conjugate. To enable the use of FliC as a self-adjuvanting carrier, a site-selective modification (SSM) method based on the steric self-protection effect produced by the assembling of flagellin monomers to flagellar filaments is explored. This method selectively constructs bioorthogonal groups on the pertinent amino-acid residues in the D2 and D3 domains of FliC without excessive modification of the D0 and D1 domains, effectively retains the self-adjuvant activity of the flagellin.
Gram-negative bacteria exhibit unique lipopolysaccharide (LPS) on their surface. These accessible polysaccharides with mild immunogenicity are an appealing target for vaccination. Therefore, the second aim of this research is to prepare and evaluate an advanced conjugate vaccine against Salmonella typhimurium. Three self-adjuvanting stLFPS-stFliC conjugates (11), (12) and (13) were prepared through iodine-promoted decarboxylative amidation and traceless Staudinger ligation. Animal experiments showed that mice immunized with three different stLFPS-stFliC vaccines produced a significant immune response specific for lipopolysaccharide and flagellin of S. typhimurium. Meanwhile, the linker molecules are not significantly immunogenic. The vaccines significantly prolonged the survival time of mice and increased the survival rate, which may indicate that the self-adjuvanting ability and multiple epitopes of stLFPS-stFliC conjugates both provide immunity, as expected to improve the vaccine efficacy. The results of this research provide a viable approach to develop LFPS-FliC conjugate vaccines with self-adjuvant activity and offer a potential option for vaccine development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:36:20Z (GMT). No. of bitstreams: 1 ntu-108-D03223205-1.pdf: 10254153 bytes, checksum: c986d47d62bea81123c12c40cfa86e99 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii Abstract iii List of Figures xi List of Schemes xv List of Tables xvii List of Abbreviations xxi Chapter 1 Introduction 1 1.1 Hapten conjugate vaccines 1 1.2 Protein carriers and conjugation methods 4 1.2.1 Protein carriers of conjugate vaccines 4 1.2.2 Toll-like receptors 7 1.2.3 Flagellin as adjuvanting immunogen 9 1.2.4 Site-selective strategies for chemical modification of protein 10 1.2.5 Site-selective modification of flagellin by steric self-protection effect 13 1.3 Carbohydrate haptens 17 1.3.1 Cluster effect of carbohydrate haptens for multivalent carbohydrate-protein interactions 17 1.3.2 Lipopolysaccharides 19 1.3.3 Multi-epitopes lipopolysaccharide-based conjugate vaccine 22 1.4 Multivalent polysaccharide-flagellin conjugate vaccine 25 1.5 Treatment of Salmonella typhimurium 29 1.6 Scope of this thesis 29 Chapter 2 Results and Discussion 31 Section I: Site-Selective Modification 31 2.1 Synthesis of imidazole-1-sulfonyl azide hydrochloride 31 2.2 Synthesis of propargyl maltoside 32 2.3 Preparation of azido- and maltoside-modified FliC 33 2.4 Flagellin assembling and stability of flagellar assembly in chemical modification 36 2.5 Locations of lysine residues and quantitative analysis: site-selective modification versus nonselective modification 40 2.6 Reassembling of azido-modified flagellin monomers 48 2.7 Human toll-like receptor (hTLR5) activation 53 2.8 Advanced cross-strain platform for production of self-adjuvant carriers 57 Section II: LFPS-Flagellin Conjugate Vaccine 61 2.9 Synthesis of S-(diphenylphosphino)methanethiol borane complex 61 2.10 Synthesis of lysine-rich peptide S-(diphenylphosphino)methanethiolate as a linker in traceless Staudinger ligation 62 2.11 Synthesis of S-((diphenylphosphino)methyl) 6-aminohexanethioate as a linker in traceless Staudinger ligation 65 2.12 Preparation of LFPS-flagellin conjugate self-adjuvanting vaccines 66 2.13 Preparation of linker-BSA conjugates 75 2.14 hTLR5 activation of LFPS-flagellin conjugate self-adjuvanting vaccines 78 2.15 Immunogenicity of LFPS-flagellin conjugate vaccines 80 2.16 Antibacterial efficacy of LFPS-flagellin conjugate self-adjuvanting vaccines 87 Chapter 3 Conclusion and Prospects 97 Chapter 4 Experimental Section 99 4.1 General information, material and instrumentation 99 4.2 Synthetic procedures and compound characterization 101 4.2.1 Imidazole-1-sulfonyl azide hydrochloride (1-HCl) 101 4.2.2 Propargyl maltoside (15) 102 4.2.3 Tert-butyl (6-((2-nitrophenyl)sulfonamido)hexyl)carbamate (35) 102 4.2.4 N-(6-Aminohexyl)-2-nitrobenzenesulfonamide (4) 103 4.2.5 Bis(4-nitrophenyl) adipate (7) 104 4.2.6 S-Bromomethyl ethanethioate (20) 105 4.2.7 S-((Diphenylphosphaneyl)methyl) ethanethioate borane complex (21) 105 4.2.8 Diphenylphosphinomethanethiol borane complex (22) 106 4.2.9 Boc-protected lysine-rich peptide Boc-K(Boc)GK(Boc)GK(Boc)GGG-OH (24) 107 4.2.10 S-(Diphenylphosphino)methanethiolate borane complex of lysine-rich peptide (25) 108 4.2.11 S-(Diphenylphosphino)methanethiolate of lysine-rich peptide K3G5/SCH2PPh2 (9) 109 4.2.12 6-((Tert-butoxycarbonyl)amino)hexanoic acid (27) 109 4.2.13 S-((Diphenylphosphanyl)methyl) 6-((tert-butoxycarbonyl)amino) hexanethioate borane complex (28) 110 4.2.14 S-((Diphenylphosphanyl)methyl) 6-aminohexanethioate, C6/SCH2PPh2 (29) 111 4.3 Assembling of flagellin to flagellar filaments 111 4.4 Preparation of azido modified flagellar filament and flagellin monomer 112 4.5 Preparation of maltoside-modified paFliC by click reaction 114 4.6 Preparation of polysaccharide-protein conjugates 115 4.6.1 Removal of lipid A from Salmonella typhimurium lipopolysaccharide 115 4.6.2 Conjugation of stLFPS with 1,6-hexanediamine via decarboxylative amidation of KDO, giving stLFPS-A/NH2 (6) 115 4.6.3 Conjugation of stLFPS-A/NH2 with bis(4-nitrophenyl) adipate, giving stLFPS-A-B/Np (8) 117 4.6.4 Preparation of stLFPS-peptidylthiolate conjugate stLFPS-A-B-K3G5/SCH2PPh2 (10) 118 4.6.5 Preparation of stLFPS-hexanethiolate conjugate stLFPS-A-B-C6/SCH2PPh2 (30) 119 4.6.6 Preparation of stLFPS-flagellin conjugate self-adjuvanting vaccine stLFPS-A-B-K3G5-stFliC (11) 120 4.6.7 Preparation of stLFPS-flagellin conjugate self-adjuvanting vaccine stLFPS-A-B-C6-stFliC (12) 121 4.6.8 Preparation of stLFPS-flagellin conjugate self-adjuvanting vaccine stLFPS-A-B-stFliC (13) 122 4.6.9 Preparation of stLFPS-BSA conjugate stLFPS-A-B-K3G5-BSA (32) 122 4.6.10 Preparation of stLFPS-BSA conjugate stLFPS-A-B-C6-BSA (33) 123 4.6.11 Preparation of stLFPS-BSA conjugate stLFPS-A-B-BSA (34) 124 4.7 Preparation of linker-BSA conjugates 125 4.7.1 Conjugation of N-(6-aminohexyl)-2-nitrobenzenesulfonamide (4) with bis(4-nitrophenyl) adipate (7), giving Ns-A-B/Np linker (36) 125 4.7.2 Preparation of Ns-A-B-peptidylthiolate derivative Ns-A-B-K3G6/SCH2PPh2 (37) 126 4.7.3 Preparation of Ns-A-B-hexanethiolate derivative Ns-A-B-C6/SCH2PPh2 (38) 127 4.7.4 Preparation of linker-BSA conjugate A-B-K3G5-BSA (39) 127 4.7.5 Preparation of linker-BSA conjugate A-B-C6-BSA (40) 128 4.7.6 Preparation of linker-BSA conjugate A-B-BSA (41) 128 4.8 Reassembling of azido modified flagellin monomers to azido-flagella 129 4.9 Dynamic light scattering (DLS) measurements 130 4.10 TEM Imaging 130 4.11 SDS-PAGE and coomassie blue G-250 staining 131 4.12 Circular dichroism measurement 131 4.13 FT-IR analysis 131 4.14 Fast performance liquid chromatography 132 4.15 Protein digestion 132 4.16 Bicinchoninic acid assay 133 4.17 Phenol-sulfuric acid assay 133 4.18 MALDI-TOF-MS measurement 133 4.19 LC-MS/MS analysis 134 4.20 Label-free quantitation 135 4.21 Molecular modeling of paFliC and assignment of azido-modification sites 136 4.22 Evaluation of hTLR5 activity 136 4.23 Evaluation of vaccination efficacy 138 4.23.1 Mice immunization experiment 138 4.23.2 Serum antibody titer 138 4.23.3 Bacterial challenge test 139 4.23.4 Survival Analysis 139 References 141 Appendix I 157 Appendix II 192 Appendix III 220 | |
dc.language.iso | en | |
dc.title | 抗鼠傷寒沙門氏菌之去脂多醣-鞭毛蛋白共軛自佐劑疫苗:製備與效果評估 | zh_TW |
dc.title | Preparation and Evaluation of Lipid-A Free Lipopolysaccharide-Flagellin Conjugate Self-adjuvanting Vaccine against Salmonella typhimurium | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 陳平,王宗興,張子文,邱政洵,林俊宏 | |
dc.subject.keyword | 鞭毛,疫苗,佐劑,脂多醣,傷寒沙門氏菌, | zh_TW |
dc.subject.keyword | Flagellin,vaccine,adjuvant,lipopolysaccharide,Salmonella typhimurium, | en |
dc.relation.page | 220 | |
dc.identifier.doi | 10.6342/NTU201900705 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-04-15 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 10.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。