Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73265
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹承礎(Seng-Cho Chou)
dc.contributor.authorChe-Wei Kuoen
dc.contributor.author郭哲偉zh_TW
dc.date.accessioned2021-06-17T07:25:24Z-
dc.date.available2029-06-27
dc.date.copyright2019-07-10
dc.date.issued2019
dc.date.submitted2019-06-27
dc.identifier.citation[1] Zhu, Y., & Zhou, G. (2009). Technical analysis: An asset allocation perspective on the use of moving averages. Journal of Financial Economics, 92(3), 519-544.
[2] Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications, 42(1), 259-268.
[3] 洪敏洋(2013)。價量動能因子選股模型:以台灣上市股票為例。國立臺灣科技大學財務金融研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/73sf5c
[4] Lakonishok, J., Shleifer, A., & Vishny, R. W. (1992). The impact of institutional trading on stock prices. Journal of financial economics, 32(1), 23-43.
[5] 何弘毅(2016)。三大法人從眾行為之研究—以臺股指數期貨與選擇權市場為例。國立臺灣科技大學財務金融研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/kum69k
[6] 陳彥豪(2002)。外資與投信法人持股比率變化對股價報酬率影響之研究-以上市電子股為例。國立中山大學財務管理學系研究所碩士論文,高雄市。 取自https://hdl.handle.net/11296/39v52k
[7] 胡家麒(1998)。外資、投信法人投資機構買賣超與證券股股價報酬率之互動關係之實證研究。國立中興大學企業管理學系碩士論文,台中市。 取自https://hdl.handle.net/11296/4dgb5f
[8] 陳志萍(2009)。應用關連式規則分析於主力券商分行之操作策略。國立清華大學高階經營管理碩士在職專班碩士論文,新竹市。 取自https://hdl.handle.net/11296/4v4a2m
[9] 陳明汰(2014)。台灣興櫃股票市場交易集中度與異常報酬率之關係。國立臺灣大學財務金融學研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/dc8957
[10] 林昌燿(2017)。應用吉尼係數測量股票籌碼集中度:建構台灣證券市場交易策略。國立臺灣科技大學財務金融研究所碩士論文,台北市。 取自https://hdl.handle.net/11296/92rv4t
[11] Chen, Tianqi, and Carlos Guestrin. 'Xgboost: A scalable tree boosting system.' Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. ACM, 2016.
[12] Tapscott, A., & Tapscott, D. (2017). How blockchain is changing finance. Harvard Business Review, 1.
[13] 賴紀誠, 林問一, & 劉亞秋. (2011). 台灣股市券商分析師盈餘預測之利益衝突. 臺大管理論叢, 22(1), 357-389.
[14] Invictus Capital (2018) Invictus Hyperion Fund ICO Whitepaper [https://cdn.invictuscapital.com/whitepapers/hyperion.pdf]
[15] CommBank (2011, August 1). Commonwealth Bank’s Investorville... Build a property portfolio without spending a cent. https://www.commbank.com.au/about-us/news/media-releases/2011/010811-Investorville.html
[16] Kapitall. https://kapitall.com/landing
[17] Bincentive Whitepaper (2018, September). https://wp.bincentive.com/wp-content/uploads/2018/09/Bincentive_wp_TC.pdf
[18] Numerai Whitepaper (2017, February 20). Numeraire: A Cryptographic Token for Coordinating Machine Intelligence and Preventing Overfitting. https://numer.ai/static/media/whitepaper.29bf5a91.pdf
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73265-
dc.description.abstract本研究旨於實現新型區塊鏈投資平台的概念性驗證 (Proof-of-Concept),並結合智能投資及遊戲化概念。雖然目前證券或軟體應用市場上存在著相關的產品和研究,但很少有研究致力於這三個概念的結合與應用。本研究由兩部分實驗組成:(1) 透過機器學習方法實作一套量化交易策略,找出一籃未來最具漲勢的股票並做多進行買入,持有N天後賣出,此階段的實驗結果會作為下一部分區塊鏈應用中的一項重要元素;(2) 建構基於區塊鏈的遊戲平台原型,並結合上一部分的量化投資策略,實現新穎的智能投資服務。在第一部分中,預測模型的表現穩健,相較於大盤指數皆能在不同的市場狀況之下獲得超額報酬;在第二部分的實驗中提出並實現了區塊鏈平台原型,透過遊戲化的概念包裝能為參與者提供更多的誘因參與此區塊鏈生態系統,而建構基於區塊鏈與智能合約的去中心化基礎之上,安全性、公平性與可靠性也能被充分實現。zh_TW
dc.description.abstractThis study is a proof of concept (PoC) of constructing an investment gaming platform based on Blockchain, quantitative trading and gamification. Although there exist some related products and researches in the current marketplace. But few studies work on the combination of these three concepts. This study consists of two parts: (1) developing a quantitative trading strategy through machine learning approach to find out the most profitable stocks in the future and the results will be used as a feature of the proposed gaming platform; (2) building a blockchain-based gaming application incorporating with the concept of smart trading. In the first part, the performance of the predictive model is quite well and the model can beat the market under different market situations. In the second part, a prototype is proposed and implemented. Through gamification, it is capable of providing more incentives for people to participate. Safety and reliability can also be ensured by the nature of Blockchain and smart contracts.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:25:24Z (GMT). No. of bitstreams: 1
ntu-108-R05725010-1.pdf: 1929103 bytes, checksum: a295dbe3731ad5c857e8826fde06c0c2 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Objectives 1
1.3 Outline 3
Chapter 2 Related Works 4
2.1 Technical Analysis 4
2.2 Chip Analysis 5
2.3 XGBoost 8
2.4 Gamification in Finance 8
2.4.1 Investorville 9
2.4.2 Kapitall 9
2.5 Related Blockchain Applications 9
2.5.1 Invictus Capital 10
2.5.2 Bincentive 11
2.5.3 Numerai 12
Chapter 3 Methodology 13
3.1 Establish Trading Strategy through Machine Learning Technique 13
3.1.1 Problem Definition 13
3.1.2 Data 13
3.1.3 Data Preprocessing & Feature Engineering 14
3.1.4 Model 25
3.1.5 Experiment Design 26
3.2 Construct a Blockchain-based Investment Platform with Gamification 27
3.2.1 Problems 27
3.2.2 Proposed Solution 29
Chapter 4 Experiment Result 31
4.1 Backtesting and Model Performance Evaluation 31
4.2 Architecture and Implementation of the Blockchain-based Investing Game 38
Chapter 5 Conclusion and Future Works 41
REFERENCE 43
dc.language.isoen
dc.subject概念驗證zh_TW
dc.subject遊戲化zh_TW
dc.subject智能合約zh_TW
dc.subject去中心化應用zh_TW
dc.subject區塊鏈zh_TW
dc.subject機器學習zh_TW
dc.subject量化投資zh_TW
dc.subjectBlockchainen
dc.subjectDecentralized Applicationen
dc.subjectSmart Contractsen
dc.subjectPoCen
dc.subjectQuantitative Tradingen
dc.subjectMachine Learningen
dc.subjectGamificationen
dc.title台股投資更聰穎:從機器學習到區塊鏈結合遊戲化應用zh_TW
dc.titleMake Stock Portfolios Work Intelligently: From Machine Learning to Blockchain and Gamificationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳建錦(Chien-Chin Chen),盧信銘(Hsin-Min Lu)
dc.subject.keyword概念驗證,量化投資,機器學習,區塊鏈,去中心化應用,智能合約,遊戲化,zh_TW
dc.subject.keywordPoC,Quantitative Trading,Machine Learning,Blockchain,Decentralized Application,Smart Contracts,Gamification,en
dc.relation.page44
dc.identifier.doi10.6342/NTU201900958
dc.rights.note有償授權
dc.date.accepted2019-06-28
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved