請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73305完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃奎隆(Kwei-Long Huang) | |
| dc.contributor.author | Shu-Han Liu | en |
| dc.contributor.author | 劉恕翰 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:27:29Z | - |
| dc.date.available | 2024-07-04 | |
| dc.date.copyright | 2019-07-04 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-06-24 | |
| dc.identifier.citation | 王怡惠. (2015). 從工業 4.0 看我國生產力 4.0 之挑戰. 臺灣經濟研究月刊, 38(8),111-119.
陳景松. (2014). 佈局智慧工廠之主要業者動態分析: 財團法人資訊工業策進會產業情報研究所(MIC). Aghezzaf, E.-H., Khatab, A., & Tam, P. L. (2016). Optimizing production and imperfect preventive maintenance planning׳s integration in failure-prone manufacturing systems. Reliability Engineering & System Safety, 145, 190-198. Aghezzaf, E. H., Jamali, M. A., & Ait-Kadi, D. (2007). An integrated production and preventive maintenance planning model. European Journal of Operational Research, 181(2), 679-685. Ahmed, G.-A., Gerd, F., & Marie-Laure, E. (2016). Parallel-machine scheduling with maintenance: Praising the assignment problem. European Journal of Operational Research, 252(1), 90-97. AlDurgam, M. M., & Duffuaa, S. O. (2013). Optimal joint maintenance and operation policies to maximise overall systems effectiveness. International Journal of Production Research, 51(5), 1319-1330. Alidaee, B., & Womer, N. K. (1999). Scheduling with time dependent processing times: Review and extensions. Journal of the Operational Research Society, 50(7), 711-720. Bachman, A., & Janiak, A. (2004). Scheduling jobs with position-dependent processing times. Journal of the Operational Research Society, 55(3), 257-264. Berthaut, F., Gharbi, A., & Dhouib, K. (2011). Joint modified block replacement and production/inventory control policy for a failure-prone manufacturing cell (Vol. 39). Berthaut, F., Gharbi, A., Kenné, J. P., & Boulet, J. F. (2010). Improved joint preventive maintenance and hedging point policy. International Journal of Production Economics, 127(1), 60-72. Cassady, C. R., & Kutanoglu, E. (2003). Minimizing Job Tardiness Using Integrated Preventive Maintenance Planning and Production Scheduling. IIE Transactions, 35(6), 503-513. Cassady, C. R., & Kutanoglu, E. (2005). Integrating preventive maintenance planning and production scheduling for a single machine. IEEE Transactions on Reliability, 54(2), 304-309. Chen, M., & Feldman, R. M. (1997). Optimal replacement policies with minimal repair and age-dependent costs. European Journal of Operational Research, 98(1), 75- 84. Chen, R., & Velusamy, S. (2012). Increasing production rate in Kanban controlled assembly lines through preventive maintenance. International Journal of Production Research, 50(4), 991-1008. Chen, W. J., & Liao, C. J. (2005). Scheduling with different maintenance policies in a textile company. Journal of Quality in Maintenance Engineering, 11(1), 43-52. Cheng, T. C. E., Ding, Q., & Lin, B. M. T. (2004). A concise survey of scheduling with time-dependent processing times. European Journal of Operational Research, 152(1), 1-13. Cheng, T. C. E., & Sin, C. C. S. (1990). A state-of-the-art review of parallel-machine scheduling research. European Journal of Operational Research, 47(3), 271- 292. Dehayem Nodem, F. I., Kenné, J. P., & Gharbi, A. (2011). Simultaneous control of production, repair/replacement and preventive maintenance of deteriorating manufacturing systems. International Journal of Production Economics, 134(1), 271-282. Dhouib, K., Gharbi, A., & Ben Aziza, M. N. (2012). Joint optimal production control/preventive maintenance policy for imperfect process manufacturing cell. International Journal of Production Economics, 137(1), 126-136. Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-Completeness: W. H. Freeman & Co. Gharbi, A., Kenné, J. P., & Beit, M. (2007). Optimal safety stocks and preventive maintenance periods in unreliable manufacturing systems. International Journal of Production Economics, 107(2), 422-434. He, J., Li, Q., & Xu, D. (2016). Scheduling two parallel machines with machine-dependent availabilities. Computers & Operations Research, 72, 31-42. He, Y., Gu, C., Chen, Z., & Han, X. (2017). Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis. International Journal of Production Research, 55(19), 5841-5862. Huang, K.-L., Blue, J., Weng, H.-C., & Liu, S.-H. (2018). Single machine scheduling with consideration of preventive maintenance and machine health, Proceeding on International Conference on Engineering, Applied Sciences and Technology (ICEST 2018). Kumar, U. D., Crocker, J., & Knezevic, J. (1999). Evolutionary maintenance for aircraft engines. Paper presented at the Annual Reliability and Maintainability. Symposium. Lee, C. Y., & Leon, V. J. (2001). Machine scheduling with a rate-modifying activity. European Journal of Operational Research, 128(1), 119-128. Li, G., Liu, M., Sethi, S. P., & Xu, D. (2017). Parallel-machine scheduling with machine-dependent maintenance periodic recycles. International Journal of Production Economics, 186, 1-7. McNaughton, R. (1959). Scheduling with deadlines and loss functions. Management Science, 6(1), 1-12. Nip, K., Wang, Z., & Wang, Z. (2016). Scheduling under linear constraints. European Journal of Operational Research, 253(2), 290-297. Nourelfath, M., Fitouhi, M.-C., & Machani, M. (2010). An integrated model for production and preventive maintenance planning in multi-state systems. IEEE Transactions on reliability, 59(3), 496-506. Pan, E., Liao, W., & Xi, L. (2010). Single-machine-based production scheduling model integrated preventive maintenance planning. The International Journal of Advanced Manufacturing Technology, 50(1), 365-375. Peng, H., & van Houtum, G.-J. (2016). Joint optimization of condition-based maintenance and production lot-sizing. European Journal of Operational Research, 253(1), 94-107. Reineke, D. M., Murdock, W. P., Pohl, E. A., & Rehmert, I. (1999). Improving availability and cost performance for complex systems with preventive maintenance. Paper presented at the Annual Reliability and Maintainability. Symposium. Rivera-Gomez, H., Gharbi, A., & Kenné, J. P. (2013). Joint control of production, overhaul, and preventive maintenance for a production system subject to quality and reliability deteriorations. The International Journal of Advanced Manufacturing Technology, 69(9), 2111-2130. Rudek, R. (2017). Scheduling on parallel processors with varying processing times. Computers & Operations Research, 81, 90-101. Schutz, J., Rezg, N., & Léger, J.-B. (2011). Periodic and sequential preventive maintenance policies over a finite planning horizon with a dynamic failure law. Journal of Intelligent Manufacturing, 22(4), 523-532. Sheu, S., & Zhang, Z. G. (2013). An Optimal Age Replacement Policy for Multi-State Systems. IEEE Transactions on Reliability, 62(3), 722-735. Song, D.-P. (2009). Production and preventive maintenance control in a stochastic manufacturing system. International Journal of Production Economics, 119(1), 101-111. Su, L.-H., & Lien, C.-Y. (2009). Scheduling parallel machines with resource-dependent processing times. International Journal of Production Economics, 117(2), 256- 266. Tseng, S.-T., Yeh, R. H., & Ho, W.-T. (1998). Imperfect maintenance policies for deteriorating production systems. International Journal of Production Economics, 55(2), 191-201. Wang, S., & Liu, M. (2013). A branch and bound algorithm for single-machine production scheduling integrated with preventive maintenance planning. International Journal of Production Research, 51(3), 847-868. Xia, T., Jin, X., Xi, L., & Ni, J. (2015). Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling. European Journal of Operational Research, 240(3), 781-790. Xu, D., Cheng, Z., Yin, Y., & Li, H. (2009). Makespan minimization for two parallel machines scheduling with a periodic availability constraint. Computers & Operations Research, 36(6), 1809-1812. Yang, S.-J., & Yang, D.-L. (2010). Minimizing the total completion time in single-machine scheduling with aging/deteriorating effects and deteriorating maintenance activities. Computers & Mathematics with Applications, 60(7), 2161-2169. Yao, X., Fernandez-Gaucherand, E., Fu, M. C., & Marcus, S. I. (2004). Optimal preventive maintenance scheduling in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 17(3), 345-356. Yoo, J., & Lee, I. S. (2016). Parallel machine scheduling with maintenance activities. Computers & Industrial Engineering, 101, 361-371. Zhou, X., Lu, Z., & Xi, L. (2012). Preventive maintenance optimization for a multi-component system under changing job shop schedule. Reliability Engineering & System Safety, 101, 14-20. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73305 | - |
| dc.description.abstract | 在工業 4.0 的潮流以及物聯網的時代下,我們有足夠的資料預測機台的健康狀況。若機台狀況變差,加工將會產生延遲時間。因此在排程的同時必須考慮延遲時間及機台狀況的變化。本研究將在此生產環境下研究如何同時規劃平行機台之預防性維修時間,以及工作加工順序,並且最小化期望總完工時間。
本研究首先提出一數學規劃模型來解決此排程問題,將機台年齡影響工作加 工與延遲時間考慮進去,並同時考慮預防性維修對機台年齡的影響等因素,以求得最佳生產排程,使得期望總完工時間最小。由於此模型為混整數非線性數學規劃模型,當問題規模增大後,將無法在有限時間內求得最佳解,因此本研究提出兩個啟發式演算法,針對中小型問題,本研究提出兩階段啟發式演算法,在有限時間內,求得品質優良的區域最佳解,而針對大規模問題,本研究提出雙啟發式演算法,能夠快速的求得品質優良的可行解。 最後,本研究進行數值分析,以分析模型與演算法之求解效率,首先針對各參數對最佳預防性維修週期的影響進行分析,確保兩階段啟發式演算法能夠有效的分配工作至各機台,接著進行問題規模的分析,在有限的工作數之下,兩階段啟發式演算法皆能有效率的求得品質優良的解,而對於雙啟發式演算法,由數值分析證實當工作數達到 50 時,仍然能求出品質優良的可行解,除了能夠有效分配預防性 維修時間外,也能有效率的排序預防性週期區間內的工作。 | zh_TW |
| dc.description.abstract | Due to Industrial 4.0 and Internet of Things, we have enough information to predict the machine health. If the machine condition becomes worse, the process will need additional processing time. Therefore, the additional processing time and the machine failure rate must be considered simultaneously when scheduling. Based on these conditions, this study tries to find the optimal preventive maintenance and jobs schedule on parallel machines, while minimize the expected total completion time.
This study first proposed a mathematical programming model to solve this scheduling problem, considering failure rate, the age of machine and additional processing time, trying to minimize the expected completion time. Since this model is a mixed-integer nonlinear mathematical programming model, when the problem size increases, it will not be able to find the optimal solution in a finite computation time. Therefore, this study proposed two heuristic algorithms. For middle scale problem, we proposed two-phase heuristic algorithm, which obtains a local optimal solution with good quality in limited computation time. On the other hand, for large scale problem, we proposed double heuristic algorithm, which efficiently find a feasible solution. Lastly, this study conducted numerical analysis to analyze the efficiency of the model and algorithm. The result reveals that the two-stage algorithm can effectively assign jobs to each machine and obtain the solution with high quality. Besides, double heuristic algorithm can efficiently solve the problem with 50 jobs. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:27:29Z (GMT). No. of bitstreams: 1 ntu-108-R05546023-1.pdf: 1550046 bytes, checksum: f8c755500270a71ef60313476b68d25b (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 致謝. i
中文摘要 ii ABSTRACT iii 圖目錄 vi 表目錄 vii 第一章 緒論 1 1.1 工業 4.0 1 1.2 智能工廠 3 1.3 研究背景與動機 5 1.4 研究目的與方法 6 第二章 文獻探討 7 2.1 平行機台生產排程 (Parallel Scheduling) 7 2.2 維修保養決策與排程 (Maintenance and Scheduling) 8 2.3 不固定型工作時間 (Flexible Processing time) 11 2.4 可靠度函數與失效率 (Reliability Function and Failure Rate) 11 第三章 問題描述與模型 13 3.1 問題描述 13 3.2 問題基本假設與限制 14 3.3 數學規劃模型 16 3.4 求解範例 21 第四章 兩階段啟發式演算法 27 4.1 兩階段啟發式演算法 27 4.2 問題求解流程 28 4.3 求解範例 32 第五章 數值分析 36 5.1 參數分析 36 5.2 求解分析 39 5.3 大規模問題 44 第六章 結論 51 6.1 研究總結 51 6.2 未來展望 52 參考文獻 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 工業 4.0 | zh_TW |
| dc.subject | 預防性維修 | zh_TW |
| dc.subject | 平行機台排程 | zh_TW |
| dc.subject | 機台健康狀態 | zh_TW |
| dc.subject | Industrial 4.0 | en |
| dc.subject | Preventive Maintenance | en |
| dc.subject | Parallel Scheduling | en |
| dc.subject | Machine Health | en |
| dc.title | 考慮平行機台故障率與健康狀態的預防性維修與生產排程之決策研究 | zh_TW |
| dc.title | Parallel Machine Scheduling with Consideration of Preventive Maintenance and Machine Health | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳政鴻(Cheng-Hung Wu),藍俊宏(Jakey BLUE) | |
| dc.subject.keyword | 工業 4.0,預防性維修,平行機台排程,機台健康狀態, | zh_TW |
| dc.subject.keyword | Industrial 4.0,Preventive Maintenance,Parallel Scheduling,Machine Health, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201900975 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-06-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 1.51 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
