Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73238
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張家銘(Chia-Ming Chang)
dc.contributor.authorXuan Wangen
dc.contributor.author王軒zh_TW
dc.date.accessioned2021-06-17T07:24:02Z-
dc.date.available2025-12-15
dc.date.copyright2020-12-25
dc.date.issued2020
dc.date.submitted2020-12-15
dc.identifier.citation[1] Wierschem, E.N. (2013). “Target energy transfer using nonlinear energy sinks for the attenuation of transient loads on building structures,”Doctoral Thesis, University of Illinois at Urbana Champaign, USA.
[2] Gutierrez Soto, M. and Adeli, H. (2013), “Tuned Mass Dampers. Archives of Computational Methods in Engineering,” Springer New York, 20(4), 419-431.
[3] Li, Q.S.,M.ASCE, Zhi, L.H., Tuan, A.Y., Kao, C.S. (2010), “Dynamic behavior of Taipei 101 Tower: field measurement and numerical analysis,” Journal of Structural Engineering, 137(1), 143-155.
[4] De Angelis, M., Perno, S. and Reggio, A. (2012), “Dynamic response and optimal design of structures with large mass ratio TMD,” Earthquake Engineering Structural Dynamics, 41(1), 41-60.
[5] Soong, T.T. and Dargush, G.F. (1997), “Passive energy dissipation systems in structural engineering,”John Wiley Sons Inc,10,74-84
[6] Den Hartog, J.P. (1956).,Mechanical vibrations (4th edn), McGraw-Hill:New York.
[7] Sadek, F., Mohraz, B., Taylor,A.W., Chung, R.M. (2007), “A method of estimating the parameters of tuned mass dampers for seismic applications,” Earthquake Engineering Structural Dynamics, 26(6), 617-635.
[8] Ghosh, A. and Basu , B. (2007), “A closed‐form optimal tuning criterion for TMD in damped structures,” Journal of the International Association for Structural Control and Monitoring, 14(4), 681-692.
[9] Hoang, N., Y. Fujino, and P. Warnitchai (2008), “Optimal tuned mass damper for seismic applications and practical design formulas,” Journal of Engineering Mechanics, 30(3), 707-715.
[10] Tsai, H. C. and Lin, G. C. (1993). “Optimum tuned-mass dampers for minimizing steady-state response of support-excited and damped systems,” ASCE Journal of Engineering Mechanics, 120(2), 135-158.
[11] Bakre, S. and Jangid, R. (2007), “Optimum parameters of tuned mass damper for damped main system,” Journal of the International Association for Structural Control and Monitoring, 14(3), 448-470.
[12] Chung, L.L., Wu, L.Y., Huang, H.H., Chang, C.H., Lien, K.H. (2009), “Optimal design theories of tuned mass dampers with nonlinear viscous damping.” Earthquake engineering and engineering vibration, 8(4), 547-560.
[13] Vakakis, A.F. and Gendelman, O. (2001), “Energy pumping in nonlinear mechanical oscillators: part II—resonance capture,” Journal of Applied Mechanics, 68(1), 42-48.
[14] Gendelman, O. V. (2001), “Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators,” Nonlinear dynamics Springer New York, 25(1-3), 237-253.
[15] Vakakis, A. F. (2001), “Inducing passive nonlinear energy sinks in vibrating systems,” Journal of Vibration and Acoustics, 123(3), 324-332.
[16] Gendelman, O. and Starosvetsky, Y. (2007), “Quasi-periodic response regimes of linear oscillator coupled to nonlinear energy sink under periodic forcing,” Journal of applied mechanics, 74(2), 325-331.
[17] Alexander, N.A. and Schilder, F. (2009), “Exploring the performance of a nonlinear tuned mass damper,” Journal of Sound and Vibration, 319(1-2), 445-462.
[18] Gatti, G., Kovacic, I. and Brennan, M.J. (2010), “On the response of a harmonically excited two degree-of-freedom system consisting of a linear and a nonlinear quasi-zero stiffness oscillator,” Journal of Sound and Vibration, 329(10), 1823-1835.
[19] Andersen, D., Vakakis, A. and Bergman, L. (2011), “Dynamics of a System of Coupled Oscillators With Geometrically Nonlinear Damping, in Nonlinear Modeling and Applications, Volume 2,” Springer New York, 1-7.
[20] Andersen, D., Vakakis, A., Bergman, L., Starosvetsky, Y. (2012), “Dynamic instabilities in coupled oscillators induced by geometrically nonlinear damping,” Nonlinear Dynamics Springer New York, 67(1), 807-827.
[21] Duncan, M., C. Wassgren, and C. Krousgrill (2005), “The damping performance of a single particle impact damper,” Journal of Sound and Vibration, 286(1-2), 123-144.
[22] Karayannis, I., Vakakis, A. and Georgiades, F. (2008), “Vibro-impact attachments as shock absorbers. Proceedings of the Institution of Mechanical Engineers, Part C,” Journal of Mechanical Engineering Science, 222(10), 1899-1908.
[23] Al-Shudeifat, M.A., Wierschem, N., Quinnc, D.D., Vakakis, A.F., Bergman, L.A., Spencer Jr., B.F. (2013), “Numerical and experimental investigation of a highly effective single-sided vibro-impact non-linear energy sink for shock mitigation,” International journal of non-linear mechanics, 52, 96-109.
[24] Nucera, F., McFarland, Bergman, L.A., D.M., Kerschen, G. (2007), “Targeted energy transfers in vibro-impact oscillators for seismic mitigation,” Nonlinear Dynamics Springer New York, 50(3), 651-677.
[25] Wang, J., Wierschem, E.N., Spencer Jr., B.F. (2014), “Track nonlinear energy sink for rapid response reduction in building structures,” Journal of Engineering Mechanics, 141(1), 40-46.
[26] Wang, J., Wierschem, E.N., Spencer Jr., B.F., Lu, X. (2016), “Numerical and experimental study of the performance of a single‐sided vibro‐impact track nonlinear energy sink,” Earthquake Engineering Structural Dynamics, 45(4), 635-652.
[27] Lu, X., Liu, Z., Lu, Z. (2017), “Optimization design and experimental verification of track nonlinear energy sink for vibration control under seismic excitation,” Structural Control and Health Monitoring, 24(12), e2033.
[28] Wang, J., Wierschem, N. E., Wang, B., Spencer Jr, B. F. (2020), “Multi‐objective design and performance investigation of a high‐rise building with track nonlinear energy sinks,” The Structural Design of Tall and Special Buildings, 29(2), e1692.
[29] Makris, N. (1997), “Rigidity–plasticity–viscosity: Can electrorheological dampers protect base‐isolated structures from near‐source ground motions?,” Earthquake Engineering Structural Dynamics, 26(5), 571-591.
[30] Wang, J., Wang, B., Wierschem, N. E., Spencer Jr, B. F. (2020), “Dynamic analysis of track nonlinear energy sinks subjected to simple and stochastice excitations,” Earthquake Engineering Structural Dynamics, 49(9), 863-883.
[31] Mungan, C. E. (2012), “Rolling friction on a wheeled laboratory cart. Physics Education,” 47(3), 288.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73238-
dc.description.abstract臺灣的地震活動十分活躍,因為其位處於歐亞板塊和菲律賓板塊間的交界擠壓地帶,故對臺灣來說減輕結構在地震下的反應是一大研究方向。本研究中採用的是軌道非線性調節質量阻尼器(Track Nonlinear Energy Sink, NES),是目前廣泛使用的被動控制系統之一,其控制方法為一個質量塊在特定的軌道上移動,產生高度非線性的回復力回饋給結構,並可以將結構系統中的能量轉從低模態轉移到高模態中,使整體能量部分導向 Track NES 的控制系統,達到削減結構系統能量的效果進而減少結構系統的反應,相較於只能在單一頻率產生較好效果的Tuned Mass Damper (TMD)而言,可以適用在不同的頻率且能避免離頻效應的發生。
本研究將所設計的 Track NES 加裝在一個五樓結構的頂樓,並使用 Lagrange’s Equation 推導此結構的多自由度系統的運動方程式,將其在電腦軟體 MATLAB 上建立數值模型並進行模擬,探討在不同的軌道係數及質量比下,Track NES 的效能及行為,並綜合考慮不同類型的外力,建立參數選取的適當範圍,以此設計出一個三段式的軌道。
由於非線性系統在分析方法選擇上具有限制性,故本研究將系統控制效果以結構頂樓的位移及加速度作為判斷控制效果的標準,並且以小波轉換呈現頻率以及能量的變化。在數值模擬分析中,施加不同類型的外力,並利用上述分析方法了解此非線性系統在頻率域及時間域所具有的特性,藉此歸納出最具控制效果的參數。在實驗驗證部分,以一個五層樓之縮尺鋼構試體,於此試體加裝本研究所研發之三段式非線性軌道式質量阻尼器,利用振動台提供地震力輸入,驗證本研究所研發項目,是否具有預期的控制效果。
本研究研發之三段式非線性軌道式質量阻尼器具有非常良好的控制效果,可以利用不同段軌道所提供的非線性回復力來使系統適應各種不同的外力,相比於空構架來說其效能十分優秀,雖對比起最佳化TMD來說其效果略遜一籌,不過在有關於阻尼器的反應上其效果十分優秀,相較於TMD來說需要較小的位移就能進行消能且不單只能調頻單一頻率,且NES具有將系統低模態轉至高模態之效果,能夠藉由高模態的固有阻尼使其快速將反應降下來。
zh_TW
dc.description.abstractTaiwan, due to its geographic location, has frequently seismic events. Thus, developing an effective control strategy to mitigate seismic responses is an urgent task. In this research, the main objective is to develop, design, and experimentally verify a track-type nonlinear energy sink (track NES) with three piecewise-continuous track shapes, namely the three-phase track NES. For a track NES, the moving mass can provide highly nonlinear shear forces to the connecting structure and bring the structural energy from low-frequency to high-frequency modes, resulting in better energy dissipations via the structural inherent damping. As compared to the conventional tuned mass damper (TMD), this NES is more adaptive when the detuning effect occurs.
In addition, the track NES requires a specific design procedure due to its nonlinearity and mechanical behavior. For example, the equation of motion for a track NES attached on a MDOF structure is derived by the Lagrange’s equation. Then, seismic responses of this structural system are calculated by the ordinary differential equation solver in MATLAB. Before establishing the design procedure, a series of parametric studies are carried out. The ratio between the NES and total structural masses and the coefficient of track shapes are studied against structural performance when subjected to an initial velocity or single-cycle sinusoidal input. As a result, a sequential design procedure of a track NES is finally established to begin with a circle shape around the equilibrium, fourth-order polynomial shape for the second phase, and linear shape for the last phase.
Because of the complex behavior, performance evaluation of a seismically excited building with a track NES is mainly focused on the displacement and acceleration responses. To better understand the NES behavior, multiple sorts of excitations are considered in simulation, e.g., pulse-like loadings and earthquake records. Moreover, time- and frequency-domain performance of this structural system is also investigated. The wavelet transform to the structural and NES responses is conducted to explore the target energy transfer. As for the experimental verification, the three-phase track NES is designed and fabricated in accordance with the dynamic characteristics of a five-story, steel-frame, small-scale building. This building with the designed NES is then examined under seismic excitation through shake table testing. Performance of this structural system is then evaluated using the same steps conducted in simulation. As seen in the results, the developed three-phase track NES provides superior performance for seismic mitigation of building structures.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:24:02Z (GMT). No. of bitstreams: 1
U0001-1512202011480700.pdf: 19390861 bytes, checksum: 0b1519e562959e62587eb797cc9db1af (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 IV
摘要 VI
Abstract VIII
目錄 X
圖目錄 XIII
表目錄 XXIII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究內容 4
第二章 數值模型建立 6
2.1 前言 6
2.2 拉格朗日方程式 6
2.3 牛頓第二運動定律 10
2.4 Runge-Kutta法 11
第三章 非線性軌道之設計 13
3.1 初步軌道之設計 13
3.1.1 EQ Model 13
3.1.2 第一段軌道之設計 15
3.1.3 第二段軌道之設計 17
3.1.4 第三段軌道之設計 20
3.2 初始速度IV下系統性能探討 23
3.3 近斷層地震下系統性能探討 28
3.4 脈衝外力作用下系統性能探討 34
3.5 兩倍脈衝外力作用下系統性能探討 39
3.6 最佳設計參數 44
第四章 地震力下的Track NES 54
4.1 Track NES之動力行為探討 54
4.1.1 Track NES的自然頻率 54
4.1.2 Track NES的動態特性 59
4.2 摩擦力對Track NES之影響 63
4.3 Track NES之性能比較 70
4.3.1 地表加速度之選取 70
4.3.2 NES之控制性能指標 75
4.3.3 摩擦力對Track NES控制性能之影響 82
4.4 離頻效應對Track NES之影響 88
4.5 Track NES之能量分布 104
第五章 實驗驗證及結果 114
5.1 前言 114
5.2 實驗配置及架構 114
5.2.1 實驗構架 114
5.2.2 實驗設備 119
5.2.3 地震波介紹 120
5.3 實驗結果 124
5.3.1 測站TCU071 E-W S.C.地震實驗結果 124
5.3.2 所有地震之實驗性能指標 138
5.3.3 測站TCU65 E-W S.C.近斷層地震實驗結果 143
第六章 結論與未來展望 150
6.1 結論 150
6.2 未來展望 152
參考文獻 153
dc.language.isozh-TW
dc.subject結構控制zh_TW
dc.subject耐震性能zh_TW
dc.subject三段式非線性軌道式質量阻尼器zh_TW
dc.subject實驗驗證zh_TW
dc.subjectExperimental Verificationen
dc.subjectStructural Controlen
dc.subjectSeismic Performanceen
dc.subjectThree-segment Track Nonlinear Energy Sinken
dc.title三段式考慮摩擦力之非線性軌道式質量阻尼器之研發與實驗驗證zh_TW
dc.titleDevelopment and Experimental Verification of
Three-segment Track Nonlinear Energy Sink Considering the Friction
en
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee賴勇安(Yong-An Lai),楊卓諺(Cho-Yen Yang)
dc.subject.keyword結構控制,耐震性能,三段式非線性軌道式質量阻尼器,實驗驗證,zh_TW
dc.subject.keywordStructural Control,Seismic Performance,Three-segment Track Nonlinear Energy Sink,Experimental Verification,en
dc.relation.page157
dc.identifier.doi10.6342/NTU202004424
dc.rights.note有償授權
dc.date.accepted2020-12-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
U0001-1512202011480700.pdf
  未授權公開取用
18.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved