請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7329完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙(Hsiu-Hsi Chen) | |
| dc.contributor.author | Ting-Ann Wang | en |
| dc.contributor.author | 王挺安 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:41:37Z | - |
| dc.date.available | 2025-03-12 | |
| dc.date.available | 2021-05-19T17:41:37Z | - |
| dc.date.copyright | 2020-03-12 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-02-13 | |
| dc.identifier.citation | Aarnio, K., Haapaniemi, E., Melkas, S., Kaste, M., Tatlisumak, T., & Putaala, J. (2014). Long-Term Mortality After First-Ever and Recurrent Stroke in Young Adults. Stroke, 45(9), 2670-2676.
Andersen Per, K., Esbjerg, S., & Sørensen Thorkild, I. A. (2000). Multi‐state models for bleeding episodes and mortality in liver cirrhosis. Statistics in Medicine, 19(4), 587-599. Andersen, P. K., & Keiding, N. (2002). Multi-state models for event history analysis. Statistical Methods in Medical Research, 11(2), 91-115. doi:10.1191/0962280202SM276ra Antithrombotic Trialists, C. (2002). Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ (Clinical research ed.), 324(7329), 71-86. Armero, C., Cabras, S., Castellanos, M. E., Perra, S., Quiros, A., Oruezabal, M. J., & Sanchez-Rubio, J. (2016). Bayesian analysis of a disability model for lung cancer survival. Stat Methods Med Res, 25(1), 336-351. doi:10.1177/0962280212452803 Asia Pacific Cohort Studies, C. (2003). Cholesterol, coronary heart disease, and stroke in the Asia Pacific region. International Journal of Epidemiology, 32(4), 563-572. doi:10.1093/ije/dyg106 Boysen, G., & Truelsen, T. (2000). Prevention of recurrent stroke. Neurol Sci., 21(2), 67-72. Brønnum-Hansen, H., Davidsen, M., & Thorvaldsen, P. (2001). Long-Term Survival and Causes of Death After Stroke. Stroke, 32(9), 2131-2136. Burn, J., Dennis, M., Bamford, J., Sandercock, P., Wade, D., & Warlow, C. (1994). Long-term risk of recurrent stroke after a first-ever stroke. The Oxfordshire Community Stroke Project. Stroke, 25(2), 333-337. Cabral, N. L., Muller, M., Franco, S. C., Longo, A., Moro, C., Nagel, V., . . . Gonçalves, A. R. R. (2015). Three-year survival and recurrence after first-ever stroke: the Joinville stroke registry. BMC Neurology, 15, 70. doi:10.1186/s12883-015-0317-1 Chen, L. S., Yen, M. F., Wu, H. M., Liao, C. S., Liou, D. M., Kuo, H. S., & Chen Tony, H. H. (2005). Predictive survival model with time‐dependent prognostic factors: development of computer‐aided SAS Macro program. Journal of Evaluation in Clinical Practice, 11(2), 181-193. doi:10.1111/j.1365-2753.2005.00519.x Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141-151. doi:10.1093/biomet/65.1.141 Commenges, D. (1999). Multi-state Models in Epidemiology. Lifetime Data Analysis, 5(4), 315-327. doi:10.1023/A:1009636125294 Commenges, D., Joly, P., Letenneur, L., & Dartigues, J.-F. (2004). Incidence and mortality of Alzheimer's disease or dementia using an illness-death model. Statistics in Medicine, 23(2), 199-210. doi:10.1002/sim.1709 Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society. Series B (Methodological), 34(2), 187-220. Crowley, J., & Hu, M. (1977). Covariance Analysis of Heart Transplant Survival Data. Journal of the American Statistical Association, 72(357), 27-36. doi:10.2307/2286902 Dennis, M. S., Burn, J. P., Sandercock, P. A., Bamford, J. M., Wade, D. T., & Warlow, C. P. (1993). Long-term survival after first-ever stroke: the Oxfordshire Community Stroke Project. Stroke, 24(6), 796-800. doi:10.1161/01.str.24.6.796 Dessie, Z. G. (2014). Modeling of HIV/AIDS dynamic evolution using non-homogeneous semi-markov process. SpringerPlus, 3, 537. doi:10.1186/2193-1801-3-537 Edwards, J. D., Kapral, M. K., Fang, J., & Swartz, R. H. (2017). Long-term morbidity and mortality in patients without early complications after stroke or transient ischemic attack. CMAJ : Canadian Medical Association Journal, 189(29), E954-E961. doi:10.1503/cmaj.161142 Feigin, V. L., Norrving, B., & Mensah, G. A. (2017). Global Burden of Stroke. Circulation Research, 120(3), 439. Foucher, Y., Giral, M., Soulillou, J. P., & Daures, J. P. (2007). A semi‐Markov model for multistate and interval‐censored data with multiple terminal events. Application in renal transplantation. Statistics in Medicine, 26(30), 5381-5393. doi:10.1002/sim.3100 Giuseppe Di Biase, Guglielmo D'Amico, Arturo Di Girolamo, Jacques Janssen, Stefano Iacobelli, Nicola Tinari, & Manca6, R. (2007). A Stochastic Model for the HIV/AIDS Dynamic Evolution. Mathematical Problems in Engineering, 2007. Goshu, A. T., & Dessie, Z.G. (2013). Modelling Progression of HIV / AIDS Disease Stages Using Semi-Markov Processes. Journal of Data Science 11(2013), 269-280. Hardie, K., Hankey, G. J., Jamrozik, K., Broadhurst, R. J., & Anderson, C. (2004). Ten-Year Risk of First Recurrent Stroke and Disability After First-Ever Stroke in the Perth Community Stroke Study. Stroke, 35(3), 731. He, V. Y., Condon, J. R., You, J., Zhao, Y., & Burrow, J. N. (2015). Adverse outcome after incident stroke hospitalization for Indigenous and non-Indigenous Australians in the Northern Territory. International Journal of Stroke, 10(SA100), 89-95. doi:10.1111/ijs.12600 Hougaard, P. (1999). Multi-state Models: A Review. Lifetime Data Analysis, 5(3), 239-264. doi:10.1023/A:1009672031531 Kapetanakis, V., Matthews, F. E., & Hout, A. (2012). A semi-Markov model for stroke with piecewise-constant hazards in the presence of left, right and interval censoring. Statistics in Medicine, 32(4), 697-713. doi:10.1002/sim.5534 Katsanos, A. H., Filippatou, A., Manios, E., Deftereos, S., Parissis, J., Frogoudaki, A., . . . Tsivgoulis, G. (2016). Blood Pressure Reduction and Secondary Stroke Prevention. Hypertension, 69(1). Kernan, W. N., Ovbiagele, B., Black, H. R., Bravata, D. M., Chimowitz, M. I., Ezekowitz, M. D., . . . Wilson, J. A. (2014). Guidelines for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack. Stroke, 45(7), 2160-2236. Khanevski, A. N., Bjerkreim, A. T., Novotny, V., Naess, H., Thomassen, L., Logallo, N., . . . group, N.-S. s. (2019). Recurrent ischemic stroke: Incidence, predictors, and impact on mortality. Acta neurologica Scandinavica, 140(1), 3-8. doi:10.1111/ane.13093 Koton, S., Schneider, A. C., Rosamond, W. D., & et al. (2014). Stroke incidence and mortality trends in us communities, 1987 to 2011. JAMA, 312(3), 259-268. doi:10.1001/jama.2014.7692 Krishnamurthi, R. V., Feigin, V. L., Forouzanfar, M. H., Mensah, G. A., Connor, M., Bennett, D. A., . . . Murray, C. (2013). Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. The Lancet Global Health, 1(5), e259-e281. Kuo, W. H., Yen, A. M. F., Lee, P. H., Chen, K. M., Wang, J., Chang, K. J., . . . Tsau, H. S. (2009). Cumulative survival in early-onset unilateral and bilateral breast cancer: an analysis of 1907 Taiwanese women. British Journal of Cancer, 100(4), 563-570. doi:10.1038/sj.bjc.6604898 Lackland, D. T., Roccella, E. J., Deutsch, A. F., Fornage, M., George, M. G., Howard, G., . . . Towfighi, A. (2014). Factors Influencing the Decline in Stroke Mortality. A Statement From the American Heart Association/American Stroke Association, 45(1), 315-353. doi:10.1161/01.str.0000437068.30550.cf Lai, Y.-C. (2009). Factors affecting mortality of patients survived from first stroke- Is recurrence an only surrogate endpoint ? (Master). Nation Taiwan University, Lambert, M. (2011). AHA/ASA Guidelines on Prevention of Recurrent Stroke. Am Fam Physician, 15;83(8):993-1001. Lee, M., Wu, Y.-L., & Ovbiagele, B. (2016). Trends in Incident and Recurrent Rates of First-Ever Ischemic Stroke in Taiwan between 2000 and 2011. J Stroke, 18(1), 60-65. doi:10.5853/jos.2015.01326 Lee, T. K., Chan, K. W. A., Huang, Z. S., Ng, S. K., Lin, R. T., Po, H. L., . . . Hu, H. H. (1997). Effectiveness of Low-Dose ASA in Prevention of Secondary Ischemic Stroke, The ASA Study Group in Taiwan. Thrombosis Research, 87(2), 215-224. Lisabeth, L. D., Smith, M. A., Brown, D. L., Moyé, L. A., Risser, J. M. H., & Morgenstern, L. B. (2006). Ethnic differences in stroke recurrence. Annals of Neurology, 60(4), 469-475. doi:10.1002/ana.20943 Mbogo, R., Luboobi, L., & Odhiambo, J. (2013). Semi-Markov model for evaluating the HIV patient treatment cost. McNeil, J. J., Wolfe, R., Woods, R. L., Tonkin, A. M., Donnan, G. A., Nelson, M. R., . . . Murray, A. M. (2018). Effect of Aspirin on Cardiovascular Events and Bleeding in the Healthy Elderly. New England Journal of Medicine, 379(16), 1509-1518. doi:10.1056/NEJMoa1805819 Mohan, K. M., Wolfe, C. D., Rudd, A. G., Heuschmann, P. U., Kolominsky-Rabas, P. L., & Grieve, A. P. (2011). Risk and cumulative risk of stroke recurrence: a systematic review and meta-analysis. Stroke, 42(5), 1489-1494. doi:10.1161/strokeaha.110.602615 Peng, W.-C. (2010). Estimation of Conditional Survival Probabilities Using Marker Time as Predictors. (Master). National Taiwan University, (2010) Pennlert, J., Eriksson, M., Carlberg, B., & Wiklund, P.-G. (2014). Long-Term Risk and Predictors of Recurrent Stroke Beyond the Acute Phase. Stroke, 45(6), 1839. Rosamond, W., Flegal, K., Friday, G., Furie, K., Go, A., Greenlund, K., . . . Hong, Y. (2007). Heart Disease and Stroke Statistics—2007 Update. A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, 115(5), e69-e171. doi:10.1161/circulationaha.106.179918 Sacco, R. L., Wolf, P. A., Kannel, W. B., & McNamara, P. M. (1982). Survival and recurrence following stroke. The Framingham study. Stroke, 13(3), 290-295. Sarah Lewington, Gary Whitlock, Robert Clarke, Paul Sherliker, Jonathan Emberson, Jim Halsey, . . . Collaboration, P. S. (2007). Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55 000 vascular deaths. The Lancet, 370(9602), 1829-1839. Sun, Y., Lee, S. H., Heng, B. H., & Chin, V. S. (2013). 5-year survival and rehospitalization due to stroke recurrence among patients with hemorrhagic or ischemic strokes in Singapore. BMC Neurology, 13(1), 133. doi:10.1186/1471-2377-13-133 Vernino, S., Brown, R. D., Sejvar, J. J., Sicks, J. D., Petty, G. W., & O’Fallon, W. M. (2003). Cause-Specific Mortality After First Cerebral Infarction. Stroke, 34(8), 1828-1832. Wangqin, R., Wang, X., Wang, Y., Xian, Y., Zhao, X., Liu, L., . . . Wang, Y. (2017). Risk factors associated with 90-day recurrent stroke in patients on dual antiplatelet therapy for minor stroke or high-risk TIA: a subgroup analysis of the CHANCE trial. Stroke and Vascular Neurology, 2(4), 176-183. doi:10.1136/svn-2017-000088 Weisman, S. M., & Graham, D. Y. (2002). Evaluation of the Benefits and Risks of Low-Dose Aspirin in the Secondary Prevention of Cardiovascular and Cerebrovascular Events. Archives of Internal Medicine, 162(19), 2197-2202. doi:10.1001/archinte.162.19.2197 Weiss, G. H., & Zelen, M. (1965). A Semi-Markov Model for Clinical Trials. Journal of Applied Probability, 2(2), 269-285. doi:10.2307/3212194 Wu, T. H., Chen, T. H. H., & Lee, T. K. (2000). Factors Affecting the First Recurrence of Noncardioembolic Ischemic Stroke. Thrombosis Research, 97(3), 95-103. Zucker, D. M., & Karr, A. F. (1990). Nonparametric Survival Analysis with Time-Dependent Covariate Effects: A Penalized Partial Likelihood Approach. The Annals of Statistics, 18(1), 329-353. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7329 | - |
| dc.description.abstract | 背景:儘管失能與死亡模型(disability and death model, DDM)已經被廣泛的使用在分析以中止事件為特徵的事件歷史資料,對於中繼事件如何在不同失能與死亡模型中影響到對於介入效益之評估往往未能妥適的加以考量,且受限於中繼事件的狀態是具有持續時間相依性,且中繼狀態本身來自於事件歷史資料,過去在分析上中繼狀態的影響經常運用未考慮此一時間相關特性之方法而未能得到適當的效益估計。時間相依寇斯等比例風險回歸模式與半馬可夫模式為可以用來處理前述時間相依性之評估方法,但過往此兩個分析方法尚未廣泛的運用於此類資料結構中以適當的評估介入效益。
目的:藉由使用腦中風世代資料,包含中風死亡與復發時間,來達到以下的目的 (1)評估在失能模型中具有時間相依性的中繼狀態如何影響中止事件的進展,藉由使用與比較時間相依寇斯模型與非時間相依寇斯模型,並將中繼事件狀態作為解釋變項 (2)藉由使用半馬可夫模式,評估持續時間相依的中繼狀態如何影響中止事件的進展 (3)根據Clayton copular模擬失能模型結構下之相關結構時間資料 (4)藉由(1)到(3)評估失能模型中之時間相關性對於時間相依寇斯模型與半馬可夫模式評估方法之表現影響。 材料:本研究的資料來源為1992-1995所執行的臨床隨機雙盲試驗,共納入466位第一次非心源性腦梗塞的中風患者,並將其隨機分派接受aspirin (n=222)治療或nicametate (n=244)治療。臨床試驗的患者追蹤是否發生腦中風復發,以及進一步追蹤死亡資訊至2010年九月。 方法:提出以轉換時間相依變數為基礎之寇斯迴歸模型,用來考慮中風復發時間。此外,馬可夫過程與半馬可夫模式也同樣用來分析此資料集。在半馬可夫模式中,等候時間分布(此為半馬可夫模式之語言)上則是透過韋伯分布來描述。 結果:在應用時間相依寇斯模型分析中風世代資料時,nicametate治療增加復發的風險(HR: 1.65, 95% CI: 0.91-2.98),而nicametate對於預防腦血管疾病死亡則有顯著的影響(HR: 0.63, 95% CI: 0.41-0.97)。Nicametate治療的機制進一步藉由半馬可夫失能風險模式來說明,顯示nicametate治療增加復發風險(HR: 1.72, 95% CI: 0.98-3.67),主要是由於降低第一次中風後的競爭死因風險(HR: 0.72, 95% CI: 0.45-1.14)。運用半馬可夫模式評估 nicametate對於死亡所達到之保護結果則為0.68(0.37-0.9995)。時間相依性對於運用時間相依寇斯模型評估介入效益具有高估之影響,而以半馬可夫失能風險模式進行效益評估在不同相關性之情境下則可有一致之表現。 結論:本論文提出時間相依寇斯模型與半馬可夫模式,來處理實證資料具有持續時間相依特性的失能模型。這兩種模式都可以用來校正由於忽略疾病時間相依(中繼狀態)具有偏差的估計,在應用上兩種模式各有其優缺點。這兩種模式對於健康照護決策模式與治療或介入效益的經濟評估是非常有用,尤其是疾病的持續時間相依納入考量。 | zh_TW |
| dc.description.abstract | Background
Although the disability and death model (DDM) has been widely used in modelling event history data characterized by first intermediate state and then the subsequent terminal, how the effect of intermediate state affects the evaluation of intervention inherent from such a kind of data has been often inadvertently analyzed by using a naïve statistical approach without considering the duration staying in the intermediate state. The time-dependent Cox proportional hazards regression method or the semi-Markov model can be applied to taking into account duration-dependent property, but the models have been barely applied to evaluating the efficacy of treatment and how the evaluation of the efficacy of treatment is affected by inter-correlated property between time to intermediate state and time to terminal event without passing through intermediate state has been elucidate as yet. Aims By making use of stroke cohort data including the recurrence time and survival time, the objectives of this thesis are therefore (1)to assess how duration-dependent intermediate state in the DDM affects the prognosis of terminal event using the Cox time-dependent model in comparison with time-independent Cox model when intermediate state is treated as a covariate; (2)to assess how duration-dependent intermediate state affects the prognosis of terminal event using the Semi-Markov model; (3)to simulate inter-correlated time-to-intermediate and time-to-terminal events by using the Copular approach; (4)to evaluated the effect of correlation on the estimated results on intervention effect size based on (1) to (3). Data Sources The source of data used in this study were derived from the cohort based on a multicenter randomized double-blind controlled trial during 1992 to 1995 with the enrollment of a total of 466 patients with first-time non-cardioembolic ischemic stroke who were randomly allocated to receive aspirin (n=222) or nicametate (n=244). The trial cohort was followed up over time to ascertain the date of recurrence and death until September 2019. Methodology The switched time-dependent-covariate (namely the intermediate state of the DDM)-based Cox regression model was proposed to fit in with the stroke recurrence time. The semi-Markov model, using the distribution of duration (holding time in the language of Semi-Markov model) with the Weibull distribution, were proposed. Results Applying the time-dependent Cox model to the stroke cohort, while nicametate treatment led to an increased risk of recurrence (HR: 1.65, 95% CI: 0.91-2.98) the significant effect of nicametate treatment on the prevention of cerebrovascular death was revealed (HR: 0.63, 95% CI: 0.41-0.97). The mechanism of the nicametate treatment was further elucidate using the semi-Markov DDM. While the nicametate treatment resulted in higher risk of recurrence (HR: 1.72, 95% CI: 0.98-3.67), which is mainly due to the reduced risk of competing death after first-time stroke (HR: 0.72, 95% CI: 0.45-1.14). The efficacy of nicametate in terms of averting CVD was estimated as 0.68 (95% CI: 0.37-0.9995) derived from the estimated results of semi-Markov model. The correlation between three succesive times under the DDM structure results in an overestimated result for time-dependent Cox regression on the evaluation of intervention efficacy while that for semi-Markov DDM remain consistent. Conclusion This thesis proposes time-dependent Cox regression model and semi-Markov model to deal with empirical data characterized by duration-dependent DDM. While both models can be used to rectify the biased estimate due to the neglected aspect of duration of disease (intermediate state) the application of two models have respective merits and weaknesses. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:41:37Z (GMT). No. of bitstreams: 1 ntu-109-D03849014-1.pdf: 1576140 bytes, checksum: 599d0f122d45720c7aef38742ea14627 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iv Contents viii Table Contents x Figure Contents xiii Chapter 1 Introduction 1 1.1 Duration-dependent disability and death model (DDM) 1 1.2 Time-dependent Cox proportional hazards regression model and Semi-Markov model 2 1.3 Stroke recurrence with duration-dependent property 3 1.4 Aims 4 Chapter 2 Literature Review 6 2.1 Survival model for intermediate event of time-dependent factors 6 2.1.1 Application to transplantation 8 2.1.2 Application to unilateral and bilateral breast cancer 9 2.1.3 Application to HCC 11 2.2 Multistate Markov model for intermediate event 12 2.2.1 The duration-dependent disability and death model 14 2.2.2 The semi-Markov model 19 2.3 Epidemiology of Stroke 29 2.3.1 Stroke recurrence rate and mortality 29 2.3.2 Risk Factors for the risk of recurrence and death 35 2.4 Example of applying duration-dependent analysis for data on Stanford Heart Transplantation Project 40 Chapter 3 Data Sources 46 3.1 Data on the prognosis of stoke recurrence 46 3.2 Measurement of variables 47 3.3 Ascertainment of death event 48 Chapter 4 Methods 49 4.1 Time-dependent Cox model and Semi-Markov model in relation to the DDM 49 4.2 Time-dependent Cox regression model associated with the DDM 51 4.3 Stochastic process associated with the DDM 54 4.3.1 Multistate Markov model 54 4.3.2 Semi-Markov model 58 4.3.3 Multistate model evaluates intermediate event 60 4.4 Copula-based simulation procedure 61 Chapter 5 Results 64 5.1 Descriptive results on the stoke recurrence data 64 5.2 Assessing the effect of treatment on three transitions 66 5.3 Assessing the effect of treatment on cerebrovascular death considering the recurrence as time-varying event 68 5.4 Multistate model with DDM 70 5.4.1 Estimated results based on the Semi-Markov DDM with Weibull distribution 71 5.5 Simulation Studies 73 5.5.1 Simulation for the tirvariate time-to-event data: Stanford heart transplantation 73 5.5.2 The effect of time correlation on estimated results for treatment effect: Stroke randomized controlled trial data 75 Chapter 6 Discussion 79 6.1 The novelty of methodology 79 6.2 Main finding of the stroke cohort 80 6.3 The strength of applying time-dependent Cox regression model 82 6.4 The strength of applying proposed semi-Markov DDM 84 6.5 Limitation 85 Reference 87 | |
| dc.language.iso | zh-TW | |
| dc.title | 應用閾值相依之失能與死亡統計模型於介入效益評估 | zh_TW |
| dc.title | Duration-Dependent Disability and Death Model for Evaluation of Efficacy of Treatment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 張淑惠(Shu-Hui Chang),潘信良(Shin-Liang Pan),陳祈玲(Chi-Ling Chen),許銘能(Ming-Neng Shiu) | |
| dc.subject.keyword | 時間相依,失能與死亡模型,效益評估,時間相依寇斯模型,半馬可夫模式, | zh_TW |
| dc.subject.keyword | Duration dependent,Disability and death model,Evaluation of efficacy,Time-dependent Cox model,Semi-Markov model, | en |
| dc.relation.page | 132 | |
| dc.identifier.doi | 10.6342/NTU202000417 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2020-02-13 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | zh_TW |
| dc.date.embargo-lift | 2025-03-12 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-109-1.pdf | 1.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
