請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73258
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李篤中(Duu-Jong Lee) | |
dc.contributor.author | Chieh-Hsuan Tsai | en |
dc.contributor.author | 蔡(禾節)萱 | zh_TW |
dc.date.accessioned | 2021-06-17T07:25:04Z | - |
dc.date.available | 2019-07-10 | |
dc.date.copyright | 2019-07-10 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-06-28 | |
dc.identifier.citation | [1]Shing CY., Whiteley CG., and Lee DJ. HIV protease: Multiple fold inhibition by silver nanoparticles—Spectrofluorimetric, thermodynamic and kinetic analysis. J Taiwan Inst Chem Eng 2014;45(4):1440–8.
[2]Gottlieb MS., Pneumocystis pneumonia – Los Angeles. Am J Public Health 2006;96(6):980–3. [3]Gallo RC, Salahuddin SZ, Popovic M, Shearer GM, Kaplan M, Haynes BF, Palker TJ, Redfield R, Oleske J, and Safai B. Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science, 1984;224(4648):500–3. [4]Siegal FP, Lopz C, Hammer GS, Brown AE, Kornfeld SJ, Gold J, Hassett J, Hirschman, SZ, Cunningham-Rundles C, and Adelsberg BR. Severe Acquired Immunodeficiency in Male Homosexuals, Manifested by Chronic Perianal Ulcerative Herpes Simplex Lesions. N Engl J Med 1981;305(34):1439–4. [5]Gilbert PB, McKeague IW, Eisen G, Mullins C, Guéye-NDiaye A, Mboup S, and Kanki PJ. Comparison of HIV-1 and HIV-2 infectivity from a prospective cohort study in Senegal. Stat Med 2003;22(4):573–93. [6]Myers M, and Pavlakis GN. The Retroviridae. Berlin: Springer 1992. [7]Rambaut A, Posada D, Crandall KA, and Holmes EC. The causes and consequences of HIV evolution. Nat Rev Genet 2004;5(1):52–61. [8]Levy JA. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev 1993;57(1):183–289. [9]Calles NR, Evans D, and Terlonge D. Pathophysiology of the human immunodeficiency virus. HIV Curriculum for the Health Professional. Houston, TX: Baylor International Pediatric AIDS Initiative, Baylor College of Medicine; 2006 [10]Gelderblom HR, Özel M, and Pauli G. Morphogenesis and morphology of HIV. Structure-function relations. Arch Virol 1989;106(1-2):1–13. [11]Kowalski M, Potz J, Basiripour L, Dorfman T, Goh WC, Terwilliger E, Dayton A, Rosen C, Haseltine W, and Sodroski J. Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science, 1987;237(4820):1351–5. [12]Neamati N, Marchand C, and Pommier Y. HIV-I integrase inhibitors: Past, present, and future. Adv Pharmacol 2000;49:147–156 [13]Feng S, and Holland EC. HIV-1 tat trans-activation requires the loop sequence within tar. Nature, 1988;334(6178):165–7. [14]Kohl NE, Emini EA, Schleif WA, Davis LJ, Heimbach JC, Dixon RA, Scolnick EM, and Sigal IS. Active human immunodeficiency virus protease is required for viral infectivity. Proc Natl Acad Sci U.S.A. 1988;85(13):4686–90. [15]Yang H, Nkeze J, and Zhao RY. Effects of HIV-1 protease on cellular functions and their potential applications in antiretroviral therapy. Cell Biosci 2012;2(1):32. [16]Mager PP. The active site of HIV-1 protease. Med Res Rev 2001;21(4):348–353. [17]Wlodawer A, and Vondrasek J. Inhibitors of HIV-1 protease: a major success of structure-assisted drug design. Annu Rev Biophys Biomol Struct 1998;27(1):249–84. [18]Perryman AL, Lin JH, and McCammon JA. HIV‐1 protease molecular dynamics of a wild‐type and of the V82F/I84V mutant: Possible contributions to drug resistance and a potential new target site for drugs. Protein Sci 2004;13(4):1108–23. [19]Wlodawer A, Miller M, Jaskólski M, Sathyanarayana BK, Baldwin E, Weber IT, Selk LM, Clawson L, Schneider J, and Kent SB. Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science 1989;245(4918):616–21. [20]Miller M, Schneider J, Sathyanarayana BK, Toth MV, Marshall GR, Clawson L, Selk L, Kent SB, and Wlodawer A. Structure of complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science 1989;246(4934):1149––52. [21]Li D, Liu MS, Ji B, Hwang K, and Huang Y. Coarse-grained molecular dynamics of ligands binding into protein: The case of HIV-1 protease inhibitors. J Chem Phys 2009;130(21). [22]Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, and Varmus HE. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 1988;331(6153):280–3. [23]Griffiths JT, Phylip LH, Konvalinka J, Strop P, Gustchina A, Wlodawer A, Davenport RJ, Briggs R, Dunn BM, and Kay J. Different requirements for productive interaction between the active site of HIV-1 proteinase and substrates containing -hydrophobic-hydrophobic- or -aromatic-Pro- cleavage sites. Biochemistry 1992;31(22):5193–200. [24]Schechter I, and Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 1967;27(2):157–62. [25]Wlodawer A, and Erickson JW. Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem 1993;62:543–85. [26]Billich A, and Winkler G. Analysis of subsite preferences of HIV-1 proteinase using MA/CA junction peptides substituted at the P3-P1' positions. Arch Biochem Biophys 1991;290(1):186–90. [27]Partin K, Kräusslich HG, Ehrlich L, Wimmer E, and Carter C. Mutational analysis of a native substrate of the human immunodeficiency virus type 1 proteinase. J Virol 1990;64(8):3938–47. [28]Pau AK, George JM. Antiretroviral therapy: current drugs. Infect Dis Clin North Am 2014;28(3):371–402. [29]Arts EJ, and Hazuda DJ. HIV-1 Antiretroviral Drug Therapy. Cold Spring Harb Perspect Med 2012; 2(4). [30]Lv Z, Chu Y, and Wang Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV/AIDS (Auckl) 2015;7(1):95–104. [31]Kelly KL, Coronado E, Zhao LL, and Schatz GC. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003;107(3):668–77. [32]Bohren CF, and Huffman DR. Absorption and Scattering of Light by Small Particles. New York: Wiley. [33]Kreibig U, and Vollmer M. Optical Properties of Metal Clusters. Berlin: Springer 1995. [34]Mie G. Contribution on optical characteristics of turbid media, with special reference to colloid metallic solutions. Ann Phys 1908;25:377–445. [35]Ekmel O. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science 2006;311(5758):189–93. [36]Xia Y, Xiong Y, Lim B, and Skrabalak SE. Shape‐Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew Chem Int Ed 2009;48(1)60–103. [37]Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky DA, and Boritz C. Synthesis and Study of Silver Nanoparticles. J Chem Educ 2007;84(2):322–5. [38]Huang T and Xu XH. Synthesis and Characterization of Tunable Rainbow Colored Colloidal Silver Nanoparticles Using Single-Nanoparticle Plasmonic Microscopy and Spectroscopy. J Mater Chem 2010;20(44):9867–76. [39]Agnihotri S, Mukherji S and Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 2014;4(8):3974–83. [40]Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, and Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 2010;85(4):1115–22. [41]Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Renu P, Ajaykumar PV, Alam M, and Kumar R. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett 2001;1(10):515–9. [42]Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, and Alvarez PJJ. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res 2008;42(18):4591–602. [43]Wang JX, Wen LX, Wang ZH, and Chen JF. Immobilization of silver on hollow silica nanospheres and nanotubes and their antibacterial effects. Mater Chem Phys 2006;96(1):90–7. [44]Pape HL, Solano-Serena F, Contini P, Devillers C, Maftah A, and Leprat P. Evaluation of the anti-microbial properties of an activated carbon fibre supporting silver using a dynamic method. Carbon 2002;40(15):2947–54. [45]Sondi I, and Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004;275(1):177–182. [46]Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Tapia J, and Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology 2005;16(10):2346–2353. [47]Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 2006;5(4):916–24. [48]Shahverdi AR, Fakhimi A, Shahverdi HR, and Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine 2007.3(2):168–71. [49]Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, and Sastry M. Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Lett 2001:1(10):515–9. [50]Sun RW, Chen R, Chung NP, Ho CM, Lin CL, and Che CM. Silver nanoparticles fabricated in Hepes buffer exhibit cytoprotective activities toward HIV-1 infected cells. ChemComm 2005;8(40):5059–61. [51]Elechiguerra JL, Burt JL, Morones, JR, Camacho-Bragado A, Gao X, Lara HH, and Yacaman MJ. Interaction of silver nanoparticles with HIV-1. J Nanobiotechnology 2005;3(1):6–10. [52]Ahamed M, AlSalhi MS, and Siddiqui MKJ. Silver nanoparticle applications and human health. Clin Chim Acta 2010;411(23-24):1841–948. [53]Chernousova S, and Epple M. Silver as antibacterial agent: Ion, nanoparticle, and metal. Angew Chem Int Ed 2013;52(6):1636–53. [54]Chudasama B, Vala AK, Andhariya N, Upadhyay RV, and Mehta RV. Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2009;2(12):955–65. [55]Choi O, Deng KK, Kim NJ, Ross LJ, Surampalli RY, and Hu Z. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 2008;42(12):3066–74. [56]Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, and Cho MH. Antimicrobial effects of silver nanoparticles. Nanomedicine. Nanomedicine: Nanotechnology. Nanomedicine 2007;3(1):95–101. [57]Dakal TC, Kumar A, Majumdar RS, and Yadav V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front Microbiol 2016;7(1):1–17. [58]Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, and Gregory TJ. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 1990;265(18):10373–82. [59]Gelderblom H R, Hausmann EHS, Ozel M, Pauli G, and Koch MA. Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 1987;156(1):171–76. [60]Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, and Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnology 2010;8:1–9. [61]Wilkinson LJ, White RJ, and Chipman JK. Silver and nanoparticles of silver in wound dressings: a review of efficacy and safety. J Wound Care 2011;20(11):543–9. [62]Samuel U, and Guggenbichlerb JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Ag 2004;23(1):75–8. [63]Roe D, Karandikar B, Bonn-Savage N, Gibbins B, and Roullet J. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother 2008;61(4):869–76. [64]Chaloupka K, Malam Y, and Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends in Biotechnol 2010;28(11):580–8. [65]Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, and Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004;25(18):4383–4391. [66]Chang AL, Khosravi V, Egbert B. A case of argyria development after colloidal silver digestion. J Cutan Pathol 2006;33(12):809–11. [67]Wadhera A, and Fung M. Systemic argyria associated with ingestion of colloidal silver. Dermatol Online J 2005;11(1):12. [68]Kim Y, Suh HS, Cha HJ, Kim SH, Jeong KS, and Kim DH. A case of generalized argyria after ingestion of colloidal silver solution. Am J Ind Med 2009;52(3):246–50. [69]Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, and Stone V. A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 2010;40(4):328-46. [70]Tran QH, Nguyen VQ. and Le AT. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci: Nanosci Nanotechnol 2013;4(3). [71]Singh, M., Manikandan, S., and Kumaraguru, A. K., Nanoparticles: A New Technology with Wide Applications. Res J Nanosci Technol 2011;1:1–11. [72]Ochekpe NA, Olorunfemi PA, and Ngwuluka NC. Nanotechnology and Drug Delivery Part 2: Nanostructures for Drug Delivery. Trop J Pharm Res 2009;8(3):275–87. [73]Sahoo P K, Kalyan Kamal S S, Jagadeesh Kumar T, Sreedhar B, Singh AK, and Srivastava SK. Synthesis of Silver Nanoparticles using Facile Wet Chemical Route. Def Sci J 2009;599(4):447–55. [74]García-Barrasa J, López-de-Luzuriaga JM, and Monge M. Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem 2011;9(1):7–19. [75]Rivas L, Sanchez-Cortes S, Garcia-Ramos J and Morcillo G. Growth of silver colloidal particles obtained by citrate reduction to increase the Raman enhancement factor. Langmuir 2001;17(3):574–7. [76]Sun Y and Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002;298(5601):2176–9. [77]Lee KJ, Jun BH, Kim TH and Joung J. Direct synthesis and inkjetting of silver nanocrystals toward printed electronics. Nanotechnology 2006;17(9):2424. [78]Kim D, Jeong S and Moon J. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology 2006;17(16):4019. [79]Chen M, Feng YG, Wang X, Li TC, Zhang JY and Qian DJ. Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 2007;23(10):5296–5304. [80]Zhang Q, Li N, Goebl J, Lu Z and Yin Y. A systematic study of the synthesis of silver nanoplates: is citrate a “magic” reagent? J Am Chem Soc 2011;133(46):18931–9. [81]Bastús NG, Merkoçi F, Piella J and Puntes V. Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties. Chem Mate 2014;26(9):2836–46. [82]Tolaymat TM, El Badawy AM, Genaidy A. Scheckel KG, Luxton TP, and Suidan M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 2010;408(5):999–1006. [83]Song Y, Yang W, and King M. RETRACTED: Shape controlled synthesis of sub-3 nm Ag nanoparticles and their localized surface plasmonic properties. Chem Phys Lett 2008;455(6):218–24. [84]Yang Z, Nguyen KT, Chen H, Qian H, Fernando LP, Christensen KA, and Anker JN. Plasmonic Silver Nanobelts via Citrate Reduction in the Presence of HCl and their Orientation-Dependent Scattering Properties. J Phys Chem Lett 2011;2(14):1742–6. [85]Huang W, Zhang L, Yang Q, and Wang Z. Polyvinylpyrrolidone as an Efficient Stabilizer for Silver Nanoparticles. Chinese J Chem 2014;32(9):909–13. [86]Lourenco C, Teixeira M, Simões S, and Gaspar R. Steric stabilization of nanoparticles: Size and surface properties. Int J Pharm 1996;138(1):1–12. [87]Good NE, Winget GD, Winter W, Connolly TN, Izawa S, and Singh RM. Hydrogen ion buffers for biological research. Biochemistry 1966;5(2):467–577. [88]Ferguson WJ, Braunschweiger KI, Braunschweiger WR, Smith JR, McCormick JJ, Wasmann CC, Jarvis NP, Bell DH, and Good NE. Hydrogen ion buffers for biological research. Anal Biochem 1980;104(2):300–10. [89]Waugh A, and Grant A. Anatomy and Physiology in Health and Illness (10th ed.). Philadelphia, Pa, USA: Churchill Livingstone Elsevier, 2007. [90]Lang W, and Zander R. Physiological HEPES Buffer Proposed as a Calibrator for pH Measurement in Human Blood. Clin Chem Lab Med 1999;37(5):563–71. [91]Jana NR, Gearheart L, and Murphy CJ. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. ChemComm 2001;(7):617–18. [92]Pinto VV, Ferreira MJ, Silva R, Santos HA, Silva F, and Pereira CM. Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions. Colloids Surf 2010;364(1-3):19–25. [93]Elzey S, and Grassian VH. Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 2010;12(5):1945–58. [94]Konvalinka J, Strop P, Velek J, Cerna V. Kostka V, Phylip LH, Richards AD, Dunn BM, and Kay J. Sub-site preferences of the aspartic proteinase from the human immunodeficiency virus, HIV-1. FEBS Lett 1990;268(1):35–8. [95]Whiteley CG, Shing CY, Kuo CC, and Lee DJ. Docking of HIV protease to silver nanoparticles. J Taiwan Inst Chem Eng 2016;60:83–91 [96]Whiteley CG, and Lee DJ. Computer simulations of the ineraction of human immunodeficiency virus (HIV) aspartic protease with spherical gold nanoparticles: implications in acquired immunodeficiency syndrome (AIDS). Nanotechnology 2016;27(36)365101. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73258 | - |
dc.description.abstract | 高效能抗愛滋病毒治療,又稱雞尾酒療法,為現今最常見的愛滋病毒治療方法。根據聯合國愛滋病署的報導,因高效能抗愛滋病毒治療的廣泛使用及其極佳的治療效果,感染愛滋病毒的患者及愛滋病毒相關死率在近年來大幅下滑。由於此療法無法完全移除患者體內的愛滋病毒,在長期服用的狀況下可能會產生一個嚴重的問題 —— 抗藥性,進而逐漸降低此療法的療效。因此,在目前醫療技術發達的時代,研發一種不會產生抗藥性的愛滋病治療方法是及其需要的。
在不同第一型人類免疫缺陷病毒(HIV-1)抑制劑中,HIV-1蛋白酶抑制劑不僅能抑制HIV-1蛋白酶的活動外,通常也可以用來抑制複製活動;銀奈米顆粒在過往研究已指出能有效抑制HIV-1蛋白酶的活性。本實驗藉由自行合成的銀奈米顆粒(2-4 nm)、含有HIV-1蛋白酶剪切位置的合成胜肽和HIV-1蛋白酶間的相互作用,來測試銀奈米顆粒對HIV-1 蛋白酶的抑制效果。 實驗結果顯示,HIV-1蛋白酶剪切合成胜肽反應快於銀奈米顆粒吸附上合成胜肽的速率。唯有先將銀奈米顆粒附著在合成胜肽上,才能有效抑制HIV-1 蛋白酶對胜肽的剪切作用。 | zh_TW |
dc.description.abstract | Highly Active Anti-Retroviral Therapy is the most efficient treatment for HIV in current technology. However, this therapy doesn’t kill the entire virus, which leads to a thorny problem: drug resistance. Therefore, developing a new medicine that can effectively treat HIV and won’t cause drug resistant without is an inevitable need.
To inactive HIV several inhibitors are developed. Among them, protease inhibitors (PIs) can not only inactivate HIV-1 protease (HIV-1 PR) but also inhibit HIV replication process. According to the literature, silver nanoparticles (Ag NPs) with unique antiviral property has been proved that they can inhibit HIV-1 PR in vitro, but the mechanism is not clear. In this study, five peptides which have similar amino acid sequence to HIV’s polyprotein are synthesized. Ag NPs are used to bind with synthesized peptides and HIV-1 PR, respectively. No cleavage occurs when the synthesized peptide has glycine at P2´ position, which meets the report from literature. The MALDI spectra show that incubating Ag NPs with synthesized peptide can efficiently inhibit HIV-1 PR since no signal of residuals molecule weight are detected. With three different experiment methods, we can know the process of HIV-1 PR inhibition by Ag NPs. From the results, we can say that the interaction between HIV-1 PR and synthesized peptide is faster than the binding of Ag NPs with peptides. Moreover, forming Ag NPs – peptide complex, Ag NPs bind with synthesized peptide, can effectively inhibit HIV-1 PR. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:25:04Z (GMT). No. of bitstreams: 1 ntu-108-R06524019-1.pdf: 6654669 bytes, checksum: b082978024a9934bcae8d913227c2cd7 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | ACKNOWLEDGEMENTS i
ABSTRACT ii 摘要 iv Contents v List of Figures viii List of Tables xiii Chapter 1 1 Introduction 1 1.1 Background 1 Chapter 2 3 Literature review 3 2.1 Human immunodeficiency virus 3 2.1.1 Current state of HIV prevalence 4 2.1.2 Types and the Structure of HIV 5 2.1.3 Life cycle of HIV-1 6 2.1.4 HIV-1 protease 8 2.1.5 HIV-1 PR inhibitor 11 2.2 Silver nanoparticles in biomedical application 14 2.2.1 Antimicrobial activities 15 2.2.2 Antiviral activities against HIV-1 17 2.2.3 Medical Application 19 2.2.4 Medical concern 20 2.3 Silver nanoparticles synthesis 21 2.3.1 Mechanism of wet chemical synthesis 22 2.3.2 Reducers in wet chemical synthesis 25 2.3.3 Stabilizers in wet chemical synthesis 25 2.4 Biological buffers 28 Chapter 3 31 Materials and Experiment methods 31 3.1 Materials 31 3.1.1 Experimental chemicals 31 3.1.2 HIV-1 PR 31 3.1.3 Synthesized peptides 32 3.2 Experimental 34 3.2.1 HEPES buffer solution preparation 34 3.2.2 Synthesis of the silver nanoparticles (Ag NPs) 35 3.2.3 Ag NPs characterization 36 3.2.4 HIV-1 PR characterization 41 3.2.5 Synthesized peptides characterization 43 3.2.6 Interaction between Ag NPs, HIV-1 PR and Synthesized peptides 43 Chapter 4 48 Results and Discussion 48 4.1 Ag NPs characterization 48 4.2 HIV-1 PR characterization 53 4.3 Synthesized peptides characterization 57 4.4 Interaction between Ag NPs, HIV-1 PR and synthesized peptides 58 4.4.1 Interaction between Ag NPs and HIV-1 PR 58 4.4.2 Interaction between Ag NPs and synthesized peptides 59 4.4.3 Protocol 1 (Ag NPs + HIV-1 PR) 24 h + peptide 64 4.4.4 Protocol 2 (Ag NPs + peptide) 24 h + HIV-1 PR 64 4.4.5 Protocol 3 (Ag NPs + peptide + HIV-1 PR) 65 4.5 Discussion 77 Chapter 5 84 Conclusions 84 References 87 | |
dc.language.iso | en | |
dc.title | 銀奈米顆粒、HIV-1蛋白酶與特定肽鍵交互作用 | zh_TW |
dc.title | Interaction between silver nanoparticles, HIV-1 PR and specific peptide | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃志彬,鄭智嘉 | |
dc.subject.keyword | 銀奈米顆粒,HIV-1 蛋白?,酵素抑制劑,HIV-1 PR 切割位置, | zh_TW |
dc.subject.keyword | silver nanoparticles,HIV-1 protease,enzyme inhibitor,HIV-1 cleavage site, | en |
dc.relation.page | 102 | |
dc.identifier.doi | 10.6342/NTU201901099 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-06-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 6.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。