Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73216
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉佩玲(Pei-Ling Liu)
dc.contributor.authorWei-Jen Shenen
dc.contributor.author沈韋任zh_TW
dc.date.accessioned2021-06-17T07:22:56Z-
dc.date.available2020-12-25
dc.date.copyright2020-12-25
dc.date.issued2020
dc.date.submitted2020-12-18
dc.identifier.citation[1] 行政院環境保護署-空氣品質監測網. [Online]. Available: https://taqm.epa.gov.tw/taqm/tw/default.aspx.
[2] S. Feng, D. Gao, F. Liao, F. Zhou, and X. Wang, 'The health effects of ambient PM2. 5 and potential mechanisms,' Ecotoxicology and environmental safety, vol. 128, pp. 67-74, 2016.
[3] W. Hoeflinger and T. Laminger, 'PM2. 5 or respirable dust measurement and their use for assessment of dust separators,' Journal of the Taiwan Institute of Chemical Engineers, vol. 94, pp. 53-61, 2019.
[4] M. Martuzzi, F. Mitis, I. Iavarone, and M. Serinelli, 'Health impact of PM10 and ozone in 13 Italian cities,' WHO Regional Office for Europe, p. 133, 2006.
[5] L. Djoumi, V. Blondeau-Patissier, M. Vanotti, J.-C. Appert-Collin, D. Thomas, and L. Fertier, 'Surface acoustic wave sensors for PM2. 5 and PM10 concentration,' Procedia Engineering, vol. 168, pp. 696-699, 2016.
[6] M. Belaqziz, M. b. Amjoud, A. Gaddari, B. Rhouta, and D. Mezzane, 'Enhanced room temperature ozone response of SnO2 thin film sensor,' Superlattices and Microstructures, vol. 71, pp. 185-189, 2014.
[7] T.-M. Chen, W. G. Kuschner, J. Gokhale, and S. Shofer, 'Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects,' The American journal of the medical sciences, vol. 333, no. 4, pp. 249-256, 2007.
[8] Z. Mykytyuk, A. Fechan, V. Petryshak, G. Barylo, and O. Boyko, 'Optoelectronic multi-sensor of SO2 and NO2 gases,' in 2016 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), 2016: IEEE, pp. 402-405.
[9] J. Raub, 'Health effects of exposure to ambient carbon monoxide,' Chemosphere-Global Change Science, vol. 1, no. 1-3, pp. 331-351, 1999.
[10] Q. Zhou et al., 'Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials,' Ceramics International, vol. 44, no. 4, pp. 4392-4399, 2018.
[11] S. Geravandi, G. Goudarzi, M. J. Mohammadi, S. S. Taghavirad, and S. Salmanzadeh, 'Sulfur and nitrogen dioxide exposure and the incidence of health endpoints in Ahvaz, Iran,' Health Scope, vol. 4, no. 2, 2015.
[12] S. Liu, B. Yu, H. Zhang, T. Fei, and T. Zhang, 'Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids,' Sensors and actuators B: chemical, vol. 202, pp. 272-278, 2014.
[13] F. Xia, L. T. Yang, L. Wang, and A. Vinel, 'Internet of things,' International journal of communication systems, vol. 25, no. 9, p. 1101, 2012.
[14] M. L. Smith and S. J. Fondriest, 'Electrochemical gas sensor,' ed: Google Patents, 1993.
[15] P. Kuberský, T. Syrový, A. Hamáček, S. Nešpůrek, and L. Syrová, 'Towards a fully printed electrochemical NO2 sensor on a flexible substrate using ionic liquid based polymer electrolyte,' Sensors and Actuators B: Chemical, vol. 209, pp. 1084-1090, 2015.
[16] K. Galatsis et al., 'p-and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique,' Sensors and actuators B: chemical, vol. 93, no. 1-3, pp. 562-565, 2003.
[17] H.-J. Kim and J.-H. Lee, 'Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview,' Sensors and Actuators B: Chemical, vol. 192, pp. 607-627, 2014.
[18] T. Maruyama, S. Sasaki, and Y. Saito, 'Potentiometric gas sensor for carbon dioxide using solid electrolytes,' Solid State Ionics, vol. 23, no. 1-2, pp. 107-112, 1987.
[19] A. Miyamoto et al., 'Solid electrolyte gas sensor based on a proton-conducting graphene oxide membrane,' ACS omega, vol. 2, no. 6, pp. 2994-3001, 2017.
[20] J. Dakin, H. Edwards, and B. Weigl, 'Progress with optical gas sensors using correlation spectroscopy,' Sensors and Actuators B: Chemical, vol. 29, no. 1-3, pp. 87-93, 1995.
[21] 吳仁彰, '奈米材料應用於氣體感測器之發展,' 科儀新知, vol. 26, no. 3, pp. 88-94, 2004.
[22] '勞工作業環境空氣中有害物容許濃度標準.' [Online]. Available: http://www.stm.org.tw/omc/professional_zone/%E5%8B%9E%E5%B7%A5%E4%BD%9C%E6%A5%AD%E7%92%B0%E5%A2%83%E6%9C%89%E5%AE%B3%E7%89%A9%E8%B3%AA%E5%AE%B9%E8%A8%B1%E6%BF%83%E5%BA%A6%E6%A8%99%E6%BA%96.htm.
[23] V. Krivetsky, A. Ponzoni, E. Comini, M. Rumyantseva, and A. Gaskov, 'Selective modified SnO2-based materials for gas sensors arrays,' Procedia Chemistry, vol. 1, no. 1, pp. 204-207, 2009.
[24] H. S. Dehsari et al., 'Copper (ii) phthalocyanine supported on a three-dimensional nitrogen-doped graphene/PEDOT-PSS nanocomposite as a highly selective and sensitive sensor for ammonia detection at room temperature,' RSC advances, vol. 5, no. 97, pp. 79729-79737, 2015.
[25] 梁維元, '以奈米研磨技術製作應用於揮發性有機氣體偵測之金屬氧化物型氣體感測陣列,' 2016.
[26] B. Mondal, M. Meetei, J. Das, C. R. Chaudhuri, and H. Saha, 'Quantitative recognition of flammable and toxic gases with artificial neural network using metal oxide gas sensors in embedded platform,' Engineering Science and Technology, an International Journal, vol. 18, no. 2, pp. 229-234, 2015.
[27] H. Singh et al., 'SAW mono sensor for identification of harmful vapors using PCA and ANN,' Process Safety and Environmental Protection, vol. 102, pp. 577-588, 2016.
[28] L. Spinelle, M. Gerboles, M. G. Villani, M. Aleixandre, and F. Bonavitacola, 'Field calibration of a cluster of low-cost available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide,' Sensors and Actuators B: Chemical, vol. 215, pp. 249-257, 2015.
[29] L. Spinelle, M. Gerboles, M. G. Villani, M. Aleixandre, and F. Bonavitacola, 'Field calibration of a cluster of low-cost commercially available sensors for air quality monitoring. Part B: NO, CO and CO2,' Sensors and Actuators B: Chemical, vol. 238, pp. 706-715, 2017.
[30] 林冠州, '使用支援向量機提升多個氣體感測模組量測之準確度,' 電子工程學研究所, 國立臺灣大學, 2017年, 2017.
[31] S. De Vito et al., 'Calibrating chemical multisensory devices for real world applications: An in-depth comparison of quantitative machine learning approaches,' Sensors and Actuators B: Chemical, vol. 255, pp. 1191-1210, 2018.
[32] 張至綱, '以人工智慧結合氣體感測器陣列偵測混合氣體之種類與濃度,' 應用力學研究所, 國立臺灣大學, 2019年, 2019.
[33] R.-I. Chang and P.-Y. Hsiao, 'Unsupervised query-based learning of neural networks using selective-attention and self-regulation,' IEEE Transactions on Neural Networks, vol. 8, no. 2, pp. 205-217, 1997.
[34] L. K. Hansen and P. Salamon, 'Neural network ensembles,' IEEE transactions on pattern analysis and machine intelligence, vol. 12, no. 10, pp. 993-1001, 1990.
[35] J. A. Suykens and J. Vandewalle, 'Least squares support vector machine classifiers,' Neural processing letters, vol. 9, no. 3, pp. 293-300, 1999.
[36] W. S. Noble, 'What is a support vector machine?,' Nature biotechnology, vol. 24, no. 12, pp. 1565-1567, 2006.
[37] G. E. Hinton, 'Learning multiple layers of representation,' Trends in cognitive sciences, vol. 11, no. 10, pp. 428-434, 2007.
[38] G. E. Hinton, 'Distributed representations,' 1984.
[39] J. L. McClelland, D. E. Rumelhart, and P. R. Group, 'Parallel distributed processing,' Explorations in the Microstructure of Cognition, vol. 2, pp. 216-271, 1986.
[40] M. Hofmann, 'Support vector machines-kernels and the kernel trick,' Notes, vol. 26, no. 3, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73216-
dc.description.abstract近年來空氣污染逐漸嚴重,空污議題逐漸受到重視,而為了監控有害氣體濃度,氣體感測器布置密度也必須提高。高單價感測器雖然精準,但大規模設置,成本會過高。消費級氣體感測器的優點在於設置成本低廉,但其性能則必須有進一步的加強。消費級氣體感測器具有對溫濕度產生變化、對多種氣體有反應、使用時的重現性不佳及感測器個體差異等問題。解決性能上問題後,消費級氣體感測器的實用性可大幅提升,可以提高量測氣體濃度的準確性。本研究將量測SO₂與CO的濃度,並使用人工智慧校正消費級氣體感測器,使感測器表現優於原廠提供的校正,以增加可用性。深度學習為人工智慧的一部分,具有自動提取資料特徵並解決問題的特點。本研究將使用人工智慧進行氣體感測器校正。
首先分別建立SO₂感測器校正模型以及CO感測器校正模型。在密閉腔室通入SO₂或是CO氣體搭配不同溫度濕度量測,並記錄感測器響應建立人工智慧數據庫,作為兩種氣體感測器校正模型所需的訓練及測試資料。使用原廠校正時,SO₂平均誤差2.58 ppm、CO平均誤差2.06 ppm。實驗顯示單一SO₂感測器校正模型平均測試誤差1.5 ppb,單一CO感測器校正模型平均測試誤差19.8 ppb,顯然優於原廠校正。接著建立氣體感測器陣列校正模型,在密閉腔室通入SO₂和CO的混合氣體搭配不同溫度濕度,並記錄感測器響應建立人工智慧數據庫,作為訓練及測試資料。使用深度類神網路進行校正並找出較好的模型結構以及資料擷取時間,此模型SO₂平均測試誤差8 ppb、CO平均測試誤差166 ppb。
接著使用類神經網路隱藏層的模組化以及輸入資料kernel trick非線性增維的方法建立更強的模型,強化後的模型SO₂平均測試誤差降至1.7 ppb、CO平均測試誤差降至77 ppb。量測數據使用原廠所提供的校正時,SO₂濃度平均誤差達2.65 ppm、CO濃度平均誤差達2.69 ppm,使用感測器陣列校正模型明顯降低誤差。最後是氣體感測器個體差異的校正,首先建立通用型的SO₂感測器校正模型,接著建立可替換SO₂感測器之氣體感測器陣列模型。將四個不同的SO₂感測器量測數據正規化後進行模型訓練,並使用一個從未訓練過的SO₂感測器數據進行測試,其測試誤差為4.35 ppb。將通用型的SO₂感測器校正模型與氣體感測器陣列校正模型結合而成可替換SO₂感測器之氣體感測器陣列模型,接著使用新的SO₂感測器所量測的混合氣體數據測試,SO₂平均測試誤差109 ppb、CO平均測試誤差2450 ppb,對比原廠校正成功降低了誤差,且此模型可以替換SO₂感測器,其通用性對廣布氣體感測器陣列的需求來說相當有幫助。
總體而言,人工智慧可以提升消費級氣體感測器之精準度,消費級氣體感測器可以在環境中進行有害氣體偵測並達到監控空氣品質之目的。
zh_TW
dc.description.abstractIn order to monitor the concentration of harmful gases, the layout density of gas sensors must be increased. Although the high precision gas sensor is accurate, the setup cost will be too high, so a cheaper option is needed. The advantage of the consumer-grade gas sensor is that the setup cost is low, but its performance needs to be enhanced. Consumer-grade gas sensors have problems such as value disturbed by temperature and humidity, response to a variety of gases, poor reproducibility, and individual sensor differences. After solving the performance problem, the practicability of the consumer-grade gas sensor will be significantly improved, and it can accurately measure the gas concentration. CO and SO₂ are fairly common harmful gases. According to the standard for the allowable concentration of harmful substances in the air in the laboratory environment, SO₂ must not exceed 2 ppm and CO must not exceed 35 ppm. This research aims to establish a gas sensor array. Deep learning is a part of artificial intelligence, which has the characteristics of automatically extracting data features and solving problems. This research used artificial intelligence to calibrate gas sensor arrays.
Firstly, a single gas concentration is judged. A single gas of SO₂ or CO was prepared with conditions of different temperatures and humidities. The sensor response was recorded to establish an artificial intelligence database as training and test data. Using the calibration provided by the original factory, the average SO₂ error is 2.58 ppm and the CO average error is 2.06 ppm under mixed gas. Experiments showed that the average test error of a single SO₂ sensor calibration model is 1.5 ppb, the average test error of a single CO sensor calibration model is 19.8 ppb. Calibration provided by the original factory is worse than AI model.
Then a gas sensor array was set up to detect, mixed gases of SO₂ and CO with different temperatures and humidity. By recording the sensor responses, a database as training and test data was established. Using the deep neural network to calibrate and find a better model structure and data acquisition time, and selected the better performing model and acquisition length. The average test error of SO₂ of the model is 8 ppb and the average test error of CO is 166 ppb. Then used neural network modularization and kernel trick function to build a stronger model. The average test error of SO₂ of the enhanced model can be reduced to 1.7 ppb, and the average test error of CO can be reduced to 77 ppb. Using the calibration provided by the original factory, the average SO₂ error is 2.65 ppm and the CO average error is 2.69 ppm under mixed gas. Calibration provided by the original factory is worse than AI model.Finally, it is the calibration of individual differences in gas sensors. First, a universal SO₂ sensor calibration model is established, and then a gas sensor array model that can change SO₂ sensors is established. After normalizing the measurement data of four different SO₂ sensors, the model was trained and tested by a SO₂ sensor data that had never been trained before. The test error was 4.35 ppb. Combine the universal SO₂ sensor calibration model and the gas sensor array calibration model to form a gas sensor array model that can replace the SO₂ sensor, using the mixed gas data measured by the new SO₂ sensor for testing. The SO₂ average test error is 109 ppb and the CO average test error is 2450 ppb, which successfully reduces the error, and this model can replace the SO₂ sensor. Its versatility is quite helpful for the needs of a wide range of gas sensor arrays.
In general, artificial intelligence can improve the accuracy of consumer-grade gas sensors, which can detect harmful gases in the environment and achieve the purpose of monitoring air quality.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:22:56Z (GMT). No. of bitstreams: 1
U0001-1812202010271800.pdf: 2346614 bytes, checksum: 57d3654c91af516caad72992a2d7471b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents致謝 I
中文摘要 III
ABSTRACT V
目錄 VII
表目錄 IX
圖目錄 X
第一章 導論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 章節介紹 4
第二章 人工智慧原理 5
2.1 人工智慧介紹 5
2.2 類神經網路架構 5
2.2.1 深度類神經網路 5
2.2.2 卷積類神經網路 10
2.3 類神經網路隱藏層模組化 12
2.4 kernel trick非線性轉換 12
第三章 消費級氣體感測器濃度量測 17
3.1 氣體濃度量測設備 17
3.1.1 電化學氣體感測器原理 17
3.1.2 電化學氣體感測器DGS-SO2及DGS-CO 18
3.1.3 密閉腔室與濃度調配系統 18
3.1.4 溫溼度控制 19
3.1.5 數據量測長度 20
3.2 氣體感測器濃度量測實驗 20
3.2.1 SO₂氣體量測實驗 20
3.2.2 CO氣體量測實驗 21
3.2.3 混合氣體量測實驗 22
3.3 消費級氣體感測器特性 22
3.3.1 溫度干擾 23
3.3.2 重現性 23
3.3.3 個體差異性 23
3.3.4 選擇性 24
第四章 消費級氣體感測器類神經網路校正 40
4.1 單一氣體濃度校正 40
4.1.1 SO₂及CO單一氣體感測器校正模型 40
4.1.2 多顆SO₂感測器校正模型 41
4.2 雙氣體濃度校正 42
4.2.1 氣體感測器陣列校正模型 42
4.2.2 深度類神經網路強化 46
4.2.3 引用多顆SO₂感測器校正之氣體感測器陣列校正模型 50
第五章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 71
參考文獻 73
dc.language.isozh-TW
dc.subject核函數zh_TW
dc.subject深度學習zh_TW
dc.subject類神經網路zh_TW
dc.subject人工智慧zh_TW
dc.subject電化學氣體感測器zh_TW
dc.subject氣體感測器陣列zh_TW
dc.subject一氧化碳感測zh_TW
dc.subject二氧化硫感測zh_TW
dc.subjectCarbon monoxide sensingen
dc.subjectGas sensor arrayen
dc.subjectElectrochemical gas sensoren
dc.subjectKernel tricken
dc.subjectDeep learningen
dc.subjectNeural networken
dc.subjectSulfur dioxide sensingen
dc.subjectArtificial intelligenceen
dc.title人工智慧應用於消費級氣體感測器陣列之校正zh_TW
dc.titleCalibration of Consumer-Grade Gas Sensor Arrays Using Artificial Intelligenceen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.coadvisor吳政忠(Tsung-Tsong Wu)
dc.contributor.oralexamcommittee張瑞益(Ray-I Chang),孫嘉宏(Jia-Hong Sun)
dc.subject.keyword人工智慧,類神經網路,深度學習,核函數,電化學氣體感測器,氣體感測器陣列,一氧化碳感測,二氧化硫感測,zh_TW
dc.subject.keywordArtificial intelligence,Neural network,Deep learning,Kernel trick,Electrochemical gas sensor,Gas sensor array,Carbon monoxide sensing,Sulfur dioxide sensing,en
dc.relation.page76
dc.identifier.doi10.6342/NTU202004428
dc.rights.note有償授權
dc.date.accepted2020-12-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
U0001-1812202010271800.pdf
  未授權公開取用
2.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved