Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73285
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林發暄
dc.contributor.authorRen-Horng Wangen
dc.contributor.author王仁宏zh_TW
dc.date.accessioned2021-06-17T07:26:27Z-
dc.date.available2019-07-10
dc.date.copyright2019-07-10
dc.date.issued2019
dc.date.submitted2019-06-26
dc.identifier.citationBeauchamp, M. S., Lee, K. E., Argall, B. D., & Martin, A. (2004). Integration of auditory and visual information about objects in superior temporal sulcus. Neuron, 41(5), 809-823. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/15003179
Beauchamp, M. S., Nath, A. R., & Pasalar, S. (2010). fMRI-Guided transcranial magnetic stimulation reveals that the superior temporal sulcus is a cortical locus of the McGurk effect. J Neurosci, 30(7), 2414-2417. doi:10.1523/JNEUROSCI.4865-09.2010
Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N., & Golani, I. (2001). Controlling the false discovery rate in behavior genetics research. Behav Brain Res, 125(1-2), 279-284. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11682119
Benoit, M. M., Raij, T., Lin, F. H., Jaaskelainen, I. P., & Stufflebeam, S. (2010). Primary and multisensory cortical activity is correlated with audiovisual percepts. Hum Brain Mapp, 31(4), 526-538. doi:10.1002/hbm.20884
Bernstein, L. E., Auer, E. T., Jr., Wagner, M., & Ponton, C. W. (2008). Spatiotemporal dynamics of audiovisual speech processing. Neuroimage, 39(1), 423-435. doi:10.1016/j.neuroimage.2007.08.035
Besle, J., Fort, A., Delpuech, C., & Giard, M. H. (2004). Bimodal speech: early suppressive visual effects in human auditory cortex. Eur J Neurosci, 20(8), 2225-2234. doi:10.1111/j.1460-9568.2004.03670.x
Callan, D. E., Jones, J. A., Munhall, K., Callan, A. M., Kroos, C., & Vatikiotis-Bateson, E. (2003). Neural processes underlying perceptual enhancement by visual speech gestures. Neuroreport, 14(17), 2213-2218. doi:10.1097/01.wnr.0000095492.38740.8f
Calvert, G. A., Campbell, R., & Brammer, M. J. (2000). Evidence from functional magnetic resonance imaging of crossmodal binding in the human heteromodal cortex. Curr Biol, 10(11), 649-657. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10837246
Campbell, R., MacSweeney, M., Surguladze, S., Calvert, G., McGuire, P., Suckling, J., . . . David, A. S. (2001). Cortical substrates for the perception of face actions: an fMRI study of the specificity of activation for seen speech and for meaningless lower-face acts (gurning). Brain Res Cogn Brain Res, 12(2), 233-243. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11587893
Dahl, C. D., Logothetis, N. K., & Kayser, C. (2009). Spatial organization of multisensory responses in temporal association cortex. J Neurosci, 29(38), 11924-11932. doi:10.1523/JNEUROSCI.3437-09.2009
Gentilucci, M., & Cattaneo, L. (2005). Automatic audiovisual integration in speech perception. Exp Brain Res, 167(1), 66-75. doi:10.1007/s00221-005-0008-z
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nat Rev Neurosci, 8(5), 393-402. doi:10.1038/nrn2113

Hsu, Y. C., Chu, Y. H., Tsai, S. Y., Kuo, W. J., Chang, C. Y., & Lin, F. H. (2017). Simultaneous multi-slice inverse imaging of the human brain. Sci Rep, 7(1), 17019. doi:10.1038/s41598-017-16976-0
Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., . . . et al. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A, 89(12), 5675-5679. doi:10.1073/pnas.89.12.5675
Levanen, S., Uutela, K., Salenius, S., & Hari, R. (2001). Cortical representation of sign language: comparison of deaf signers and hearing non-signers. Cereb Cortex, 11(6), 506-512. doi:10.1093/cercor/11.6.506
Lin, F. H., Witzel, T., Chang, W. T., Wen-Kai Tsai, K., Wang, Y. H., Kuo, W. J., & Belliveau, J. W. (2010). K-space reconstruction of magnetic resonance inverse imaging (K-InI) of human visuomotor systems. Neuroimage, 49(4), 3086-3098. doi:10.1016/j.neuroimage.2009.11.016
Macaluso, E., George, N., Dolan, R., Spence, C., & Driver, J. (2004). Spatial and temporal factors during processing of audiovisual speech: a PET study. Neuroimage, 21(2), 725-732. doi:10.1016/j.neuroimage.2003.09.049
MacDonald, J., Andersen, S., & Bachmann, T. (2000). Hearing by eye: how much spatial degradation can be tolerated? Perception, 29(10), 1155-1168. doi:10.1068/p3020
Magnotti, J. F., Basu Mallick, D., Feng, G., Zhou, B., Zhou, W., & Beauchamp, M. S. (2015). Similar frequency of the McGurk effect in large samples of native Mandarin Chinese and American English speakers. Exp Brain Res, 233(9), 2581-2586. doi:10.1007/s00221-015-4324-7
Massaro, D. (2004). From Multisensory Integration to Talking Heads and Language Learning.
McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746-748. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1012311
Miller, L. M., & D'Esposito, M. (2005). Perceptual fusion and stimulus coincidence in the cross-modal integration of speech. J Neurosci, 25(25), 5884-5893. doi:10.1523/JNEUROSCI.0896-05.2005
Mottonen, R., Krause, C. M., Tiippana, K., & Sams, M. (2002). Processing of changes in visual speech in the human auditory cortex. Brain Res Cogn Brain Res, 13(3), 417- 425. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11919005
Munhall, K. G., Gribble, P., Sacco, L., & Ward, M. (1996). Temporal constraints on the McGurk effect. Percept Psychophys, 58(3), 351-362. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8935896
Nath, A. R., & Beauchamp, M. S. (2012). A neural basis for interindividual differences in the McGurk effect, a multisensory speech illusion. Neuroimage, 59(1), 781-787. doi:10.1016/j.neuroimage.2011.07.024
Noesselt, T., Rieger, J. W., Schoenfeld, M. A., Kanowski, M., Hinrichs, H., Heinze, H. J., & Driver, J. (2007). Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices. J Neurosci, 27(42), 11431-11441. doi:10.1523/JNEUROSCI.2252-07.2007
Oden, G. C., & Massaro, D. W. (1978). Integration of featural information in speech perception. Psychol Rev, 85(3), 172-191. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/663005
Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 87(24), 9868-9872. doi:10.1073/pnas.87.24.9868
Olson, I. R., Gatenby, J. C., & Gore, J. C. (2002). A comparison of bound and unbound audio-visual information processing in the human cerebral cortex. Brain Res Cogn Brain Res, 14(1), 129-138. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12063136
Poeppel, D., Idsardi, W. J., & van Wassenhove, V. (2008). Speech perception at the interface of neurobiology and linguistics. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 363(1493), 1071-1086. doi:10.1098/rstb.2007.2160
Pruessmann, K. P., Weiger, M., Scheidegger, M. B., & Boesiger, P. (1999). SENSE: sensitivity encoding for fast MRI. Magn Reson Med, 42(5), 952-962. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10542355
Raij, T., Uutela, K., & Hari, R. (2000). Audiovisual integration of letters in the human brain. Neuron, 28(2), 617-625. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11144369
Saldana, H. M., & Rosenblum, L. D. (1994). Selective adaptation in speech perception using a compelling audiovisual adaptor. J Acoust Soc Am, 95(6), 3658-3661. doi:10.1121/1.409935
Sams, M., Aulanko, R., Hamalainen, M., Hari, R., Lounasmaa, O. V., Lu, S. T., & Simola, J. (1991). Seeing speech: visual information from lip movements modifies activity in the human auditory cortex. Neurosci Lett, 127(1), 141-145. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1881611
Sams, M., Kaukoranta, E., Hamalainen, M., & Naatanen, R. (1991). Cortical activity elicited by changes in auditory stimuli: different sources for the magnetic N100m and mismatch responses. Psychophysiology, 28(1), 21-29. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1886961
Samuel, A. G. (2011). Speech perception. Annu Rev Psychol, 62, 49-72. doi:10.1146/annurev.psych.121208.131643
Sekiyama, K., Kanno, I., Miura, S., & Sugita, Y. (2003). Auditory-visual speech perception examined by fMRI and PET. Neurosci Res, 47(3), 277-287. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14568109
Stevenson, R. A., & James, T. W. (2009). Audiovisual integration in human superior temporal sulcus: Inverse effectiveness and the neural processing of speech and object recognition. Neuroimage, 44(3), 1210-1223. doi:10.1016/j.neuroimage.2008.09.034
Tiippana, K. (2014). What is the McGurk effect? Front Psychol, 5, 725. doi:10.3389/fpsyg.2014.00725
van Atteveldt, N., Formisano, E., Goebel, R., & Blomert, L. (2004). Integration of letters and speech sounds in the human brain. Neuron, 43(2), 271-282. doi:10.1016/j.neuron.2004.06.025
Werner, S., & Noppeney, U. (2010). Superadditive responses in superior temporal sulcus predict audiovisual benefits in object categorization. Cereb Cortex, 20(8), 1829-1842. doi:10.1093/cercor/bhp248
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73285-
dc.description.abstract過往研究發現,當我們經歷麥格克效應時,在我們 Superior Temporal Sulcus 腦 區會呈現出較大的血氧濃度相依對比訊號(Blood-Oxygen-Level Dependent)。然而, 受限於傳統功能性磁振造影(functional magnetic resonance imaging, fMRI)較差的時間 解析度,過往研究皆無法探討 BOLD 訊號的時間特徵,因此本研究致力於利用時間特 徵來辨別由聽視覺一致與聽視覺不一致之刺激所引發之功能性核磁共振影像信號。在 本研究中,我們利用取樣頻率 10 赫茲的超快速 fMRI 來研究和聽視覺整合相關的血氧 訊號,藉由使用超快速的磁振造影技術,BOLD 訊號因此可以被量化出不同的時間特 徵,包含 Onset、Time-to-half(TTH)、Time-to-peak(TTP)、Time-to-half-off (TTHoff)以及半高全寬。實驗結果發現,雖然聽視覺一致與聽視覺不一致的實驗刺 激所引起的 BOLD 訊號在訊號強度上沒有差別,但兩種不同實驗刺激所引起的 BOLD 訊號在時間特徵上確實有差異。具體而言,在聽視覺不一致的刺激狀況下,在聽覺區 的地方,BOLD 訊號會比較晚出現(TTH 時間指標長了 200 毫秒)。此外,在 STS 這 個腦區,也呈現了比較慢的 BOLD 訊號(Onset 時間指標長了 700 毫秒)。因此,本研 究證實了利用超快速 fMRI 技術來研究 BOLD 訊號時間特徵的重要性,尤其是研究大 腦聽視覺整合歷程為目標的實驗。zh_TW
dc.description.abstractPrevious studies have reported that people perceiving McGurk effect have stronger blood-oxygen-level dependent (BOLD) response at superior temporal sulcus (STS). However, under the limitation of the temporal resolution of conventional functional magnetic resonance imaging (fMRI) scan, how temporal features of BOLD waveforms differ in audiovisual congruent and incongruent conditions are less explored.
In this thesis, we aimed at studying how BOLD waveforms differ between McGurk and audiovisual congruent conditions. We used fast fMRI sampled at 10-Hz to study hemodynamic responses elicited by audiovisual stimuli. BOLD waveforms were quantified by several temporal indices, including Onset, Time-to-half (TTH), Time-to-peak (TTP), and Time-to-half-off (TTHoff) and full-width-at-half-maximum (FWHM). Among McGurk illusion perceivers, we found that the primary auditory cortex had significant delayed (larger TTH; ~200ms) BOLD responses in McGurk than congruent condition. STS also shows delayed onset time (larger Onset; ~700ms) when perceiving McGurk illusions. Our results suggest the importance of using a fast fMRI scan to study the temporal characteristics of BOLD waveforms to better discern perceptions during auditory and visual stimuli integration.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:26:27Z (GMT). No. of bitstreams: 1
ntu-108-R06945019-1.pdf: 3143560 bytes, checksum: 69bffb89688b05133d17ef276450ab5c (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書....................................................................................................#
誌謝.....................................................................................................................1
摘要....................................................................................................................2
Abstract..............................................................................................................3
Table of contents................................................................................................4
List of figures......................................................................................................6
List of tables.......................................................................................................7
Chapter 1 Introduction........................................................................................8
Chapter 2 Materials and methods......................................................................10
2.1 Participants..........................................................................................10
2.2 Experiment paradigm...........................................................................10
2.3 MRI acquisition.....................................................................................11
2.4 Data pre-processing............................................................................11
2.5 Data analysis.......................................................................................12
Chapter 3 Results.............................................................................................16
3.1 Behavioral results................................................................................16
3.2 Brain activation strengths and patterns...............................................16
3.3 Temporal features of the estimated BOLD waveform...........................17
Chapter 4 Discussions and conclusion............................................................31
4.1 Previous works on McGurk effect........................................................31
4.2 Cause of McGurk effect......................................................................31
4.3 Behavioral results...............................................................................32
4.4 Multisensory brain regions.................................................................33
4.5 Temporal features of BOLD signal during different conditions...........34
Chapter 5 References......................................................................................37
dc.language.isozh-TW
dc.subject快速造影zh_TW
dc.subject時間特徵zh_TW
dc.subject聽視覺整合zh_TW
dc.subject麥格克效應zh_TW
dc.subjectMcGurk effecten
dc.subjectaudio-visual integrationen
dc.subjectfMRIen
dc.subjectfast scanen
dc.subjecttemporal featuresen
dc.title利用時間特徵來辨別由聽視覺一致與聽視覺不一致之刺激所引發之功能性核磁共振影像信號zh_TW
dc.titleThe latency differentiates BOLD responses elicited by congruent and incongruent McGurk audio-visual stimulus pairsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor鍾孝文
dc.contributor.oralexamcommittee郭文瑞
dc.subject.keyword麥格克效應,聽視覺整合,功能性磁振造影,快速造影,時間特徵,zh_TW
dc.subject.keywordMcGurk effect,audio-visual integration,fMRI,fast scan,temporal features,en
dc.relation.page42
dc.identifier.doi10.6342/NTU201901045
dc.rights.note有償授權
dc.date.accepted2019-06-27
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
3.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved