請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73233完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 駱尚廉(Shang-Lien Lo) | |
| dc.contributor.author | Sheng-Han Lin | en |
| dc.contributor.author | 林昇翰 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:23:47Z | - |
| dc.date.available | 2024-07-15 | |
| dc.date.copyright | 2019-07-15 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-01 | |
| dc.identifier.citation | Adebajo, M. O., R. L. Frost, J. T. Kloprogge, O. Carmody and S. Kokot (2003). 'Porous materials for oil spill cleanup: a review of synthesis and absorbing properties.' Journal of Porous materials 10(3): 159-170.
Calcagnile, P., D. Fragouli, I. S. Bayer, G. C. Anyfantis, L. Martiradonna, P. D. Cozzoli, R. Cingolani and A. Athanassiou (2012). 'Magnetically driven floating foams for the removal of oil contaminants from water.' ACS nano 6(6): 5413-5419. Cao, N., B. Yang, A. Barras, S. Szunerits and R. Boukherroub (2017). 'Polyurethane sponge functionalized with superhydrophobic nanodiamond particles for efficient oil/water separation.' Chemical Engineering Journal 307: 319-325. Cassie, A. and S. Baxter (1944). 'Wettability of porous surfaces.' Transactions of the Faraday society 40: 546-551. Chakraborty, R., S. E. Borglin, E. A. Dubinsky, G. L. Andersen and T. C. Hazen (2012). 'Microbial response to the MC-252 oil and Corexit 9500 in the Gulf of Mexico.' Frontiers in microbiology 3: 357. Chan, M. and T. F. Yen (1982). 'A chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt.' The Canadian Journal of Chemical Engineering 60(2): 305-308. Chen, G., Y. Cao, L. Ke, X. Ye, X. Huang and B. Shi (2018). 'Plant Polyphenols as Multifunctional Platforms To Fabricate Three-Dimensional Superhydrophobic Foams for Oil/Water and Emulsion Separation.' Industrial & Engineering Chemistry Research 57(48): 16442-16450. Chen, X., J. A. Weibel and S. V. Garimella (2016). 'Continuous oil–water separation using polydimethylsiloxane-functionalized melamine sponge.' Industrial & Engineering Chemistry Research 55(12): 3596-3602. Chu, Z., Y. Feng and S. Seeger (2015). 'Oil/water separation with selective superantiwetting/superwetting surface materials.' Angewandte Chemie International Edition 54(8): 2328-2338. Chu, Z. and S. Seeger (2014). 'Superamphiphobic surfaces.' Chemical Society Reviews 43(8): 2784-2798. Collins, C. D. (2007). Implementing phytoremediation of petroleum hydrocarbons. Phytoremediation, Springer: 99-108. Cornell, R. M. and U. Schwertmann (2003). The iron oxides: structure, properties, reactions, occurrences and uses, John Wiley & Sons. Crick, C. R., J. A. Gibbins and I. P. Parkin (2013). 'Superhydrophobic polymer-coated copper-mesh; membranes for highly efficient oil–water separation.' Journal of Materials Chemistry A 1(19): 5943-5948. Cullity, B. D. (2001). 'Elements of X-ray Diffraction.' Deng, X., L. Mammen, H.-J. Butt and D. Vollmer (2012). 'Candle soot as a template for a transparent robust superamphiphobic coating.' Science 335(6064): 67-70. Ding, Y., W. Xu, Y. Yu, H. Hou and Z. Zhu (2018). 'One-Step Preparation of Highly Hydrophobic and oleophilic melamine sponges via metal-ion-induced wettability transition.' ACS applied materials & interfaces 10(7): 6652-6660. Fu, J., Y. Gong, X. Zhao, S. O’reilly and D. Zhao (2014). 'Effects of oil and dispersant on formation of marine oil snow and transport of oil hydrocarbons.' Environmental science & technology 48(24): 14392-14399. Gao, L. and T. J. McCarthy (2006). 'A perfectly hydrophobic surface (θA/θR= 180/180).' Journal of the American Chemical Society 128(28): 9052-9053. Genzer, J. and K. Efimenko (2006). 'Recent developments in superhydrophobic surfaces and their relevance to marine fouling: a review.' Biofouling 22(5): 339-360. Griffiths, P. R. and J. A. De Haseth (2007). Fourier transform infrared spectrometry, John Wiley & Sons. Grosvenor, A., B. Kobe, M. Biesinger and N. McIntyre (2004). 'Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds.' Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films 36(12): 1564-1574. Hou, K., Y. Jin, J. Chen, X. Wen, S. Xu, J. Cheng and P. Pi (2017). 'Fabrication of superhydrophobic melamine sponges by thiol-ene click chemistry for oil removal.' Materials Letters 202: 99-102. IARC (1984). IARC monographs on the evaluation of carcinogenic risk to humans. Carbon blacks, mineral oils and some nitroarenes. 33. IARC (1985). IARC monographs on the evaluation of carcinogenic risk to humans. Bitumens, coal-tars and derived products, shale-oils and soots. 35. IARC (1987). IARC monographs on the evaluation of carcinogenic risks to humans, supplement 7. Overall evaluations of carcinogenicity: an updating of IARC monographs. 1-42. IARC (1989). IARC monographs on the evaluation of carcinogenic risk to humans. Diesel and gasoline engine exhausts and some nitroarenes. 46. Ikhajiagbe, B. and G. O. Anoliefo (2011). 'Impact of substrate amendment on the polyaromatic hydrocarbon contents of a five month old waste engine oil polluted soil.' African Journal of Environmental Science and Technology 5(10): 769-777. ITOPF. (2019). 'Oil Tanker Spill Statistics 2018.' Retrieved January, 2019, from http://www.itopf.com/knowledge-resources/data-statistics/statistics/. Kajitvichyanukul, P., Y.-T. Hung and L. K. Wang (2006). Oil water separation. Advanced physicochemical treatment processes, Springer: 521-548. Kieckow, F., C. Kwietniewski, E. K. Tentardini, A. Reguly and I. J. Baumvol (2006). 'XPS and ion scattering studies on compound formation and interfacial mixing in TiN/Ti nanolayers on plasma nitrided tool steel.' Surface and Coatings Technology 201(6): 3066-3073. Kumari, K., S. Ram and R. Kotnala (2011). 'Self-controlled growth of Fe3BO6 crystallites in shape of nanorods from iron-borate glass of small templates.' Materials Chemistry and Physics 129(3): 1020-1026. Le, X. T., P. Viel, P. Jégou, A. Garcia, T. Berthelot, T. H. Bui and S. Palacin (2010). 'Diazonium-induced anchoring process: an application to improve the monovalent selectivity of cation exchange membranes.' Journal of Materials Chemistry 20(18): 3750-3757. Li, K., X. Zeng, H. Li and X. Lai (2014). 'Facile fabrication of a robust superhydrophobic/superoleophilic sponge for selective oil absorption from oily water.' RSC Advances 4(45): 23861-23868. Liu, L., L. Q. Yang, H. W. Liang, H. P. Cong, J. Jiang and S. H. Yu (2013). 'Bio-inspired fabrication of hierarchical feooh nanostructure array films at the air–water interface, their hydrophobicity and application for water treatment.' ACS nano 7(2): 1368-1378. Ma, Y., X. Song, X. Ge, H. Zhang, G. Wang, Y. Zhang and H. Zhao (2017). 'In situ growth of α-Fe 2 O 3 nanorod arrays on 3D carbon foam as an efficient binder-free electrode for highly sensitive and specific determination of nitrite.' Journal of Materials Chemistry A 5(9): 4726-4736. Mastrangelo, G., E. Fadda and V. Marzia (1996). 'Polycyclic aromatic hydrocarbons and cancer in man.' Environmental health perspectives 104(11): 1166-1170. Neff, J. M., S. Ostazeski, W. Gardiner and I. Stejskal (2000). 'Effects of weathering on the toxicity of three offshore Australian crude oils and a diesel fuel to marine animals.' Environmental Toxicology and Chemistry: An International Journal 19(7): 1809-1821. Nguyen, D. D., N. H. Tai, S. B. Lee and W. S. Kuo (2012). 'Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method.' Energy & environmental science 5(7): 7908-7912. Nikkhah, A. A., H. Zilouei, A. Asadinezhad and A. Keshavarz (2015). 'Removal of oil from water using polyurethane foam modified with nanoclay.' Chemical Engineering Journal 262: 278-285. Nishimoto, S. and B. Bhushan (2013). 'Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity.' Rsc Advances 3(3): 671-690. Nishino, T., M. Meguro, K. Nakamae, M. Matsushita and Y. Ueda (1999). 'The lowest surface free energy based on− CF3 alignment.' Langmuir 15(13): 4321-4323. Oputu, O., M. Chowdhury, K. Nyamayaro, O. Fatoki and V. Fester (2015). 'Catalytic activities of ultra-small β-FeOOH nanorods in ozonation of 4-chlorophenol.' Journal of Environmental Sciences 35: 83-90. Paul, J. H., D. Hollander, P. Coble, K. L. Daly, S. Murasko, D. English, J. Basso, J. Delaney, L. McDaniel and C. W. Kovach (2013). 'Toxicity and mutagenicity of Gulf of Mexico waters during and after the Deepwater Horizon oil spill.' Environmental science & technology 47(17): 9651-9659. Peng, G., S. Wu, J. E. Ellis, X. Xu, G. Xu, C. Yu and A. Star (2016). 'Single-walled carbon nanotubes templated CuO networks for gas sensing.' Journal of Materials Chemistry C 4(27): 6575-6580. Peng, X., J. Jin, Y. Nakamura, T. Ohno and I. Ichinose (2009). 'Ultrafast permeation of water through protein-based membranes.' Nature nanotechnology 4(6): 353. Perera, H. J., B. K. Khatiwada, A. Paul, H. Mortazavian and F. D. Blum (2016). 'Superhydrophobic surfaces with silane‐treated diatomaceous earth/resin systems.' Journal of Applied Polymer Science 133(41). Qiang, F., L. L. Hu, L. X. Gong, L. Zhao, S. N. Li and L. C. Tang (2018). 'Facile synthesis of super-hydrophobic, electrically conductive and mechanically flexible functionalized graphene nanoribbon/polyurethane sponge for efficient oil/water separation at static and dynamic states.' Chemical Engineering Journal 334: 2154-2166. Qiu, S., B. Jiang, X. Zheng, J. Zheng, C. Zhu and M. Wu (2015). 'Hydrophobic and fire-resistant carbon monolith from melamine sponge: A recyclable sorbent for oil–water separation.' Carbon 84: 551-559. Rahimi, S., R. M. Moattari, L. Rajabi, A. A. Derakhshan and M. Keyhani (2015). 'Iron oxide/hydroxide (α, γ-FeOOH) nanoparticles as high potential adsorbents for lead removal from polluted aquatic media.' Journal of Industrial and Engineering Chemistry 23: 33-43. Ren, G., Y. Song, X. Li, Y. Zhou, Z. Zhang and X. Zhu (2018). 'A superhydrophobic copper mesh as an advanced platform for oil-water separation.' Applied Surface Science 428: 520-525. Shi, Z., H. Zhou, T. Dai and Y. Lu (2012). 'Poly (tetrafluoroethylene) composite membranes coated with urchin-like polyaniline hiberarchy: Preparation and properties.' Journal of colloid and interface science 385(1): 211-217. Song, S., H. Yang, C. Su, Z. Jiang and Z. Lu (2016). 'Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities.' Chemical Engineering Journal 306: 504-511. Suzuki, Y. and T. Maruyama (2005). 'Removal of emulsified oil from water by coagulation and foam separation.' Separation science and technology 40(16): 3407-3418. Vargo, S., P. Lutz, D. Odell, E. Van Vleep and G. Bossart (1986). 'Final report: Study of effects of oil on marine turtles.' OCS Study MMS: 86-0070. Wan, Z., Y. Jiao, X. Ouyang, L. Chang and X. Wang (2017). 'Bifunctional MoS2 coated melamine-formaldehyde sponges for efficient oil–water separation and water-soluble dye removal.' Applied Materials Today 9: 551-559. Wang, B., J. Li, G. Wang, W. Liang, Y. Zhang, L. Shi, Z. Guo and W. Liu (2013). 'Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation.' ACS applied materials & interfaces 5(5): 1827-1839. Wang, H., E. Chen, X. Jia, L. Liang and Q. Wang (2015). 'Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces.' Applied Surface Science 349: 724-732. Wang, M., Z. Zhang, Y. Li and X. Men (2017). 'An eco-friendly one-step method to fabricate superhydrophobic nanoparticles with hierarchical architectures.' Chemical Engineering Journal 327: 530-538. Wang, S., C. Wang, C. Liu, M. Zhang, H. Ma and J. Li (2012). 'Fabrication of superhydrophobic spherical-like α-FeOOH films on the wood surface by a hydrothermal method.' Colloids and Surfaces A: Physicochemical and Engineering Aspects 403: 29-34. Wenzel, R. N. (1936). 'Resistance of solid surfaces to wetting by water.' Industrial & Engineering Chemistry 28(8): 988-994. Wu, L., L. Li, B. Li, J. Zhang and A. Wang (2015). 'Magnetic, durable, and superhydrophobic polyurethane@ Fe3O4@ SiO2@ fluoropolymer sponges for selective oil absorption and oil/water separation.' ACS applied materials & interfaces 7(8): 4936-4946. Xue, Z., Y. Cao, N. Liu, L. Feng and L. Jiang (2014). 'Special wettable materials for oil/water separation.' Journal of Materials Chemistry A 2(8): 2445-2460. Young, T. (1805). 'III. An essay on the cohesion of fluids.' Philosophical transactions of the royal society of London(95): 65-87. Zeng, L., W. Ren, J. Zheng, A. Wu and P. Cui (2012). 'Synthesis of water-soluble FeOOH nanospindles and their performance for magnetic resonance imaging.' Applied Surface Science 258(7): 2570-2575. Zhang, G., Q. Wang, W. Zhang, T. Li, Y. Yuan and P. Wang (2016). 'Effects of organic acids and initial solution pH on photocatalytic degradation of bisphenol A (BPA) in a photo-Fenton-like process using goethite (α-FeOOH).' Photochemical & Photobiological Sciences 15(8): 1046-1053. Zhang, L., H. Li, X. Lai, X. Su, T. Liang and X. Zeng (2017). 'Thiolated graphene-based superhydrophobic sponges for oil-water separation.' Chemical Engineering Journal 316: 736-743. Zhang, R., X. Jing, Y. Chu, L. Wang, W. Kang, D. Wei, H. Li and S. Xiong (2018). 'Nitrogen/oxygen co-doped monolithic carbon electrodes derived from melamine foam for high-performance supercapacitors.' Journal of Materials Chemistry A 6(36): 17730-17739. Zhi, D., Y. Lu, S. Sathasivam, I. P. Parkin and X. Zhang (2017). 'Large-scale fabrication of translucent and repairable superhydrophobic spray coatings with remarkable mechanical, chemical durability and UV resistance.' Journal of Materials Chemistry A 5(21): 10622-10631. Zhou, W., G. Li, L. Wang, Z. Chen and Y. Lin (2017). 'A facile method for the fabrication of a superhydrophobic polydopamine-coated copper foam for oil/water separation.' Applied Surface Science 413: 140-148. Zhou, X., Z. Zhang, X. Xu, F. Guo, X. Zhu, X. Men and B. Ge (2013). 'Robust and durable superhydrophobic cotton fabrics for oil/water separation.' ACS applied materials & interfaces 5(15): 7208-7214. Zhu, Q., Q. Pan and F. Liu (2011). 'Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges.' The Journal of Physical Chemistry C 115(35): 17464-17470. 行政院海洋委員會 (2014). 《海洋污染防治法》 何威達 (2013). 製備石墨烯鍍層之超疏水與超親油海綿並應用於極性與非極性溶劑之分離. 清華大學材料科學工程學系學位論文: 1-83. 張國棟、邱啟敏、呂鴻光、許仁澤 (2008). 台灣北部海域油污染擴散風險評估. 第30屆海洋工程研討會論文集: 523-528. 陳彥宏 (2002). 台灣海難搜救體系之分析與檢討. 運輸計劃季刊. 31: 635-662. 環境檢驗所 (2018). 水中油脂檢測方法—固相萃取重量法. NIEA W507.50C. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73233 | - |
| dc.description.abstract | 在交通發達的時代,輪船意外漏油事件亦相當頻繁,因此為了解決事件所造成之大面積油污染,並同時兼顧材料再利用的特性,近年來,三維多孔隙材料之超疏水性表面修飾成為新興發展對象,然而,目前所製作出的表面修飾材料具有步驟繁複、能耗高等缺點,因此本研究使用容易製備的β-FeOOH奈米顆粒來對三聚氰胺樹酯海綿進行表面修飾,利用浸漬法製備吸油海綿,並探討其最大吸附容量、分離效率及油脂去除率等油水分離效能參數,以及其耐用性及再利用性。
進行表面修飾後的MF-β-FeOOH海綿,其水接觸角可達144.23度,具高疏水性能,並且對不同油品之最大吸附容量可達68.2 ~104.5 g/g,分離效率則從95.3%至99.5%不等,而對海運重柴油之油脂去除率可達99.1%,因此可知該海綿具有良好的油水分離效率。 而在耐用性的部分,MF-β-FeOOH海綿在酸性及中性之水環境下,油脂去除率可維持在98.6%以上,而在鹼性環境下則略低,約97.8%,因此該海綿在pH值1~13之範圍內可維持不錯之油脂去除率;在鹽度的部分,海水並不會影響海綿之油脂去除率,約可達98.7%;在熱穩定性部分,此海綿可確保在水環境中,不會因熱而導致海綿結構被破壞。在再利用性能部分,MF-β-FeOOH海綿在20次使用以後人能維持72%之最大吸附容量及98%左右之油脂去除率,因此具有良好之再利用性能,如此可確認MF-β-FeOOH海綿為良好的吸油材料。 | zh_TW |
| dc.description.abstract | Because of modern vehicle technology, oil spill caused by ship accidents happens frequently. To avoid oil pollution in marine environment and remain reusability of oil-adsorbing materials, 3D porous materials fabricated by superhydrophobic coating have been a new direction of development. However, at the present time, this kind of materials have disadvantages of complicated production process and high energy cost. To look for high quality, low-cost and easy-making material, in this study, we will try to use melamine foam fabricated by superhydrophoic β-FeOOH nanoparticles to adsorb oil and measure its maximum adsorption capacity, separation efficiency, oil removal efficiency, durability and reusability as performance evaluation indicators.
Melamine foam fabricated by β-FeOOH nanoparticle, which is abbreviated as MF-β-FeOOH, have high hydrophobicity because of 144.23˚ water contact angle. In addition, the maximum adsorption capacity of this materials according to different kinds of oil is 68.2 ~ 104.5 g/g, and the separation efficiency is 95.3% ~ 99.5%. Last but not least, the oil removal efficiency is approximately 99.1%, so we can prove that MF-β-FeOOH have good oil-water separation performance. In terms of duration test, oil removal efficiency of MF-β-FeOOH can be above 98.6% in acidic and neutral water environment and a little bit lower efficiency about 97.8% in basic water environment. Therefore, it can remain good efficiency in pH 1 to 13. Additionally, MF-β-FeOOH also can adsorb oil in sea water, which has oil removal efficiency about 98.7% and its chemical structure has enough thermal stability in water, based on TGA analysis. Finally, MF-β-FeOOH have good reusability since its maximum adsorption capacity can remain 72% of new one and about 98% oil removal efficiency after 20 cycles of adsorption process. To sum up, based on former data, we can prove that MF-β-FeOOH is a good oil-adsorbing material. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:23:47Z (GMT). No. of bitstreams: 1 ntu-108-R06541107-1.pdf: 3813111 bytes, checksum: 2e2f3954757b1edfc3819368ec35e279 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目錄 IV 圖目錄 VII 表目錄 X 第一章 前言 1 1.1 研究背景 1 1.2 研究內容 2 第二章 文獻回顧 3 2.1 油類污染物 3 2.1.1 油類物質之定義、來源 3 2.1.2 油類物質對環境之影響 5 2.1.3 油類物質去除技術現況 8 2.2 超疏水性表面 9 2.2.1 介面理論 9 2.2.2 浸濕性質與油水分離技術 11 2.3 三維多孔結構之超疏水性表面修飾應用於油水分離之發展現況 14 2.3.1 油水分離性能參數 14 2.3.2 三維多孔結構載體 18 2.3.2 超疏水性表面修飾材料 19 2.4 鹼式氧化鐵 22 2.4.1 種類及特性 22 2.4.2 鹼式氧化鐵於超疏水性表面之相關研究 22 第三章 材料與方法 25 3.1 實驗架構 25 3.2 材料與設備 27 3.2.1 材料與藥品 27 3.2.2 設備 28 3.3 實驗方法 30 3.3.1 特性分析 30 3.3.2 β-FeOOH奈米顆粒之製備 35 3.3.3 MF-β-FeOOH海綿之製備 35 3.3.4 油水分離性能測試 36 第四章 結果與討論 44 4.1 β-FeOOH奈米顆粒之特性分析 44 4.1.1 SEM分析圖譜 44 4.1.2 XRD分析圖譜 45 4.1.3 FTIR分析圖譜 46 4.2 MF-β-FeOOH海綿之特性分析 47 4.2.1 比表面積測定及疏水性能 47 4.2.2 SEM分析圖譜 50 4.2.3 XPS分析圖譜 52 4.3 MF-β-FeOOH海綿之油水分離性能試驗 57 4.3.1 吸附速率實驗 57 4.3.2 最大吸附容量試驗 63 4.3.3 分離效率測定 66 4.3.4 油脂去除率測定 67 4.4 MF-β-FeOOH海綿之耐腐蝕及再利用性能 69 4.4.1 酸鹼腐蝕試驗 69 4.4.2 耐鹽度試驗 70 4.4.3 熱穩定性試驗 71 4.4.4 再利用試驗 73 第五章 結論與建議 75 5.1 結論 75 5.2 建議 76 參考文獻 77 附錄 87 | |
| dc.language.iso | zh-TW | |
| dc.subject | 超疏水性 | zh_TW |
| dc.subject | 鹼式氧化鐵 | zh_TW |
| dc.subject | 三聚氰胺甲醛樹酯海綿 | zh_TW |
| dc.subject | 三維多孔隙材料 | zh_TW |
| dc.subject | 油水分離 | zh_TW |
| dc.subject | 表面修飾 | zh_TW |
| dc.subject | 3D porous structure materials | en |
| dc.subject | facile fabrication | en |
| dc.subject | oil-water separation | en |
| dc.subject | β-FeOOH | en |
| dc.subject | melamine foam | en |
| dc.subject | superhydrophobicity | en |
| dc.title | 利用β-鹼式氧化鐵表面修飾改質三聚氰胺甲醛樹酯海綿之吸油效率研究 | zh_TW |
| dc.title | Oil/water separation performance of melamine sponge fabricated by superhydrophobic β-FeOOH nanoparticles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉雅瑄,胡景堯 | |
| dc.subject.keyword | 超疏水性,表面修飾,油水分離,鹼式氧化鐵,三聚氰胺甲醛樹酯海綿,三維多孔隙材料, | zh_TW |
| dc.subject.keyword | superhydrophobicity,facile fabrication,oil-water separation,β-FeOOH,melamine foam,3D porous structure materials, | en |
| dc.relation.page | 112 | |
| dc.identifier.doi | 10.6342/NTU201900892 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 3.72 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
