Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73201
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳靜枝(Ching-Chin Chern)
dc.contributor.authorShang-En Leeen
dc.contributor.author李尚恩zh_TW
dc.date.accessioned2021-06-17T07:22:11Z-
dc.date.available2019-07-11
dc.date.copyright2019-07-11
dc.date.issued2019
dc.date.submitted2019-07-03
dc.identifier.citation[1] Achakulvisut, T., D. E. Acuna, T. Ruangrong, and K. Kording, 'Science Concierge: A Fast Content-Based Recommendation System for Scientific Publications'. PLoS One, 2016. 11(7): p. e0158423.
[2] Adomavicius, G. and A. Tuzhilin, 'Toward the Next Generation of Recommender Systems: a Survey of the State of the Art and Possible Extensions'. IEEE Transactions on Knowledge and Data Engineering, 2005. 17(6): p. 734-749.
[3] Baker, J., J. Cote, and B. Abernethy, 'Learning from the Experts: Practice Activities of Expert Decision Makers in Sport'. Research Quarterly for Exercise and Sport, 2003. 74(3): p. 342-347.
[4] Balabanović, M. and Y. Shoham, 'Fab: content-based, collaborative recommendation'. Communications of the ACM, 1997. 40(3): p. 66-72.
[5] Bayer, I., X. He, B. Kanagal, and S. Rendle, 'A Generic Coordinate Descent Framework for Learning from Implicit Feedback', in Proceedings of the 26th International Conference on World Wide Web - WWW '17. 2017. p. 1341-1350.
[6] Bobadilla, J., F. Ortega, A. Hernando, and A. Gutiérrez, 'Recommender systems survey'. Knowledge-Based Systems, 2013. 46: p. 109-132.
[7] Burke, R., 'Hybrid recommender systems: Survey and experiments'. User Modeling and User-Adapted Interaction, 2002. 12.
[8] Campodonica, S. and N. D. Singpurwalla, 'A Bayesian Analysis of the Logarithmic-Poisson Execution Time Model Based on Expert Opinion and Failure Data'. IEEE Transactions on Software Engineering, 1994. 20(9): p. 677-683.
[9] Chang, P.-C., C.-H. Lin, and M.-H. Chen, 'A Hybrid Course Recommendation System by Integrating Collaborative Filtering and Artificial Immune Systems'. Algorithms, 2016. 9(3).
[10] Chen, H.-C. and A. L. P. Chen, 'A music recommendation system based on music data and user interests'. 2001.
[11] Chen, Y.-S., C.-H. Cheng, D.-R. Chen, and C.-H. Lai, 'A mood- and situation-based model for developing intuitive Pop music recommendation systems'. Expert Systems, 2016. 33(1): p. 77-91.
[12] Cheng, H.-T., M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu, H. Shah, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, and W. Chai, 'Wide & Deep Learning for Recommender Systems', in Proceedings of the 1st Workshop on Deep Learning for Recommender Systems - DLRS 2016. 2016. p. 7-10.
[13] Chu, W.-T. and Y.-L. Tsai, 'A hybrid recommendation system considering visual information for predicting favorite restaurants'. World Wide Web, 2017. 20(6): p. 1313-1331.
[14] Claypool, M., A. Gokhale, T. Miranda, P. Murnikov, and D. Netes, 'Combing Content-Based and Collaborative Filters in an Online Newspaper'. 1999.
[15] Clinton, J. D. and D. E. Lewis, 'Expert Opinion, Agency Characteristics, and Agency Preferences'. Political Analysis, 2017. 16(01): p. 3-20.
[16] Davidson, J., B. Liebald, J. Liu, P. Nandy, and T. V. Vleet, 'The YouTube Video Recommendation System'. Proceedings of the fourth ACM conference on Recommender systems, 2010.
[17] de Gemmis, M., P. Lops, G. Semeraro, and P. Basile, 'Integrating tags in a semantic content-based recommender', in Proceedings of the 2008 ACM conference on Recommender systems - RecSys '08. 2008.
[18] Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova, 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'. 2019.
[19] E, H., J. Wang, M. Song, Q. Bi, and Y. Liu, 'Incremental weighted bipartite algorithm for large-scale recommendation systems'. Turkish Journal of Electrical Engineering & Computer Sciences, 2016. 24: p. 448-463.
[20] Ekstrand, M. D., 'Collaborative Filtering Recommender Systems'. Foundations and Trends® in Human–Computer Interaction, 2011. 4(2): p. 81-173.
[21] Garcin, F., C. Dimitrakakis, and B. Faltings, 'Personalized News Recommendation with Context Trees'. 2013.
[22] Gomez-Uribe, C. A. and N. Hunt, 'The Netflix Recommender System'. ACM Transactions on Management Information Systems, 2015. 6(4): p. 1-19.
[23] Gong, Y. and Q. Zhang, 'Hashtag Recommendation Using Attention-Based Convolutional Neural Network'. IJCAI International Joint Conference on Artificial Intelligence, 2016: p. 2782-2788.
[24] Guo, Y., M. Wang, and X. Li, 'An Interactive Personalized Recommendation System Using the Hybrid Algorithm Model'. Symmetry, 2017. 9(10).
[25] Hao, J., Y. Yan, G. Wang, L. Gong, and B. Zhao, 'A Probability-Based Hybrid User Model for Recommendation System'. Mathematical Problems in Engineering, 2016. 2016: p. 1-10.
[26] He, X., L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, 'Neural Collaborative Filtering', in Proceedings of the 26th International Conference on World Wide Web - WWW '17. 2017. p. 173-182.
[27] He, X., H. Zhang, M.-Y. Kan, and T.-S. Chua, 'Fast Matrix Factorization for Online Recommendation with Implicit Feedback', in Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval - SIGIR '16. 2016. p. 549-558.
[28] Hidasi, B., A. Karatzoglou, L. Baltrunas, and D. Tikk, 'Session-based recommendations with recurrent neural networks'. International Conference on Learning Representations, 2015.
[29] Hu, N., L. Liu, and J. J. Zhang, 'Do online reviews affect product sales? The role of reviewer characteristics and temporal effects'. 2008.
[30] Jannach, D., L. Lerche, and M. Jugovac, 'Adaptation and Evaluation of Recommendations for Short-term Shopping Goals', in Proceedings of the 9th ACM Conference on Recommender Systems - RecSys '15. 2015. p. 211-218.
[31] Kaya, F., G. Yildiz, and A. Kavak, 'A mobile and web application-based recommendation system using color quantization and collaborative filtering'. Turkish Journal of Electrical Engineering & Computer Sciences, 2015. 23: p. 900-912.
[32] Krueger, T., T. Page, K. Hubacek, L. Smith, and K. Hiscock, 'The role of expert opinion in environmental modelling'. Environmental Modelling & Software, 2012. 36: p. 4-18.
[33] LeCun, Y., Y. Bengio, and G. Hinton, 'Deep learning'. Nature, 2015. 521(7553): p. 436-44.
[34] Li, Q., J. Wang, Y. P. Chen, and Z. Lin, 'User comments for news recommendation in forum-based social media'. Information Sciences, 2010. 180(24): p. 4929-4939.
[35] Li, W., J. Qi, Z. Yu, and D. Li, 'A social recommendation method based on trust propagation and singular value decomposition'. Journal of Intelligent & Fuzzy Systems, 2017. 32(1): p. 807-816.
[36] Linden, G., B. Smith, and J. York, 'Amazon.com Recommendations'. IEEE Computer Society, 2003.
[37] Lops, P., M. d. Gemmis, and G. Semeraro, 'Content-based recommender systems: State of the art and trends'. 2011.
[38] Nguyen, H. T. H., M. Wistuba, J. Grabocka, L. R. Drumond, and L. Schmidt-Thieme, 'Personalized Deep Learning for Tag Recommendation'. Lecture Notes in Computer Science, 2017: p. 186-197.
[39] Ozsoy, M. G., 'From Word Embeddings to Item Recommendation'. 2016.
[40] Pazzani, M. J., 'A Framework for Collaborative, Content-Based and Demographic Filtering'. Artificial Intelligence Review, 1999. 13(5): p. 393-408.
[41] Riahi, F., Z. Zolaktaf, M. Shafiei, and E. Milios, 'Finding Expert Users in Community Question Answering'. 2012.
[42] Ricci, F., L. Rokach, and B. Shapira, 'Recommender Systems: Introduction and Challenges', in Recommender Systems Handbook. 2015. p. 1-34.
[43] Ricci, F., L. Rokach, B. Shapira, and P. B. Kantor, 'Recommender Systems Handbook'. 2010.
[44] Roszkowska, E., 'Rank Ordering Criteria Weighting Methods - A Compariative Overview'. 2013.
[45] Saeid, M., A. A. A. Ghani, and H. Selamat, 'Rank-Order Weighting of Web Attributes for Website Evaluation'. The International Arab Journal of Information Technology, 2011.
[46] Said, A. and A. Bellogín, 'Comparative recommender system evaluation', in Proceedings of the 8th ACM Conference on Recommender systems - RecSys '14. 2014. p. 129-136.
[47] Sarwar, B., G. Karypis, J. Konstan, and J. Riedl, 'Item-Based Collaborative Filtering Recommendation Algorithms'. 2001.
[48] Schafer, J. B., D. Frankowski, J. Herlocker, and S. Sen, 'Collaborative filtering recommender systems'. Lncs, 2007. 4321: p. 291-324.
[49] Sedhain, S., A. K. Menon, S. Sanner, and L. Xie, 'AutoRec', in Proceedings of the 24th International Conference on World Wide Web - WWW '15 Companion. 2015. p. 111-112.
[50] Song, Y., A. M. Elkahky, and X. He, 'Multi-Rate Deep Learning for Temporal Recommendation', in Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval - SIGIR '16. 2016. p. 909-912.
[51] Sun, Y., M. Fang, and X. Wang, 'A novel stock recommendation system using Guba sentiment analysis'. Personal and Ubiquitous Computing, 2018. 22(3): p. 575-587.
[52] Tabatabai, D. and B. M. Shore, 'How experts and novices search the Web'. Library & Information Science Research, 2005. 27(2): p. 222-248.
[53] Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, 'Attention Is All You Need'. 2017.
[54] Wu, C.-Y., A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, 'Recurrent Recommender Networks', in Proceedings of the Tenth ACM International Conference on Web Search and Data Mining - WSDM '17. 2017. p. 495-503.
[55] Wu, Y., C. DuBois, A. X. Zheng, and M. Ester, 'Collaborative Denoising Auto-Encoders for Top-N Recommender Systems', in Proceedings of the Ninth ACM International Conference on Web Search and Data Mining - WSDM '16. 2016. p. 153-162.
[56] Yang, S., M. Korayem, K. AlJadda, T. Grainger, and S. Natarajan, 'Combining content-based and collaborative filtering for job recommendation system: A cost-sensitive Statistical Relational Learning approach'. Knowledge-Based Systems, 2017. 136: p. 37-45.
[57] Yun, Y., D. Hooshyar, J. Jo, and H. Lim, 'Developing a hybrid collaborative filtering recommendation system with opinion mining on purchase review'. Journal of Information Science, 2017. 44(3): p. 331-344.
[58] Zhang, J., J. Tang, and J. Li, 'Expert Finding in A Social Network'. 2007.
[59] Zhang, S., L. Yao, and A. Sun, 'Deep Learning based Recommender System: A Survey and New Perspectives'. ACM J. Comput. Cult. Herit., 2017.
[60] Zhang, S., S. Zhang, N. Y. Yen, and G. Zhu, 'The Recommendation System of Micro-Blog Topic Based on User Clustering'. Mobile Networks and Applications, 2016. 22(2): p. 228-239.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73201-
dc.description.abstract隨著網路科技的發展,人已無法負擔每日所接收的資訊量。推薦系統的出現讓人能夠有效率地搜尋與獲取資訊,而目前主流的推薦系統包含三大類:內容導向、協同過濾、混合型。我們發現這些推薦系統皆沒有考慮到項目間的順序關係,而在我們日常生活中搜尋資訊、挑選商品等,卻是經常是有順序性的。
因此本研究提出一個以循環神經網路及專家權重為核心的推薦系統EXTRA,透過匯集使用者們的序列預測結果,加上專家權重的調整,產生出準確的推薦清單。使用者的序列預測模型,是透過使用者與物件互動的歷史紀錄來訓練,預測出下一個使用者會想要互動的物件。專家權重則是透過使用者本身的資料及其互動過的物件,計算出使用者的權重,權重越高即代表該使用者的序列預測結果影響力越大。
本研究以臺灣知名線上論壇Mobile01與PTT的資料來實作與評估EXTRA。從實驗結果我們可以確定在論壇討論區推薦的問題上,EXTRA的表現遠比內容導向、協同過濾等方法來得好,也證明了EXTRA是有辦法適應不同平台及不同討論主題。此外,我們還發現添加了專家權重確實提升了EXTRA的準確率。
本研究提出的方法提供了推薦系統領域一個發展的可能性,考慮物件間的序列關係及加入專家權重都是可以有效提升推薦準確率。本研究提供一個簡單的概念模型,透過與現在蓬勃發展的機器學習領域結合,不論是在序列預測模型上,還是在語意分析上,EXTRA也許還有被改進的空間。此外,EXTRA並非只可應用在論壇討論區推薦的問題上,也可嘗試應用在其他場域,還有待後續研究再對EXTRA進行更進一步的實驗與分析。
zh_TW
dc.description.abstractWith the development of Internet, people cannot process the enormous amount of information received every day. The recommender system enables people to search and obtain information efficiently. The mainstream recommendation methods include con-tent-based method, collaborative filtering method, and hybrid method. However, we find that these methods do not consider the sequential relations between items. In our daily life, searching for information or selecting goods often follows a specific order.
In this study, we propose a recommender system, EXTRA, with a recurrent neural network and expert weights as its core. By aggregating the users’ predicted viewing se-quences adjusted further by expert weights, an accurate recommendation list can be generated. The trace prediction model for users is trained by the historical records of the users’ interactions with items, which is able to predict the item with which a user would want to interact next. The expert weight for a user is obtained from users’ own infor-mation and items interacted by the user. The higher the expert weight, the greater the influence of the user’s predicted viewing sequences.
To implement and evaluate EXTRA, we use the data collected from Mobile01 and PTT, two most popular online forums in Taiwan. From the experimental results, we can confirm that the performance of EXTRA is far better than that of content-based method, collaborative methods, etc. Moreover, we proved that EXTRA can adapt to different platforms and different topics. In addition, we also find that adding expert weights does improve the accuracy of recommendation list provided by EXTRA.
The method proposed in this study provides a new direction in the field of recom-mender systems. Considering the sequential relations between items and adding expert weights can effectively improve the performance of a recommender system. In this re-search, we provide a conceptual model which may be improved further by combining other machine learning and semantic analysis techniques. Moreover, EXTRA is not only applicable to forums, but can also be applied to other fields. Further experiment and analysis to EXTRA can be done in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:22:11Z (GMT). No. of bitstreams: 1
ntu-108-R06725015-1.pdf: 1543350 bytes, checksum: a034ac45da981894bb765eede9d25573 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents謝辭 i
論文摘要 ii
THESIS ABSTRACT iii
Contents iv
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Research Objectives 3
Chapter 2 Literature Review 6
2.1 Recommender System 6
2.2 Data of Recommender System 7
2.3 Types of Recommender Systems 9
2.4 Drawbacks of Current Recommender System 11
2.5 Evaluation of a Recommender System 12
2.6 Deep Learning 15
2.7 Experts’ Decisions 17
Chapter 3 Problem Description 19
3.1 Problem Description 19
3.2 Data 20
3.3 Techniques 22
3.4 Evaluation 24
Chapter 4 Expert Trace Recommender System (EXTRA-RS) 26
4.1 Data Preparation 27
4.2 Trace Model Building 29
4.3 Expert Weight Calculation 32
4.4 Recommender Model Building 34
4.5 Evaluation 35
4.6 Conclusion 36
Chapter 5 Experiments 37
5.1 Data Description 37
5.2 Implementation 39
5.3 An Example of Recommendation 41
5.4 Experiment Design 42
5.5 Experiment Results 47
5.6 Managerial Implication 52
Chapter 6 Conclusion and Future Work 55
6.1 Conclusion 55
6.2 Future Work 56
Reference 58
Appendix A The Testing Result of Experiment (1) 66
Appendix B The Testing Result of Experiment (2) 67
dc.language.isozh-TW
dc.subject序列資料zh_TW
dc.subject推薦系統zh_TW
dc.subject機器學習zh_TW
dc.subject深度學習zh_TW
dc.subject循環神經網路zh_TW
dc.subject專家意見zh_TW
dc.subjectSequential Dataen
dc.subjectExpert Decisionen
dc.subjectRecommender Systemen
dc.subjectMachine Learningen
dc.subjectDeep Learningen
dc.subjectRecurrent Neural Networken
dc.title採用專家決策軌跡之深度學習推薦系統zh_TW
dc.titleDeep Learning Based Expert Trace Recommender Systemen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee魏志平(Chih-Ping Wei),陳建錦(Chien-Chin Chen)
dc.subject.keyword推薦系統,機器學習,深度學習,循環神經網路,專家意見,序列資料,zh_TW
dc.subject.keywordRecommender System,Machine Learning,Deep Learning,Recurrent Neural Network,Expert Decision,Sequential Data,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201901216
dc.rights.note有償授權
dc.date.accepted2019-07-03
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
1.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved