Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73330
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林盈仲(Ying-Chung Jimmy Lin)
dc.contributor.authorChung-Ting Kaoen
dc.contributor.author高仲霆zh_TW
dc.date.accessioned2021-06-17T07:28:49Z-
dc.date.available2021-07-03
dc.date.copyright2019-07-03
dc.date.issued2019
dc.date.submitted2019-06-19
dc.identifier.citation1. Chan, Y.F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327, 302-305 (2010).
2. Li, J.J. & Herskowitz, I. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262, 1870-1874 (1993).
3. Solomon, M.J., Larsen, P.L. & Varshavsky, A. Mapping proteinDNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53, 937-947 (1988).
4. O’Malley, R.C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280-1292 (2016).
5. Fuxman Bass, J.I. et al. Human gene-centered transcription factor networks for enhancers and disease variants. Cell 161, 661-673 (2015).
6. Lin, Y.-C. et al. SND1 transcription factor–directed quantitative functional hierarchical genetic regulatory network in wood formation in Populus trichocarpa. The Plant cell 25, 4324-4341 (2013).
7. Yang, F. et al. A Maize Gene Regulatory Network for Phenolic Metabolism. Molecular Plant 10, 498-515 (2017).
8. Gaudinier, A. et al. Enhanced Y1H assays for Arabidopsis. Nature Methods 8, 1053 (2011).
9. Hens, K. et al. Automated protein-DNA interaction screening of Drosophila regulatory elements. Nature methods 8, 1065 (2011).
10. Taylor-Teeples, M. et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517, 571 (2015).
11. Gaudinier, A. et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 563, 259-264 (2018).
12. Reece-Hoyes, J.S. et al. Enhanced yeast one-hybrid assays for high-throughput gene-centered regulatory network mapping. Nature methods 8, 1059 (2011).
13. Li, Q. et al. Splice variant of the SND1 transcription factor is a dominant negative of SND1 members and their regulation in Populus trichocarpa. Proceedings of the National Academy of Sciences 109, 14699-14704 (2012).
14. Petzold, H.E. et al. Identification of new protein–protein and protein–DNA interactions linked with wood formation in Populus trichocarpa. Tree Physiology 38, 362-377 (2017).
15. Gaudinier, A. et al. Enhanced Y1H assays for Arabidopsis. Nature Methods 8, 1053-1055 (2011).
16. Hens, K. et al. Automated protein-DNA interaction screening of Drosophila regulatory elements. Nature Methods 8, 1065-1070 (2011).
17. Reece-Hoyes, J.S. et al. Enhanced yeast one-hybrid assays for high-throughput gene-centered regulatory network mapping. Nature Methods 8, 1059-1064 (2011).
18. Taylor-Teeples, M. et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517, 571-575 (2015).
19. Gaudinier, A. et al. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature (2018).
20. Miao, F. A meiosis-directed yeast one-hybrid system to uncover the transcriptional regulatory network in Populous trichocarpa wood formation. Institute of Life Science of Life Science National Taiwan University Master Thesis (2018).
21. Tong, A.H.Y. & Boone, C. Yeast Protocol, 171-191 (2006).
22. Tong, A.H.Y. & Boone, C. 16 high-throughput strain construction and systematic synthetic lethal screening in Saccharomycescerevisiae. Methods in Microbiology 36, 369-707 (2007).
23. Perrella, G. et al. ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in Arabidopsis. Proceedings of the National Academy of Sciences 115, E4503-E4511 (2018).
24. Yoshida, Y., Hosoda, E., Nakamura, T. & Yamamoto, T. Association of ANA, a Member of the Antiproliferative Tob Family Proteins, with a Cafl Component of the CCR4 Transcriptional Regulatory Complex. Japanese Journal of Cancer Research 92, 592-596 (2001).
25. Malik, S. & Roeder, R.G. The metazoan Mediator co-activator complex as an integrative hub for transcriptional regulation. Nature Reviews Genetics 11, 761 (2010).
26. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences 98, 4569-4574 (2001).
27. James, P., Halladay, J. & Craig, E.A. Genomic Libraries and a Host Strain Designed for Highly Efficient Two-Hybrid Selection in Yeast. Genetics 144, 1425-1436 (1996).
28. Wang, J.P. et al. Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa. The Plant Cell 26, 894-914 (2014).
29. Suzuki, S., Li, L., Sun, Y.-H. & Chiang, V.L. The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant physiology 142, 1233-1245 (2006).
30. Yan, X. et al. CAD1 and CCR2 protein complex formation in monolignol biosynthesis in Populus trichocarpa. New Phytologist 222, 244-260 (2019).
31. Lin, Y.-C.J. et al. Reciprocal cross-regulation of VND and SND multigene TF families for wood formation in Populus trichocarpa. Proceedings of the National Academy of Sciences 114, E9722-E9729 (2017).
32. Shi, R. et al. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa. Planta 245, 927-938 (2017).
33. Gietz, R.D. & Schiestl, R.H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols 2, 31 (2007).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73330-
dc.description.abstract轉錄因子形成蛋白質複合體和DNA產生交互作用,進而影響下游基因的表達,為了要研究生物體的轉錄調控複合體如何影響生物體生長及發育,能透過解析TF-DNA以及TF-TF之間的交互作用,利用酵母菌單雜合(Y1H)以及酵母菌雙雜合(Y2H)系統分別能大規模篩選TF-DNA及TF-TF的交互作用。傳統以Y1H偵測TF-DNA交互作用有其待改進之缺點,包括低TF-DNA交互作用發現率以及耗費時間之操作流程,因此我們建立一個高通量減數分裂法酵母菌單雜合系統(m-Y1H)其具有相較於傳統方法高於雙倍的TF-DNA發現率、較省時之操作流程以及較高的植物體真實TF-DNA交互作用陽性結合率。在過去Y1H與Y2H為了篩選TF-DNA或TF-TF間的交互作用,透過不同的酵母菌菌株帶有不同的報導基因,因此在菌株之差異使Y1H與Y2H不能共用相同酵母菌含有轉錄因子之載體庫,而建立酵母菌含有轉錄因子載體庫需要花上相當多時間及花費,因此我們透過建立酵母菌株Y2HGold-HNG,使減數分裂法酵母菌雙雜合系統(m-Y2H)與減數分裂法單雜合系統(m-Y1H)共同整合,將此新系統命名為減數分裂法酵母菌單-/雙-共雜合系統(m-Y1HY2H),此系統可以透過相同的酵母菌含有TF-AD庫篩選TF-DNA或TF-TF間的交互作用,除了共用酵母菌株含有TF-AD¬庫的便利性,m-Y1HY2H系統為首創以單倍體與雙倍體酵母菌株細胞篩選TF-TF或TF-DNA間的交互作用,單雙倍體酵母菌之篩選能提供較高的交互作用發現率,發現更多可能在植物體中的交互作用。建立m-Y1HY2H提供一個透過單雙倍體酵母菌細胞篩選TF-DNA或TF-TF交互作用的篩選方式,且為操作時間較為節省時間且容易操作的篩選系統。zh_TW
dc.description.abstractTranscription factors (TF) form protein complexes to regulate their targets genes through direct TF-DNA interactions. To identify the TF complexes involved in organism growth and development, two tasks need to be accomplished: the identification of TF-DNA and TF-TF interactions. Yeast one- and two-hybrid systems (Y1H and Y2H) are used extensively to discover TF-DNA and TF-TF interactions, respectively. For TF-DNA interactions, traditional Y1H methods suffer either low discovery rate or time-consuming procedure. We first established a high-throughput meiosis-directed yeast one-hybrid system(m-Y1H), which provides more than 2 times higher discovery rate with short processing time and high in vivo positive rate. In the past, Y1H and Y2H use different yeast strains with their corresponding selection marker for the selection of interactions. In other words, Y1H and Y2H screening cannot share same sets of yeast libraries containing TF vectors, and the preparation of the yeast libraries is dramatically labor- and time-consuming. Here, we constructed a yeast strain, Y2HGold-HNG, which allows us to integrate a new meiosis-directed Y2H system(m-Y2H) onto the m-Y1H. We named this novel system as meiosis-directed yeast one- and two-hybrid coupled system (m-Y1HY2H). In addition to its convenient use, our m-Y1HY2H system can screen the TF-DNA and TF-TF interactions using both haploid and diploid yeast cells, which could not be achieved in previous studies. The double ploidy screening provides higher interaction discovery rates and reveals more potential interaction happened in vivo. This system provides a platform to screen TF-DNA and TF-TF interactions in two kinds of yeast ploidy using the same yeast libraries in a time-saving and easy-to-use way.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:28:49Z (GMT). No. of bitstreams: 1
ntu-108-R06b42016-1.pdf: 15301890 bytes, checksum: d87c1bca3dcdffcebe1a2e4f05ec9b52 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents中文摘要p.1
英文摘要(Abstract)p.2
目錄 p.3-5
圖目錄p.6-7
表目錄p.8
一. 前言p.9-16
二. 材料與方法p.17-28
(一)利用酵母菌單雜合系統(Y1H)所要篩選之TF與DNA選擇p.17
(二)基因選殖相關技術p.17-19
(三)單雜合系統基因選殖包含餌-DNA與獵物-TF之建立p.19-20
(四)酵母菌載體轉質透過LiAc/PEG/ssDNA轉殖法p.20-21
(五)進行高通量篩選之機器手臂操作方式p.21
(六)RotorHDA專用之培養基之製備 p.22-24
(七)三種系統之操作方式(1)H-Y1H)、(2) D-Y1H、(3) M-Y1H p.24-26
(八)AbA盤篩選後之數據分析p.26-27
三. 實驗結果p.28-50
Part1. 減數分裂法酵母菌單雜合系統與傳統方法之實驗結果比較 p.28-45
(一)實驗再現性(reproducibility) 比較p.28
(二)三種酵母單雜合系統結果之比較p.28-31
(三)進一步提高篩選通量p.31-35
Part2. 減數分裂法酵母菌單雙共雜合系統之系統p.36
(一)酵母菌雙雜合蛋白系統(yeast two-hybrids)原理p.36
(二)雙倍體交配法酵母菌雙雜合蛋白系統p.36-37
(三)以Magic Marker建立之減數分裂法酵母菌雙雜合系統p.37-38
(四)減數分裂法酵母菌單-/雙-共雜合系統p.38
(五)減數分裂法酵母菌單-/雙-共雜合系統之建構原理p.39-41
(六)減數分裂法酵母菌單-/雙-共雜合系統之菌株之建立p.42-44
(七)酵母菌雙雜合蛋白系統中誘餌-轉錄因子之建立p.44-45
四. 討論p.49-56
(一)減數分裂法酵母菌單雙共雜合蛋白系統(m-Y1HY2H)以相同TF-AD庫執行Y1H與Y2H以及利用單雙倍體篩選交互作用p.46
(二)相較於舊式Y1H與Y1H系統,本論文所建立減之數分裂法酵母菌單雙雜合蛋白系統(m-Y1HY2H)之改良優點p.47-48
(三)酵母菌之單倍體與雙倍體形態是否會影響酵母菌雙雜合系統(Y2H)偵測蛋白質之間的交互作用之發現率p.48-49
(四)酵母菌之單倍體與雙倍體形態是否會影響酵母菌雙雜合系統(Y2H)偵測之參與者於植物體為陽性交互作用之比率p.49
(五)利用酵母菌雜合系統篩選時,於酵母菌株內為陽性交互作用之比率,與在植物體中為實際陽性交互作用之關聯性p.49-50
(六)對於解釋生物體中轉錄調控複合體之生理現象,酵母菌雙雜合系統之優勢及應用p.50
五. 參考文獻p.51-53
六. 圖附錄p.54-81
七. 表附錄p.82
dc.language.isozh-TW
dc.subject酵母菌雙雜合系統zh_TW
dc.subject轉錄因子zh_TW
dc.subject啟動子zh_TW
dc.subject轉錄調控複合體zh_TW
dc.subject高通量zh_TW
dc.subject酵母菌單雜合系統zh_TW
dc.subjectyeast one-hybriden
dc.subjectyeast two-hybriden
dc.subjecttranscriptional regulatory complexen
dc.subjecthigh-throughputen
dc.subjecttranscription factoren
dc.subjectpromoteren
dc.title以酵母菌減數分裂單雜合及雙雜合系統偵測毛果楊中參與木材形成的轉錄調控複合體zh_TW
dc.titleA meiosis-directed yeast one- and two-hybrid coupled system for identifying the transcription factor complexes in wood formation in Populus trichocarpaen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周信宏(Hsin-Hung David Chou),李承叡(Cheng-Ruei Lee),蔡怡陞(Isheng Jason Tsai)
dc.subject.keyword酵母菌單雜合系統,酵母菌雙雜合系統,轉錄調控複合體,高通量,轉錄因子,啟動子,zh_TW
dc.subject.keywordyeast one-hybrid,yeast two-hybrid,transcriptional regulatory complex,high-throughput,transcription factor,promoter,en
dc.relation.page82
dc.identifier.doi10.6342/NTU201900947
dc.rights.note有償授權
dc.date.accepted2019-06-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
14.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved