Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73188
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥龍
dc.contributor.authorChia-He Linen
dc.contributor.author林家禾zh_TW
dc.date.accessioned2021-06-17T07:21:33Z-
dc.date.available2019-07-10
dc.date.copyright2019-07-10
dc.date.issued2019
dc.date.submitted2019-07-04
dc.identifier.citation[1] Lohse, D., & Zhang, X. (2015). Pinning and gas oversaturation imply stable single surface nanobubbles. Physical Review E, 91, 031003.
[2] Tan, B. H., An, H., & Ohl, C. (2017). Resolving the Pinning Force of Nanobubbles with Optical Microscopy. Physical Review Letters, 118, 054501.
[3] Bull, D. S., Nelson, N., Konetski, D., Bowman, C. N., Schwartz, D. K., & Goodwin, A. P. (2018). Contact Line Pinning Is Not Required for Nanobubble Stability on Copolymer Brushes. The Journal of Physical Chemistry Letters, 9(15), 4239-4244.
[4] Chen, Y., Chen, Y., & Yen, T. (2018). Investigating Interfacial Effects on Surface Nanobubbles without Pinning Using Molecular Dynamics Simulation. Langmuir, 34(50), 15360-15369.
[5] Nirmalkar, N., Pacek, A. W., & Barigou, M. (2018). On the Existence and Stability of Bulk Nanobubbles. Langmuir, 34(37), 10964-10973.
[6] Ohgaki, K., Khanh, N. Q., Joden, Y., Tsuji, A., & Nakagawa, T. (2010). Physicochemical approach to nanobubble solutions. Chemical Engineering Science, 65(3), 1296-1300.
[7] Tan, B. H., An, H., & Ohl, C. (2018). Surface Nanobubbles Are Stabilized by Hydrophobic Attraction. Physical Review Letters, 120, 164502.
[8] Wang, S., Zhou, L., Wang, X., Wang, C., Dong, Y., Zhang, Y. et al. (2019). Force Spectroscopy Revealed a High-Gas-Density State near the Graphite Substrate inside Surface Nanobubbles. Langmuir, 35(7), 2498-2505.
[9] Schlesinger, I., & Sivan, U. (2018). Three-Dimensional Characterization of Layers of Condensed Gas Molecules Forming Universally on Hydrophobic Surfaces. Journal of the American Chemical Society, 140(33), 10473-10481.
[10] Zhang, X. H., Zhang, X. D., Lou, S. T., Zhang, Z. X., Sun, J. L., & Hu, J. (2004). Degassing and Temperature Effects on the Formation of Nanobubbles at the Mica/Water Interface. Langmuir, 20(9), 3813-3815.
[11] Pan, G., He, G., Zhang, M., Zhou, Q., Tyliszczak, T., Tai, R. et al. (2016). Nanobubbles at Hydrophilic Particle–Water Interfaces. Langmuir, 32(43), 11133-11137.
[12] Wang, C., Zhou, B., Tu, Y., Duan, M., Xiu, P., Li, J., & Fang, H. (2012). Critical Dipole Length for the Wetting Transition Due to Collective Water-dipoles Interactions. Scientific Reports, 2(1), 358.
[13] Ryckaert, J., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327-341.
[14] Yeh, I., & Berkowitz, M. L. (1999). Ewald summation for systems with slab geometry. The Journal of Chemical Physics, 111(7), 3155-3162.
[15] Sendner, C., Horinek, D., Bocquet, L., & Netz, R. R. (2009). Interfacial Water at Hydrophobic and Hydrophilic Surfaces: Slip, Viscosity, and Diffusion. Langmuir, 25(18), 10768-10781.
[16] Ho, T. A., Papavassiliou, D. V., Lee, L. L., & Striolo, A. (2011). Liquid water can slip on a hydrophilic surface. Proceedings of the National Academy of Sciences, 108(39), 16170-16175.
[17] Maheshwari, S., Hoef, M. V., Zhang, X., & Lohse, D. (2016). Stability of Surface Nanobubbles: A Molecular Dynamics Study. Langmuir, 32(43), 11116-11122.
[18] Willard, A. P., & Chandler, D. (2010). Instantaneous Liquid Interfaces. The Journal of Physical Chemistry B, 114(5), 1954-1958.
[19] Liu, P., Harder, E., & Berne, B. J. (2004). On the Calculation of Diffusion Coefficients in Confined Fluids and Interfaces with an Application to the Liquid−Vapor Interface of Water. The Journal of Physical Chemistry B, 108(21), 6595-6602.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73188-
dc.description.abstract在固態表面上的奈米氣泡由於其氣泡表面有著巨大的 Laplace 壓力,理論上應該在數微秒之內迅速消散,然而實驗上卻發現表面奈米氣泡能穩定存在數小時甚至數日。為了解釋其穩定存在的機制,Lohse 提出了疏水性固態表面、過飽和溶液環境以及表面釘扎效應是奈米氣泡穩定存在的必要因素,但是在最近的實驗中卻發現奈米氣泡也可以穩定存在於親水性固態表面,例如石英和矽藻土。在這篇論文裡,我們利用分子動力學模擬來分析此系統,模擬奈米氣泡在不同親疏水性的固態表面上並且研究固態表面和周遭氣體分布產生的效應。
另外,也有實驗提出奈米氣泡表面上的短氫鍵可以抑制氣體的擴散,可以使氣泡穩定存在於非過飽和的系統環境中,所以我們研究了氣泡表面上水的結構以及切線方向水跟氣體的擴散係數,同時和平面的氣液界面做比較以研究氣泡表面的曲面效應。
zh_TW
dc.description.abstractA satisfactory theory for understanding surface nanobubble formation, long time stability, and various morphologies is still a challenge. To understand the properties of the surface nanobubble, we investigate gas aggregation in water influenced by substrate wettability on MgO and graphite using molecular dynamics simulation. The survival probabilities, OH bond orientation and diffusion coefficient of water molecules are calculated near both curved and planar interfaces. We find consistent results, indicating the methods for the planar gas-water interface can extend to curved interfaces. In addition, we perform three-dimensional surface nanobubble simulations on substrates with various wettability and discuss the effects between the substrates and the gas distributions consequentially formed adjacent to the surface. The hydrophobic effect of substrates is widely accepted because hydrophobic substrates with lower water-solid interaction strength allow more gas molecules gathering at the interfaces whereas hydrophilic ones do not. However, there are some experimental exceptions that surface nanobubbles can be produced on mica-water and hydrophilic particle-water interfaces. Our simulation results also demonstrate that surface nanobubbles can exist on homogeneous hydrophilic surfaces.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:21:33Z (GMT). No. of bitstreams: 1
ntu-108-R06222034-1.pdf: 2078149 bytes, checksum: c208c2f3038d907ff1b347d3e347d4e6 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsChapter 1 Introduction 1
Chapter 2 Simulation methodology 4
2.1 Simulation system 4
2.2 Molecular model and force field 5
2.3 Simulation process 6
2.4 Data analysis and calculation 7
2.4.1 Density and contact angle 7
2.4.2 Pressure on the water bulk region 8
2.4.3 Instantaneous interfaces 9
2.4.4 Survival probability and diffusion coefficients 10
Chapter 3 Result and discussion 12
3.1 Stability of 3D surface nanobubble on substrates with various wettability 12
3.2 Comparison between the quasi-2D and 3D nanobubble 19
3.3 OH bond orientation, tangential diffusion coefficient, and radial distribution functions at curved and planar gas-water interfaces (quasi-2D system) 20
Chapter 4 Conclusion 26
REFERENCE 28
dc.language.isoen
dc.subject分子動力學模擬zh_TW
dc.subject奈米氣泡zh_TW
dc.subject親疏水性固態表面zh_TW
dc.subjecthydrophobic/hydrophilic surfaceen
dc.subjectMD simulationen
dc.subjectsurface nanobubbleen
dc.title以分子動力學模擬研究在不同潤濕度的均質固態表面上奈米氣泡的穩定性zh_TW
dc.titleInvestigating the stability of surface nanobubbles on homogeneous substrates with various wettability by using MD simulationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor陳義裕
dc.contributor.oralexamcommittee嚴祖煦
dc.subject.keyword奈米氣泡,親疏水性固態表面,分子動力學模擬,zh_TW
dc.subject.keywordsurface nanobubble,hydrophobic/hydrophilic surface,MD simulation,en
dc.relation.page30
dc.identifier.doi10.6342/NTU201901060
dc.rights.note有償授權
dc.date.accepted2019-07-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
2.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved