Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73346
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭旭君(Hsu-Chun Hsiao)
dc.contributor.authorChe-Yu Wuen
dc.contributor.author吳哲宇zh_TW
dc.date.accessioned2021-06-17T07:29:41Z-
dc.date.available2021-07-03
dc.date.copyright2019-07-03
dc.date.issued2019
dc.date.submitted2019-06-16
dc.identifier.citation[1] Intel skylake cpu architecture characteristics. https://www.7-cpu.com/cpu/Skylake.html, Accessed August 2018.
[2] M. Antonakakis, T. April, M. Bailey, M. Bernhard, A. Arbor, E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman, A. Arbor, L. Invernizzi, M. Kallitsis, M. Network, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas,Y. Zhou, M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou. Understanding the Mirai botnet. In USENIX Security Symposium, 2017.
[3] C. Basescu, R. M. Reischuk, P. Szalachowski, A. Perrig, Y. Zhang, H.-C. Hsiao, A. Kubota, and J. Urakawa. SIBRA: Scalable internet bandwidth reservation architecture. In Proceedings of Network and Distributed System Security Symposium (NDSS), Feb. 2016.
[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the ACM, 13(7):422–426, 1970.
[5] CAIDA. The CAIDA UCSD Anonymized Internet Traces - Oct. 18th. http://www.caida.org/data/passive/passive_dataset.xml, 2018.
[6] K. K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhimenko, S. Khan, and O. Mutlu. Understanding latency variation in modern DRAM chips: Experimental characterization, analysis, and optimization. In Proceedings of ACM SIGMETRICS, June 2016.
[7] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informational), Oct. 2004.
[8] C. Estan, K. Keys, D. Moore, and G. Varghese. Building a Better NetFlow. In ACM SIGCOMM, 2004.
[9] C. Estan and G. Varghese. New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice. ACM Transactions on Computer Systems, 21(3):270–313, 2003.
[10] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. Hyperloglog: the analysis of a near-optimal cardinality estimation algorithm. In Discrete Mathematics and Theoretical Computer Science, pages 137–156. Discrete Mathematics and Theoretical Computer Science, 2007.
[11] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association, 58(301):13–30, 1963.
[12] A. Lall, M. Ogihara, and J. Xu. An efficient algorithm for measuring medium-to large-sized flows in network traffic. In IEEE INFOCOM, 2009.
[13] S. B. Lee, M. S. Kang, and V. D. Gligor. CoDef: Collaborative defense against large-scale link-flooding attacks. In Proceedings of CoNext, 2013.
[14] Z. Liu, H. Jin, Y.-C. Hu, and M. Bailey. MiddlePolice: Toward enforcing destinationdefined policies in the middle of the internet. In Proceedings of ACM CCS, Oct. 2016.
[15] G. S. Manku and R. Motwani. Approximate Frequency Counts over Data Streams. In Proceedings of VLDB, 2002.
[16] P. E. McKenney. Stochastic fairness queueing. In IEEE INFOCOM, 1990.
[17] A. Metwally, D. Agrawal, and A. E. Abbadi. Efficient computation of frequent and top-k elements in data streams. In International Conference on Database Theory, pages 398–412. Springer, 2005.
[18] J. Misra and D. Gries. Finding Repeated Elements. Science of Computer Programming, 2(2):143–152, 1982.
[19] R. Pagh and F. F. Rodler. Cuckoo hashing. In European Symposium on Algorithms, page 121–133. Springer, 2001.
[20] S. Ramabhadran and G. Varghese. Efficient implementation of a statistics counter architecture. In ACM SIGMETRICS Performance Evaluation Review, volume 31, pages 261–271. ACM, 2003.
[21] J. Sanjuas-Cuxart, P. Barlet-Ros, N. Duffield, and R. Kompella. Cuckoo Sampling: Robust Collection of Flow Aggregates under a Fixed Memory Budget. In IEEE INFOCOM, 2012.
[22] D. Shah, S. Iyer, B. Prabhakar, and N. McKeown. Analysis of a statistics counter architecture. In Hot Interconnects, volume 9, pages 107–111, 2001.
[23] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford. Heavy-hitter detection entirely in the data plane. In Proceedings of the Symposium on SDN Research, pages 164–176. ACM, 2017.
[24] H. Wu, H.-C. Hsiao, D. E. Asoni, S. Scherrer, A. Perrig, and Y.-C. Hu. Clef: Limiting the damage caused by large flows in the internet core. In International Conference on Cryptology and Network Security (CANS), 2018.
[25] H. Wu, H.-C. Hsiao, and Y.-C. Hu. Efficient large flow detection over arbitrary windows: An algorithm exact outside an ambiguity region. In Proceedings of the 2014 Conference on Internet Measurement Conference (IMC), pages 209–222. ACM, 2014.
[26] X. Xiao. Technical, Commercial and Regulatory Challenges of QoS: An Internet Service Model Perspective. Morgan Kaufmann, 2008.
[27] Q. Zhao, J. Xu, and Z. Liu. Design of a novel statistics counter architecture with optimal space and time efficiency. ACM SIGMETRICS Performance Evaluation Review, 34(1):323–334, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73346-
dc.description.abstract偵測網路中的濫用流量方法已經被研究了超過15年,並且至今仍是一個網路系統中重要的問題,因爲有越來越多對延遲敏感的網路應用、日趨嚴重的大規模DDoS攻擊、以及對各種流量分配框架的需求。雖然已經有很多方法被設計來偵測網路中的濫用流量,仍然沒有系統可以可靠的偵測只超用允許頻寬50%的濫用流量。尤其在如核心路由器等高流量網路環境中,因爲高速記憶體及運算資源的限制,讓這個問題變得更加困難。
我們設計、分析、實作、並測試CROFT,一個比起過去方法有更好特性的新濫用流量偵測演算法。CROFT在偵測1.5x-7x濫用流量上比以往的方法快超過300倍,而以往的方法在7x濫用流量的偵測時間就超過了300秒的時間限制。
zh_TW
dc.description.abstractThe detection of overuse flows has been a research problem studied for over 15 years, and it remains an important topic to this day due to the increasing importance of network performance for latency-sensitive applications, the impact of volumetric DDoS attacks, and the emergence of bandwidth allocation schemes. Although much progress has been achieved for designing efficient in-network detection of overuse flows, no system exists that can reliably detect overuse flows utilizing only 50% more than their permitted bandwidth.
What further compounds the difficulty of the problem is the challenging environment of high-throughput packet processing on core Internet routers, which requires careful management of the limited amount of (expensive) fast memory and of computational resources.
We design, analyze, implement, and evaluate CROFT, a new approach for efficiently detecting overuse flows that achieves dramatically better properties than prior work. CROFT is at least 300 times faster than prior approaches in detecting 1.5x-7x overuse flows: CROFT can detect 1.5x overuse flows in one second, whereas prior approaches fail to detect 7x overuse flows within a timeout of 300s.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:29:41Z (GMT). No. of bitstreams: 1
ntu-108-R06922021-1.pdf: 1030388 bytes, checksum: 28215201f4bdf396003235b1233799f1 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 iii
Acknowledgements v
摘要 vii
Abstract ix
1 Introduction 1
2 Problem Definition 5
2.1 Flow Policing Model 5
2.2 Desired Properties 6
2.3 Overuse Flows vs. Large Flows 7
2.3.1 FMF and AMF 8
2.3.2 EARDet 9
3 CROFT Algorithm 11
3.1 Overview 11
3.2 Estimate Algorithm 13
3.3 Sampler 15
3.4 Multi-class CROFT 16
3.5 Complexity Analysis 18
3.5.1 Time complexity 18
3.5.2 Space Complexity 19
4 Evaluation 21
4.1 Evaluation Metric: Detection Delay 21
4.2 Parameter Selection 21
4.3 Comparison: Fully utilized Traffic Trace 22
4.4 Comparison: CAIDA Traffic Trace 24
4.5 Sensitivity Tests of CROFT 25
5 Mathematical Analysis 33
5.1 Lower Bound of Detection Probability 33
5.2 Upper Bound of Damage 38
5.3 Compared to Experiments 39
6 Related Work 41
7 Conclusions 45
Bibliography 47
dc.language.isoen
dc.subject濫用流量偵測zh_TW
dc.subject低流量濫用流量zh_TW
dc.subjectSRAM/DRAM 混合架構zh_TW
dc.subjectLarge-flow detectionen
dc.subjectLow-rate overuse flowen
dc.subjectSRAM/DRAM hybrid schemeen
dc.title高效能的濫用流量偵測方法zh_TW
dc.titleCore Router Overuse Flow Tracer (CROFT): An Efficient Algorithm for Detecting Overuse Flowsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王奕翔(I-Hsiang Wang),謝宏昀(Hung-Yun Hsieh)
dc.subject.keyword濫用流量偵測,低流量濫用流量,SRAM/DRAM 混合架構,zh_TW
dc.subject.keywordLarge-flow detection,Low-rate overuse flow,SRAM/DRAM hybrid scheme,en
dc.relation.page50
dc.identifier.doi10.6342/NTU201900855
dc.rights.note有償授權
dc.date.accepted2019-06-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved