Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 基因體與系統生物學學位學程
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7334
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王致恬(Chih-Tien Wang)
dc.contributor.authorHui-Ju Yangen
dc.contributor.author楊蕙如zh_TW
dc.date.accessioned2021-05-19T17:41:41Z-
dc.date.available2024-07-05
dc.date.available2021-05-19T17:41:41Z-
dc.date.copyright2019-07-05
dc.date.issued2019
dc.date.submitted2019-07-02
dc.identifier.citationAdams, D.J., C.P. Arthur, and M.H. Stowell. 2015. Architecture of the Synaptophysin/Synaptobrevin Complex: Structural Evidence for an Entropic Clustering Function at the Synapse. Scientific reports. 5:13659.
Arthur, C.P., and M.H. Stowell. 2007. Structure of synaptophysin: a hexameric MARVEL-domain channel protein. Structure. 15:707-714.
Ashery, U., F. Varoqueaux, T. Voets, A. Betz, P. Thakur, H. Koch, E. Neher, N. Brose, and J. Rettig. 2000. Munc13-1 acts as a priming factor for large dense-core vesicles in bovine chromaffin cells. The EMBO journal. 19:3586-3596.
Augustin, I., C. Rosenmund, T.C. Sudhof, and N. Brose. 1999. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature. 400:457-461.
Bacaj, T., D. Wu, X. Yang, W. Morishita, P. Zhou, W. Xu, R.C. Malenka, and T.C. Sudhof. 2013. Synaptotagmin-1 and synaptotagmin-7 trigger synchronous and asynchronous phases of neurotransmitter release. Neuron. 80:947-959.
Bahler, M., F. Benfenati, F. Valtorta, and P. Greengard. 1990. The synapsins and the regulation of synaptic function. BioEssays : news and reviews in molecular, cellular and developmental biology. 12:259-263.
Bahler, M., and P. Greengard. 1987. Synapsin I bundles F-actin in a phosphorylation-dependent manner. Nature. 326:704-707.
Baker, R.W., and F.M. Hughson. 2016. Chaperoning SNARE assembly and disassembly. Nature reviews. Molecular cell biology. 17:465-479.
Baldelli, P., A. Fassio, F. Valtorta, and F. Benfenati. 2007. Lack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27:13520-13531.
Bao, H., M. Goldschen-Ohm, P. Jeggle, B. Chanda, J.M. Edwardson, and E.R. Chapman. 2016. Exocytotic fusion pores are composed of both lipids and proteins. Nature structural & molecular biology. 23:67-73.
Bartfai, T., K. Iverfeldt, G. Fisone, and P. Serfozo. 1988. Regulation of the release of coexisting neurotransmitters. Annu Rev Pharmacol Toxicol. 28:285-310.
Belin, M.F., D. Nanopoulos, M. Didier, M. Aguera, H. Steinbusch, A. Verhofstad, M. Maitre, and J.F. Pujol. 1983. Immunohistochemical evidence for the presence of gamma-aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotonin. Brain research. 275:329-339.
Belin, M.F., D. Weisman-Nanopoulos, H. Steinbusch, A. Verhofstad, M. Maitre, M. Jouvet, and J.F. Pujol. 1981. [Demonstration of glutamate decarboxylase and serotonin in the same neuron of the nucleus raphe dorsalis of the rat by the methods of immunocytochemical doubling labelling]. C R Seances Acad Sci III. 293:337-341.
Benfenati, F., M. Bahler, R. Jahn, and P. Greengard. 1989a. Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. The Journal of cell biology. 108:1863-1872.
Benfenati, F., P. Greengard, J. Brunner, and M. Bahler. 1989b. Electrostatic and hydrophobic interactions of synapsin I and synapsin I fragments with phospholipid bilayers. The Journal of cell biology. 108:1851-1862.
Benfenati, F., P. Neyroz, M. Bahler, L. Masotti, and P. Greengard. 1990. Time-resolved fluorescence study of the neuron-specific phosphoprotein synapsin I. Evidence for phosphorylation-dependent conformational changes. The Journal of biological chemistry. 265:12584-12595.
Berwin, B., E. Floor, and T.F. Martin. 1998. CAPS (mammalian UNC-31) protein localizes to membranes involved in dense-core vesicle exocytosis. Neuron. 21:137-145.
Breckenridge, L.J., and W. Almers. 1987. Final steps in exocytosis observed in a cell with giant secretory granules. Proceedings of the National Academy of Sciences of the United States of America. 84:1945-1949.
Browning, M.D., E.M. Dudek, J.L. Rapier, S. Leonard, and R. Freedman. 1993. Significant reductions in synapsin but not synaptophysin specific activity in the brains of some schizophrenics. Biological psychiatry. 34:529-535.
Brownstein, M.J., J.M. Saavedra, J. Axelrod, G.H. Zeman, and D.O. Carpenter. 1974. Coexistence of several putative neurotransmitters in single identified neurons of Aplysia. Proceedings of the National Academy of Sciences of the United States of America. 71:4662-4665.
Brzustowicz, L.M., J. Simone, P. Mohseni, J.E. Hayter, K.A. Hodgkinson, E.W. Chow, and A.S. Bassett. 2004. Linkage disequilibrium mapping of schizophrenia susceptibility to the CAPON region of chromosome 1q22. American journal of human genetics. 74:1057-1063.
Burgess, T.L., and R.B. Kelly. 1987. Constitutive and regulated secretion of proteins. Annual review of cell biology. 3:243-293.
Burnstock, G. 1983. Autonomic neurotransmitters and trophic factors. J Auton Nerv Syst. 7:213-217.
Bustos, R., E.R. Kolen, L. Braiterman, A.J. Baines, F.S. Gorelick, and A.L. Hubbard. 2001. Synapsin I is expressed in epithelial cells: localization to a unique trans-Golgi compartment. Journal of cell science. 114:3695-3704.
Cahoy, J.D., B. Emery, A. Kaushal, L.C. Foo, J.L. Zamanian, K.S. Christopherson, Y. Xing, J.L. Lubischer, P.A. Krieg, S.A. Krupenko, W.J. Thompson, and B.A. Barres. 2008. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28:264-278.
Cambiaghi, M., M. Cursi, E. Monzani, F. Benfenati, G. Comi, F. Minicucci, F. Valtorta, and L. Leocani. 2013. Temporal evolution of neurophysiological and behavioral features of synapsin I/II/III triple knock-out mice. Epilepsy research. 103:153-160.
Candemir, E., L. Kollert, L. Weissflog, M. Geis, A. Muller, A.M. Post, A. O'Leary, J. Harro, A. Reif, and F. Freudenberg. 2016. Interaction of NOS1AP with the NOS-I PDZ domain: Implications for schizophrenia-related alterations in dendritic morphology. Eur Neuropsychopharmacol. 26:741-755.
Ceccaldi, P.E., F. Grohovaz, F. Benfenati, E. Chieregatti, P. Greengard, and F. Valtorta. 1995. Dephosphorylated synapsin I anchors synaptic vesicles to actin cytoskeleton: an analysis by videomicroscopy. The Journal of cell biology. 128:905-912.
Cesca, F., P. Baldelli, F. Valtorta, and F. Benfenati. 2010. The synapsins: key actors of synapse function and plasticity. Prog Neurobiol. 91:313-348.
Chandler, D.E., and J.E. Heuser. 1980. Arrest of membrane fusion events in mast cells by quick-freezing. The Journal of cell biology. 86:666-674.
Chang, C.W., C.W. Chiang, and M.B. Jackson. 2017. Fusion pores and their control of neurotransmitter and hormone release. The Journal of general physiology. 149:301-322.
Chang, C.W., E. Hui, J. Bai, D. Bruns, E.R. Chapman, and M.B. Jackson. 2015. A structural role for the synaptobrevin 2 transmembrane domain in dense-core vesicle fusion pores. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35:5772-5780.
Chang, S., T. Trimbuch, and C. Rosenmund. 2018. Synaptotagmin-1 drives synchronous Ca(2+)-triggered fusion by C2B-domain-mediated synaptic-vesicle-membrane attachment. Nature neuroscience. 21:33-40.
Chatterton, J.E., M. Awobuluyi, L.S. Premkumar, H. Takahashi, M. Talantova, Y. Shin, J. Cui, S. Tu, K.A. Sevarino, N. Nakanishi, G. Tong, S.A. Lipton, and D. Zhang. 2002. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature. 415:793-798.
Chheda, M.G., U. Ashery, P. Thakur, J. Rettig, and Z.H. Sheng. 2001. Phosphorylation of Snapin by PKA modulates its interaction with the SNARE complex. Nature cell biology. 3:331-338.
Chi, P., P. Greengard, and T.A. Ryan. 2001. Synapsin dispersion and reclustering during synaptic activity. Nature neuroscience. 4:1187-1193.
Chi, P., P. Greengard, and T.A. Ryan. 2003. Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron. 38:69-78.
Chiang, N., Y.T. Hsiao, H.J. Yang, Y.C. Lin, J.C. Lu, and C.T. Wang. 2014. Phosphomimetic Mutation of Cysteine String Protein-alpha Increases the Rate of Regulated Exocytosis by Modulating Fusion Pore Dynamics in PC12 Cells. PloS one. 9:e99180.
Choi, S., J.S. Won, S.L. Carroll, B. Annamalai, I. Singh, and A.K. Singh. 2018. Pathology of nNOS-Expressing GABAergic Neurons in Mouse Model of Alzheimer's Disease. Neuroscience. 384:41-53.
Chow, R.H., L. von Ruden, and E. Neher. 1992. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature. 356:60-63.
Chronwall, B.M., T.N. Chase, and T.L. O'Donohue. 1984. Coexistence of neuropeptide Y and somatostatin in rat and human cortical and rat hypothalamic neurons. Neuroscience letters. 52:213-217.
Cooper, J.R., F.E. Bloom, and R.H. Roth. 2003. The biochemical basis of neuropharmacology. Oxford University Press, Oxford ; New York. vii, 405 p. pp.
Cottrell, G.A. 1976. Proceedings: Does the giant cerebral neurone of Helix release two transmitters: ACh and serotonin? The Journal of physiology. 259:44P-45P.
Courtney, M.J., L.L. Li, and Y.Y. Lai. 2014. Mechanisms of NOS1AP action on NMDA receptor-nNOS signaling. Frontiers in cellular neuroscience. 8:252.
Craxton, M. 2010. A manual collection of Syt, Esyt, Rph3a, Rph3al, Doc2, and Dblc2 genes from 46 metazoan genomes--an open access resource for neuroscience and evolutionary biology. BMC genomics. 11:37.
Czernik, A.J., D.T. Pang, and P. Greengard. 1987. Amino acid sequences surrounding the cAMP-dependent and calcium/calmodulin-dependent phosphorylation sites in rat and bovine synapsin I. Proceedings of the National Academy of Sciences of the United States of America. 84:7518-7522.
Dal Bo, G., F. St-Gelais, M. Danik, S. Williams, M. Cotton, and L.E. Trudeau. 2004. Dopamine neurons in culture express VGLUT2 explaining their capacity to release glutamate at synapses in addition to dopamine. Journal of neurochemistry. 88:1398-1405.
Dale, H. 1935. Pharmacology and Nerve-endings (Walter Ernest Dixon Memorial Lecture): (Section of Therapeutics and Pharmacology). Proc R Soc Med. 28:319-332.
De Camilli, P., R. Cameron, and P. Greengard. 1983. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. The Journal of cell biology. 96:1337-1354.
De Camilli, P., and R. Jahn. 1990. Pathways to regulated exocytosis in neurons. Annual review of physiology. 52:625-645.
de Wit, H., A.M. Walter, I. Milosevic, A. Gulyas-Kovacs, D. Riedel, J.B. Sorensen, and M. Verhage. 2009. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell. 138:935-946.
Delorme, R., C. Betancur, I. Scheid, H. Anckarsater, P. Chaste, S. Jamain, F. Schuroff, G. Nygren, E. Herbrecht, A. Dumaine, M.C. Mouren, M. Rastam, M. Leboyer, C. Gillberg, and T. Bourgeron. 2010. Mutation screening of NOS1AP gene in a large sample of psychiatric patients and controls. Bmc Med Genet. 11.
Dumermuth, E., and H.P. Moore. 1998. Analysis of constitutive and constitutive-like secretion in semi-intact pituitary cells. Methods. 16:188-197.
Eastwood, S.L., and P.J. Harrison. 1995. Decreased synaptophysin in the medial temporal lobe in schizophrenia demonstrated using immunoautoradiography. Neuroscience. 69:339-343.
Etholm, L., H. Linden, T. Eken, and P. Heggelund. 2011. Electroencephalographic characterization of seizure activity in the synapsin I/II double knockout mouse. Brain research. 1383:270-288.
Everitt, B.J., T. Hokfelt, L. Terenius, K. Tatemoto, V. Mutt, and M. Goldstein. 1984a. Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience. 11:443-462.
Everitt, B.J., T. Hokfelt, J.Y. Wu, and M. Goldstein. 1984b. Coexistence of tyrosine hydroxylase-like and gamma-aminobutyric acid-like immunoreactivities in neurons of the arcuate nucleus. Neuroendocrinology. 39:189-191.
Fernandez-Chacon, R., A. Konigstorfer, S.H. Gerber, J. Garcia, M.F. Matos, C.F. Stevens, N. Brose, J. Rizo, C. Rosenmund, and T.C. Sudhof. 2001. Synaptotagmin I functions as a calcium regulator of release probability. Nature. 410:41-49.
Fornasiero, E.F., D. Bonanomi, F. Benfenati, and F. Valtorta. 2010. The role of synapsins in neuronal development. Cellular and molecular life sciences : CMLS. 67:1383-1396.
Fulop, T., S. Radabaugh, and C. Smith. 2005. Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25:7324-7332.
Furshpan, E.J., S.C. Landis, S.G. Matsumoto, and D.D. Potter. 1986. Synaptic functions in rat sympathetic neurons in microcultures. I. Secretion of norepinephrine and acetylcholine. The Journal of neuroscience : the official journal of the Society for Neuroscience. 6:1061-1079.
Furshpan, E.J., P.R. MacLeish, P.H. O'Lague, and D.D. Potter. 1976. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic, and dual-function neurons. Proceedings of the National Academy of Sciences of the United States of America. 73:4225-4229.
Gabriel, S.M., M. Davidson, V. Haroutunian, P. Powchik, L.M. Bierer, D.P. Purohit, D.P. Perl, and K.L. Davis. 1996. Neuropeptide deficits in schizophrenia vs. Alzheimer's disease cerebral cortex. Biological psychiatry. 39:82-91.
Garcia, C.C., H.J. Blair, M. Seager, A. Coulthard, S. Tennant, M. Buddles, A. Curtis, and J.A. Goodship. 2004. Identification of a mutation in synapsin I, a synaptic vesicle protein, in a family with epilepsy. Journal of medical genetics. 41:183-186.
Gincel, D., and V. Shoshan-Barmatz. 2002. The synaptic vesicle protein synaptophysin: purification and characterization of its channel activity. Biophysical journal. 83:3223-3229.
Godenschwege, T.A., D. Reisch, S. Diegelmann, K. Eberle, N. Funk, M. Heisenberg, V. Hoppe, J. Hoppe, B.R. Klagges, J.R. Martin, E.A. Nikitina, G. Putz, R. Reifegerste, N. Reisch, J. Rister, M. Schaupp, H. Scholz, M. Schwarzel, U. Werner, T.D. Zars, S. Buchner, and E. Buchner. 2004. Flies lacking all synapsins are unexpectedly healthy but are impaired in complex behaviour. The European journal of neuroscience. 20:611-622.
Gondre-Lewis, M.C., J.J. Park, and Y.P. Loh. 2012. Cellular mechanisms for the biogenesis and transport of synaptic and dense-core vesicles. International review of cell and molecular biology. 299:27-115.
Grimmelikhuijzen, C.J. 1983. Coexistence of neuropeptides in hydra. Neuroscience. 9:837-845.
Gumbiner, B., and R.B. Kelly. 1982. Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells. Cell. 28:51-59.
Han, X., and M.B. Jackson. 2005. Electrostatic interactions between the syntaxin membrane anchor and neurotransmitter passing through the fusion pore. Biophysical journal. 88:L20-22.
Han, X., C.T. Wang, J. Bai, E.R. Chapman, and M.B. Jackson. 2004. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science. 304:289-292.
Hanley, M.R., G.A. Cottrell, P.C. Emson, and F. Fonnum. 1974. Enzymatic synthesis of acetylcholine by a serotonin-containing neurone from Helix. Nature. 251:631-633.
Hansen, L.A., S.E. Daniel, G.K. Wilcock, and S. Love. 1998. Frontal cortical synaptophysin in Lewy body diseases: relation to Alzheimer's disease and dementia. J Neurol Neurosurg Psychiatry. 64:653-656.
Hay, J.C., and T.F. Martin. 1992. Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. The Journal of cell biology. 119:139-151.
Haycock, J.W., P. Greengard, and M.D. Browning. 1988. Cholinergic regulation of protein III phosphorylation in bovine adrenal chromaffin cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 8:3233-3239.
Heinonen, O., H. Soininen, H. Sorvari, O. Kosunen, L. Paljarvi, E. Koivisto, and P.J. Riekkinen, Sr. 1995. Loss of synaptophysin-like immunoreactivity in the hippocampal formation is an early phenomenon in Alzheimer's disease. Neuroscience. 64:375-384.
Ho, L., Y. Guo, L. Spielman, O. Petrescu, V. Haroutunian, D. Purohit, A. Czernik, S. Yemul, P.S. Aisen, R. Mohs, and G.M. Pasinetti. 2001. Altered expression of a-type but not b-type synapsin isoform in the brain of patients at high risk for Alzheimer's disease assessed by DNA microarray technique. Neuroscience letters. 298:191-194.
Hokfelt, T., L.G. Elfvin, R. Elde, M. Schultzberg, M. Goldstein, and R. Luft. 1977. Occurrence of somatostatin-like immunoreactivity in some peripheral sympathetic noradrenergic neurons. Proceedings of the National Academy of Sciences of the United States of America. 74:3587-3591.
Honigmann, A., G. van den Bogaart, E. Iraheta, H.J. Risselada, D. Milovanovic, V. Mueller, S. Mullar, U. Diederichsen, D. Fasshauer, H. Grubmuller, S.W. Hell, C. Eggeling, K. Kuhnel, and R. Jahn. 2013. Phosphatidylinositol 4,5-bisphosphate clusters act as molecular beacons for vesicle recruitment. Nature structural & molecular biology. 20:679-686.
Hosaka, M., R.E. Hammer, and T.C. Sudhof. 1999. A phospho-switch controls the dynamic association of synapsins with synaptic vesicles. Neuron. 24:377-387.
Hurley, S.L., D.L. Brown, and J.J. Cheetham. 2004. Cytoskeletal interactions of synapsin I in non-neuronal cells. Biochemical and biophysical research communications. 317:16-23.
Huttner, W.B., and P. Greengard. 1979. Multiple phosphorylation sites in protein I and their differential regulation by cyclic AMP and calcium. Proceedings of the National Academy of Sciences of the United States of America. 76:5402-5406.
Ilardi, J.M., S. Mochida, and Z.H. Sheng. 1999. Snapin: a SNARE-associated protein implicated in synaptic transmission. Nature neuroscience. 2:119-124.
Ivanov, A.I. 2014. Exocytosis and endocytosis. Humana Press, New York. xiii, 435 pages pp.
Jaffrey, S.R., F. Benfenati, A.M. Snowman, A.J. Czernik, and S.H. Snyder. 2002. Neuronal nitric-oxide synthase localization mediated by a ternary complex with synapsin and CAPON. Proceedings of the National Academy of Sciences of the United States of America. 99:3199-3204.
Jahn, R., and D. Fasshauer. 2012. Molecular machines governing exocytosis of synaptic vesicles. Nature. 490:201-207.
Jahn, R., W. Schiebler, C. Ouimet, and P. Greengard. 1985. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proceedings of the National Academy of Sciences of the United States of America. 82:4137-4141.
Johnson, M.D. 1994. Synaptic glutamate release by postnatal rat serotonergic neurons in microculture. Neuron. 12:433-442.
Jovanovic, J.N., F. Benfenati, Y.L. Siow, T.S. Sihra, J.S. Sanghera, S.L. Pelech, P. Greengard, and A.J. Czernik. 1996. Neurotrophins stimulate phosphorylation of synapsin I by MAP kinase and regulate synapsin I-actin interactions. Proceedings of the National Academy of Sciences of the United States of America. 93:3679-3683.
Kaneko, T., H. Akiyama, I. Nagatsu, and N. Mizuno. 1990. Immunohistochemical demonstration of glutaminase in catecholaminergic and serotoninergic neurons of rat brain. Brain research. 507:151-154.
Kedar, G.H., A.S. Munch, J.R. van Weering, J. Malsam, A. Scheutzow, H. de Wit, S. Houy, B. Tawfik, T.H. Sollner, J.B. Sorensen, and M. Verhage. 2015. A Post-Docking Role of Synaptotagmin 1-C2B Domain Bottom Residues R398/399 in Mouse Chromaffin Cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35:14172-14182.
Kelly, R.B. 1985. Pathways of protein secretion in eukaryotes. Science. 230:25-32.
Kerkut, G.A., C.B. Sedden, and R.J. Walker. 1967. Uptake of DOPA and 5-hydroxytryptophan by monoamine-forming neurones in the brain of Helix aspersa. Comp Biochem Physiol. 23:159-162.
Ketzef, M., J. Kahn, I. Weissberg, A.J. Becker, A. Friedman, and D. Gitler. 2011. Compensatory network alterations upon onset of epilepsy in synapsin triple knock-out mice. Neuroscience. 189:108-122.
Koch, H., K. Hofmann, and N. Brose. 2000. Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. The Biochemical journal. 349:247-253.
Koh, T.W., and H.J. Bellen. 2003. Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends in neurosciences. 26:413-422.
Koushika, S.P., J.E. Richmond, G. Hadwiger, R.M. Weimer, E.M. Jorgensen, and M.L. Nonet. 2001. A post-docking role for active zone protein Rim. Nature neuroscience. 4:997-1005.
Kreutzberger, A.J.B., V. Kiessling, B. Liang, P. Seelheim, S. Jakhanwal, R. Jahn, J.D. Castle, and L.K. Tamm. 2017. Reconstitution of calcium-mediated exocytosis of dense-core vesicles. Science advances. 3:e1603208.
Kupfermann, I. 1991. Functional studies of cotransmission. Physiological reviews. 71:683-732.
Lawford, B.R., C.P. Morris, C.D. Swagell, I.P. Hughes, R.M. Young, and J. Voisey. 2013. NOS1AP is associated with increased severity of PTSD and depression in untreated combat veterans. J Affect Disord. 147:87-93.
Levitan, I.B., and L.K. Kaczmarek. 2015. The neuron : cell and molecular biology. Oxford University Press, Oxford ; New York. xvi, 579 pages pp.
Li, J., Y.R. Han, M.R. Plummer, and K. Herrup. 2009. Cytoplasmic ATM in neurons modulates synaptic function. Current biology : CB. 19:2091-2096.
Li, L., L.S. Chin, O. Shupliakov, L. Brodin, T.S. Sihra, O. Hvalby, V. Jensen, D. Zheng, J.O. McNamara, P. Greengard, and et al. 1995. Impairment of synaptic vesicle clustering and of synaptic transmission, and increased seizure propensity, in synapsin I-deficient mice. Proceedings of the National Academy of Sciences of the United States of America. 92:9235-9239.
Li, Y.W., and D.A. Bayliss. 1998. Presynaptic inhibition by 5-HT1B receptors of glutamatergic synaptic inputs onto serotonergic caudal raphe neurones in rat. The Journal of physiology. 510 ( Pt 1):121-134.
Lievens, J.C., B. Woodman, A. Mahal, and G.P. Bates. 2002. Abnormal phosphorylation of synapsin I predicts a neuronal transmission impairment in the R6/2 Huntington's disease transgenic mice. Molecular and cellular neurosciences. 20:638-648.
Lynch, K.L., R.R. Gerona, D.M. Kielar, S. Martens, H.T. McMahon, and T.F. Martin. 2008. Synaptotagmin-1 utilizes membrane bending and SNARE binding to drive fusion pore expansion. Molecular biology of the cell. 19:5093-5103.
Lynch, M.A., K.L. Voss, J. Rodriguez, and T.V. Bliss. 1994. Increase in synaptic vesicle proteins accompanies long-term potentiation in the dentate gyrus. Neuroscience. 60:1-5.
Mackler, J.M., J.A. Drummond, C.A. Loewen, I.M. Robinson, and N.E. Reist. 2002. The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature. 418:340-344.
Maienschein, V., M. Marxen, W. Volknandt, and H. Zimmermann. 1999. A plethora of presynaptic proteins associated with ATP-storing organelles in cultured astrocytes. Glia. 26:233-244.
Mains, R.E., B.A. Eipper, and N. Ling. 1977. Common precursor to corticotropins and endorphins. Proceedings of the National Academy of Sciences of the United States of America. 74:3014-3018.
Man, K.N., C. Imig, A.M. Walter, P.S. Pinheiro, D.R. Stevens, J. Rettig, J.B. Sorensen, B.H. Cooper, N. Brose, and S.M. Wojcik. 2015. Identification of a Munc13-sensitive step in chromaffin cell large dense-core vesicle exocytosis. eLife. 4.
Matsubara, M., M. Kusubata, K. Ishiguro, T. Uchida, K. Titani, and H. Taniguchi. 1996. Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. The Journal of biological chemistry. 271:21108-21113.
Matsumoto, K., K. Ebihara, H. Yamamoto, H. Tabuchi, K. Fukunaga, M. Yasunami, H. Ohkubo, M. Shichiri, and E. Miyamoto. 1999. Cloning from insulinoma cells of synapsin I associated with insulin secretory granules. The Journal of biological chemistry. 274:2053-2059.
Menegon, A., D.D. Dunlap, F. Castano, F. Benfenati, A.J. Czernik, P. Greengard, and F. Valtorta. 2000. Use of phosphosynapsin I-specific antibodies for image analysis of signal transduction in single nerve terminals. Journal of cell science. 113 ( Pt 20):3573-3582.
Merighi, A. 2002. Costorage and coexistence of neuropeptides in the mammalian CNS. Prog Neurobiol. 66:161-190.
Messa, M., S. Congia, E. Defranchi, F. Valtorta, A. Fassio, F. Onofri, and F. Benfenati. 2010. Tyrosine phosphorylation of synapsin I by Src regulates synaptic-vesicle trafficking. Journal of cell science. 123:2256-2265.
Michels, B., S. Diegelmann, H. Tanimoto, I. Schwenkert, E. Buchner, and B. Gerber. 2005. A role for Synapsin in associative learning: the Drosophila larva as a study case. Learn Mem. 12:224-231.
Millhorn, D.E., T. Hokfelt, K. Seroogy, W. Oertel, A.A. Verhofstad, and J.Y. Wu. 1987. Immunohistochemical evidence for colocalization of gamma-aminobutyric acid and serotonin in neurons of the ventral medulla oblongata projecting to the spinal cord. Brain research. 410:179-185.
Mullany, P., and M.A. Lynch. 1997. Changes in protein synthesis and synthesis of the synaptic vesicle protein, synaptophysin, in entorhinal cortex following induction of long-term potentiation in dentate gyrus: an age-related study in the rat. Neuropharmacology. 36:973-980.
Nanopoulos, D., M. Maitre, M.F. Belin, M. Aguera, J.F. Pujol, H. Gamrani, and A. Calas. 1981. Autoradiographic and immunocytochemical evidence for the existence of GABAergic neurons in the nucleus raphe dorsalis--possible existence of neurons containing 5HT and glutamate decarboxylase. Adv Biochem Psychopharmacol. 29:519-525.
Nicholas, A.P., A.C. Cuello, M. Goldstein, and T. Hokfelt. 1990. Glutamate-like immunoreactivity in medulla oblongata catecholamine/substance P neurons. Neuroreport. 1:235-238.
Nicholls, D.G. 1994. Proteins, transmitters, and synapses. Blackwell Scientific Publications, Oxford ; Boston. xii, 253 p., 254 p. of plates pp.
Nishiki, T., and G.J. Augustine. 2004. Dual roles of the C2B domain of synaptotagmin I in synchronizing Ca2+-dependent neurotransmitter release. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24:8542-8550.
Nowakowski, C., W.A. Kaufmann, C. Adlassnig, H. Maier, K. Salimi, K.A. Jellinger, and J. Marksteiner. 2002. Reduction of chromogranin B-like immunoreactivity in distinct subregions of the hippocampus from individuals with schizophrenia. Schizophr Res. 58:43-53.
Ochoa, D., and F. Pazos. 2010. Studying the co-evolution of protein families with the Mirrortree web server. Bioinformatics. 26:1370-1371.
Onofri, F., M. Messa, V. Matafora, G. Bonanno, A. Corradi, A. Bachi, F. Valtorta, and F. Benfenati. 2007. Synapsin phosphorylation by SRC tyrosine kinase enhances SRC activity in synaptic vesicles. The Journal of biological chemistry. 282:15754-15767.
Osborne, N.N. 1977. Do snail neurones contain more than one neurotransmitter? Nature. 270:622-623.
Pang, Z.P., O.H. Shin, A.C. Meyer, C. Rosenmund, and T.C. Sudhof. 2006. A gain-of-function mutation in synaptotagmin-1 reveals a critical role of Ca2+-dependent soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex binding in synaptic exocytosis. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26:12556-12565.
Pazos, F., and A. Valencia. 2001. Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein engineering. 14:609-614.
Perdahl, E., R. Adolfsson, I. Alafuzoff, K.A. Albert, E.J. Nestler, P. Greengard, and B. Winblad. 1984. Synapsin I (protein I) in different brain regions in senile dementia of Alzheimer type and in multi-infarct dementia. J Neural Transm. 60:133-141.
Petrucci, T.C., and J.S. Morrow. 1987. Synapsin I: an actin-bundling protein under phosphorylation control. The Journal of cell biology. 105:1355-1363.
Potter, D.D., S.C. Landis, S.G. Matsumoto, and E.J. Furshpan. 1986. Synaptic functions in rat sympathetic neurons in microcultures. II. Adrenergic/cholinergic dual status and plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 6:1080-1098.
Pulst, S.M., D. Gusman, B.S. Rothman, and E. Mayeri. 1986. Coexistence of egg-laying hormone and alpha-bag cell peptide in bag cell neurons of Aplysia indicates that they are a peptidergic multitransmitter system. Neuroscience letters. 70:40-45.
Qin, S., X.Y. Hu, H. Xu, and J.N. Zhou. 2004. Regional alteration of synapsin I in the hippocampal formation of Alzheimer's disease patients. Acta Neuropathol. 107:209-215.
Richmond, J.E., W.S. Davis, and E.M. Jorgensen. 1999. UNC-13 is required for synaptic vesicle fusion in C. elegans. Nature neuroscience. 2:959-964.
Romano, C., R.A. Nichols, and P. Greengard. 1987a. Synapsin I in PC12 cells. II. Evidence for regulation by NGF of phosphorylation at a novel site. The Journal of neuroscience : the official journal of the Society for Neuroscience. 7:1300-1306.
Romano, C., R.A. Nichols, P. Greengard, and L.A. Greene. 1987b. Synapsin I in PC12 cells. I. Characterization of the phosphoprotein and effect of chronic NGF treatment. The Journal of neuroscience : the official journal of the Society for Neuroscience. 7:1294-1299.
Rosahl, T.W., D. Spillane, M. Missler, J. Herz, D.K. Selig, J.R. Wolff, R.E. Hammer, R.C. Malenka, and T.C. Sudhof. 1995. Essential functions of synapsins I and II in synaptic vesicle regulation. Nature. 375:488-493.
Saegusa, C., M. Fukuda, and K. Mikoshiba. 2002. Synaptotagmin V is targeted to dense-core vesicles that undergo calcium-dependent exocytosis in PC12 cells. J Biol Chem. 277:24499-24505.
Sakurada, K., H. Kato, H. Nagumo, H. Hiraoka, K. Furuya, T. Ikuhara, Y. Yamakita, K. Fukunaga, E. Miyamoto, F. Matsumura, Y.I. Matsuo, Y. Naito, and Y. Sasaki. 2002. Synapsin I is phosphorylated at Ser603 by p21-activated kinases (PAKs) in vitro and in PC12 cells stimulated with bradykinin. The Journal of biological chemistry. 277:45473-45479.
Schiavo, G., F. Benfenati, B. Poulain, O. Rossetto, P. Polverino de Laureto, B.R. DasGupta, and C. Montecucco. 1992. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 359:832-835.
Schilling, K., and M. Gratzl. 1988. Quantification of p38/synaptophysin in highly purified adrenal medullary chromaffin vesicles. FEBS letters. 233:22-24.
Schmitt, U., N. Tanimoto, M. Seeliger, F. Schaeffel, and R.E. Leube. 2009. Detection of behavioral alterations and learning deficits in mice lacking synaptophysin. Neuroscience. 162:234-243.
Shao, X., B.A. Davletov, R.B. Sutton, T.C. Sudhof, and J. Rizo. 1996. Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science. 273:248-251.
Shin, O.H. 2014. Exocytosis and synaptic vesicle function. Comprehensive Physiology. 4:149-175.
Silva, A.J., T.W. Rosahl, P.F. Chapman, Z. Marowitz, E. Friedman, P.W. Frankland, V. Cestari, D. Cioffi, T.C. Sudhof, and R. Bourtchuladze. 1996. Impaired learning in mice with abnormal short-lived plasticity. Current biology : CB. 6:1509-1518.
Slonimsky, J.D., M.D. Mattaliano, J.I. Moon, L.C. Griffith, and S.J. Birren. 2006. Role for calcium/calmodulin-dependent protein kinase II in the p75-mediated regulation of sympathetic cholinergic transmission. Proceedings of the National Academy of Sciences of the United States of America. 103:2915-2919.
Soderberg, O., K.J. Leuchowius, M. Gullberg, M. Jarvius, I. Weibrecht, L.G. Larsson, and U. Landegren. 2008. Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay. Methods. 45:227-232.
Sollner, T., M.K. B
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7334-
dc.description.abstract神經傳導物質的釋放與接受驅動神經系統中的化學性突觸傳導。神經傳導物質主要被包覆在兩種截然不同的囊泡中-緻密核心囊泡(dense-core vesicles)和突觸囊泡(synaptic vesiclse),雖然此兩種囊泡的釋放都是藉由相同的機制-鈣離子調控胞吐作用;然而,Synapsin (Syn) Ia卻為唯一一種只特定存在於突觸囊泡的專屬蛋白,其藉由自身的磷酸化對調控突觸囊泡的補給至為重要。在適當的刺激下,Syn Ia會被磷酸化,進而將突觸囊泡帶至釋放位置,因此,Syn Ia的磷酸化會促進突觸囊泡的釋放。儘管已在含有緻密核心囊泡的突觸末端中發現有大量的Syn Ia,但目前仍完全未知的是Syn Ia是否也會(或如何)去影響緻密核心囊泡的胞吐作用。因此,為了在單一囊泡的層級釐清Syn Ia如何調控緻密核心囊泡的釋放,我們利用單一囊泡安培測定法(single-vesicle amperometry)直接偵測在transfected PC12細胞中,正腎上腺素從緻密核心囊泡的釋放。研究結果顯示,Syn Ia 可以藉由其磷酸化調控緻密核心囊泡胞吐作用的動態變化;除此之外,Syn Ia還可以調節融合孔(緻密核心囊泡融合時的中間體)的動態,藉此影響緻密核心囊泡融合孔開啟狀態時的穩定性。由於已知Syn I不存在於緻密核心囊泡,推測Syn Ia應該是藉由和某特定蛋白結合,進而調控緻密核心囊泡的胞吐作用動態。為了進一步找出這個特別的蛋白,我們結合生物資訊、免疫共沉澱以及蛋白質交互作用檢測技術,證明Syn I能夠和Synaptophysin (Syp)在細胞內進行交互作用;除此之外,在同一個細胞中,Syn I能夠和Syp直接性且原位的交互作用。最後,我們發現Syn I和Syp的交互作用不是因為蛋白質表現量的改變而影響,而是倚賴Syn Ia的磷酸化。因此,這些結果除了揭開了突觸囊泡專屬蛋白Syn Ia如何去調控緻密核心囊泡胞吐作用的動態,還提供了關於Syn Ia在緻密核心囊泡和突觸囊泡共釋放機制上的角色;這些結果引導出一個新觀念的突破,並賦予神經傳導物質釋放的多樣性。zh_TW
dc.description.abstractNeurotransmitters release and reception mediate chemical synaptic transmission. Neurotransmitters are packaged into two distinct classes of vesicles, “dense-core vesicles” (DCVs) and “synaptic vesicles” (SVs). The secretion from both DCVs and SVs share the common exocytotic machinery, i.e., Ca2+ regulated exocytosis. Instead, Synapsin (Syn) Ia is a SV-specific SV protein, essential for recruiting SVs by phosphorylation. Upon the appropriate stimulus, Syn Ia undergoes phosphorylation, thus recruiting SVs to release sites. Therefore, the phosphorylation of Syn Ia up-regulates the release of SVs. Although Syn Ia is also abundant in the axon terminals containing DCVs, whether (or how) Syn Ia regulates the DCV release remains completely unknown. To determine the Syn Ia’s regulation of DCV exocytosis at the single-vesicle level, we directly measured the NE release from DCVs by performing single-vesicle amperometry in transfected PC12 cells following molecular perturbation. We showed that Syn Ia can regulate the dynamics of DCV exocytosis in a phosphorylation-dependent manner. In addition, Syn Ia can modulate the kinetics of fusion pores, the intermediates during DCV fusion, suggesting that Syn Ia regulates the stabilization of opening DCV fusion pores. Since Syn I rarely localized to DCVs, Syn Ia may interact certain protein to regulate DCV exocytosis. To further predict and identify the candidate Syn Ia-interacting proteins, we combined bioinformatics, co-immunoprecipitation, and proximity ligation assay. As the results, we identified that the in vivo interaction between Syn Ia and Synaptophysin (Syp). In addition, Syn Ia may directly interact with Syp in situ in the same cell. Finally, we showed that the in vivo interaction between Syn Ia and Syp was not attributed to the change in expression levels, but dependent on the phosphorylation of Syn Ia. In conclusion, our results not only unveil how the SV-specific protein Syn Ia regulates the dynamics of DCV exocytosis, but also provide a new conceptual advance regarding the co-release mechanism of DCVs and SVs, conferring the versatility of neurotransmitter release.en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:41:41Z (GMT). No. of bitstreams: 1
ntu-108-D03b48004-1.pdf: 9456985 bytes, checksum: a3f8df395145c273844569456bb0ec5e (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 v
Abstract vii
Abbreviations ix
Chapter I Introduction
1.1 Constitutive and regulated secretion 1
1.2 The kinetics of fusion pores 3
1.3 Dense-core vesicles (DCVs) and synaptic vesicles (SVs) 5
1.4 The common machinery in both DCVs and SVs: Synaptotagmin I and the N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) complex 7
1.5 The SV-specific protein: Synapsin Ia 10
1.6 The vesicle protein present in both DCVs and SVs 15
1.7 Objectives of the study 16
Chapter II Materials and Methods
2.1 DNA plasmids 20
2.2 Cell culture 21
2.3 Transfection 22
2.4 Reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) 23
2.5 Single-vesicle amperometry 25
2.6 Immunofluorescence staining 28
2.7 Prediction for protein-protein interaction 30
2.8 Co-immunoprecipitation 31
2.9 Western blotting 33
2.10 Proximity ligation assay 35
2.11 Statistics 37
Chapter III Results
3.1 Secretion from DCVs was regulated by Syn Ia or its phosphodeficient mutants 38
3.2 FF frequency of DCVs was regulated by Syn Ia in a phosphorylation-dependent manner 40
3.3 The stabilization of open DCV fusion pores was regulated by Syn Ia or its phosphodeficient mutants 42
3.4 Fusion pore kinetics of DCVs was regulated by Syn Ia or its phosphodeficient mutants 44
3.5 Syn I mainly localized to SVs, but rarely localized to DCVs in PC12 cells 46
3.6 Exploring the putative Syn Ia-interacting proteins by database search and PPI prediction 47
3.7 The expression levels of Synaptophysin and SNARE proteins were not altered by overexpressing Syn Ia or its phosphodeficient mutants 49
3.8 In vivo interaction between Syn I and Synaptophysin depended on the phosphorylation of Syn Ia 50
Chapter IV Discussion
4.1 Syn Ia dynamically regulates DCV exocytosis via different phosphorylation sites. 54
4.2 Syp is selected as the primary putative Syn Ia-interacting protein among top 5 proteins from PPI prediction 56
4.3 The potential role of Syn Ia involves in the development of neurological diseases 58
4.4 The potential role of Syn Ia in the co-release of neurotransmitters 61
4.5 Significance 64
Chapter V Conclusion 67
References 69
List of Figures
Figure 1. Neurotransmitters are released by Ca2+-regulated exocytosis 85
Figure 2. Syn Ia is a key regulator of SV dynamics by modulating the storage and mobilization via its phosphorylation 87
Figure 3. The scheme of working hypothesis and proposed experiments in this study 89
Figure 4. Secretion rate of DCVs was regulated by Syn Ia or its phosphodeficient mutants 91
Figure 5. The mRNA expression in cells overexpressing Syn Ia or its phosphodeficient mutants 93
Figure 6. FF frequency and fraction of KR events in cells overexpressing Syn Ia or its phosphodeficient mutants 95
Figure 7. Spike characteristics in cells overexpressing Syn Ia or its phosphodeficient mutants 97
Figure 8. PSF open time of DCVs was regulated by Syn Ia or its phosphodeficient mutants 99
Figure 9. Two fusion events- “kiss and run” v.s. “full fusion” in cells overexpressing Syn Ia or its phosphodeficient mutants 101
Figure 10. Fusion pore kinetics of DCVs were regulated by Syn Ia or its phosphodeficient mutants 103
Figure 11. Subcellular localization of Syn I and ChB/Syp in cells overexpressing Syn Ia or its phosphodeficient mutants 104
Figure 12. Syn Ia-interacting proteins from database search 106
Figure 13. The protein-protein interaction prediction of putative Syn Ia-interacting proteins 108
Figure 14. The protein levels of Syn I, Syp, or SNAREs in cells overexpressing Syn Ia or its phosphodeficient mutants 110
Figure 15. In vivo interaction of Syn I with the interacting proteins in cells overexpressing Syn Ia or its phosphodeficient mutants 112
Figure 16. In situ interaction of Syn I with the interacting proteins in cells overexpressing Syn Ia or its phosphodeficient mutants 114
Figure 17. The SV-specific protein Syn Ia regulates the dynamics of DCV exocytosis in a phosphorylation-dependent manner 116
Appendix
Appendix 1. The 44th Annual Meeting of the Society for Neuroscience (15-19 November 2014, Washington DC, U.S.A.): Abstract II
Appendix 2. The 44th Annual Meeting of the Society for Neuroscience (15-19 November 2014, Washington DC, U.S.A.): Poster III
Appendix 3. The 46th Annual Meeting of the Society for Neuroscience (12-16 November 2016, San Diego, CA, U.S.A.): Abstract IV
Appendix 4. The 46th Annual Meeting of the Society for Neuroscience (12-16 November 2016, San Diego, CA, U.S.A.): Poster V
Appendix 5. The 47th Annual Meeting of the Society for Neuroscience (11-15 November 2017, Washington DC, U.S.A.): Abstract VI
Appendix 6. The 47th Annual Meeting of the Society for Neuroscience (11-15 November 2017, Washington DC, U.S.A.): Poster VII
Appendix 7. The Poster Competition of the 2016 GSB Retreat in Genome and Systems Biology (GSB) Degree Program at National Taiwan University, Taipei, Taiwan (8/28-29 2016): Abstract VIII
Appendix 8. The Poster Competition of the 2016 GSB Retreat in Genome and Systems Biology (GSB) Degree Program at National Taiwan University, Taipei, Taiwan (8/28-29 2016): Poster V
Appendix 9. The 2019 Poster Competition in Genome and Systems Biology (GSB) Degree Program at National Taiwan University, Taipei, Taiwan (5/24, 2019): Poster X
dc.language.isoen
dc.title探討突觸囊泡專屬蛋白Synapsin Ia如何調控緻密核心囊泡的釋放zh_TW
dc.titleExploring how the synaptic vesicle-specific protein Synapsin Ia regulates the release of dense-core vesiclesen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.oralexamcommittee溫進德(Jin-Der Wen),陳倩瑜(Chien-Yu Chen),徐立中(Li-Chung Hsu),盧主欽(Juu-Chin Lu)
dc.subject.keywordSynapsin Ia,胞吐作用,緻密核心囊泡,融合孔動態,Synaptophysin,zh_TW
dc.subject.keywordSynapsin Ia,Exocytosis,Dense-core vesicles,Fusion pore kinetics,Synaptophysin,en
dc.relation.page126
dc.identifier.doi10.6342/NTU201901181
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-07-03
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept基因體與系統生物學學位學程zh_TW
Appears in Collections:基因體與系統生物學學位學程

Files in This Item:
File SizeFormat 
ntu-108-1.pdf
  Until 2024-07-05
9.24 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved