請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73175
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林文澧(Win-Li Lin) | |
dc.contributor.author | Yu-Ting Lin | en |
dc.contributor.author | 林妤庭 | zh_TW |
dc.date.accessioned | 2021-06-17T07:20:56Z | - |
dc.date.available | 2019-07-10 | |
dc.date.copyright | 2019-07-10 | |
dc.date.issued | 2019 | |
dc.date.submitted | 2019-07-04 | |
dc.identifier.citation | [1] Miller DL. Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation. Prog Biophy Mol Biol. 2007;93: 314–330.
[2] Stauffer PR, and Paulides MM. Hyperthermia therapy for cancer. Comprehensive Biomedical Physics, ed. A Brahme, Elsevier (Oxford). 2014;pp. 115–151. [3] Wood AK, Sehgal CM. A review of low-intensity ultrasound for cancer therapy. Ultrasound Med Biol. 2015;41:905–28. [4] Turley SJ, et al. Immunological hallmarks of stromal cells in the tumour microenvironment. Nature Reviews Immunology. 2015;15:669–682. [5] Yuan Y, Jiang Y, Sun C and Chen Q. Role of the tumor microenvironment in tumor progression and the clinical applications (Review). Oncology Reports. 2016;35:2499-2515. [6] Chen F, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Medicine. 2015;13:45 [7] Van der Zee J, Vujaskovic Z, Kindo M, Sugahara T. The Kadota Fund International Forum 2004 – clinical group consensus. Int J Hyperthermia. 2008;24, pp. 111-112. [8] Mallory M, Gogineni E, Jones GC, Greer L, Simone CB. Therapeutic hyperthermia: The old, the new, and the upcoming. Crit Rev Oncol Hematol. 2016;97:56–64. pmid:26315383. [9] Sapareto, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol. 1984;10, pp. 787-800. [10] Van Rhoon GC. Is CEM43 still a relevant thermal dose parameter for hyperthermia treatment monitoring? Int J Hyperthermia. 2016;32, pp. 50-62. [11] Datta NR, Ordonez SG, Gaipl US, Paulides MM, Crezee H, Gellermann J, Marder D, Puric E, and Bodis S. Local hyperthermia combined with radiotherapy and-/or chemotherapy: recent advances and promises for the future. Cancer Treat Rev. 2015;41(9): 742–53. [12] Skitzki JJ, Repasky EA, Evans SS. Hyperthermia as an immunotherapy strategy for cancer. Curr Opin Investig Drugs. 2009;10:550–558. [13] Toraya-Brown S, Fiering S. Local tumour hyperthermia as immunotherapy for metastatic cancer. Int J Hyperthermia. 2014;30:531-539. [14] Frey B, Weiss E M, Rubner Y, et al. Old and new facts about hyperthermia-induced modulations of immune system. Int J Hyperthermia. 2012;28: 528-542. [15] Ostberg JR, Dayanc BE, Yuan M, Oflazoglu E, Repasky EA. Enhancement of natural killer (NK) cell cytotoxicity by fever-range thermal stress is dependent on NKG2D function and is associated with plasma membrane NKG2D clustering and increased expression of MICA on target cells. J Leukoc Biol. 2007;82:1322–1331. [16] Oei A., Vriend LE, Krawczyk PM, Horsman MR, Franken NA, Crezee J. Targeting therapy-resistant cancer stem cells by hyperthermia. Int J Hyperth. 2017 Jun;33(4):419-427. [17] Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310: 1642–1646. [18] Ota S, Horigome K, Ishii T, Nakai M, Hayashi K, et al. Metformin suppresses glucose-6-phosphatase expression by a complex I inhibition and AMPK activation-independent mechanism. Biochem Biophys Res Commun. 2009;388,311–316. [19] Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348 Pt 3: 607–614. [20] Pernicova I and Korbonits M. Metformin—mode of action and clinical implications for diabetes and cancer. Nat Rev Endocrinol. 2014;10, 143–156 [21] Nangia-Makker P, Yu Y, Vasudevan A, Farhana L, Rajendra SG, Levi E, et al. Metformin: a potential therapeutic ggent for recurrent colon cancer. PLoS ONE. 2014;9(1): e84369. [22] Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U. S. A. 2015;112, pp. 1809-1814. [23] Kunisada Y, et al. Attenuation of CD4+CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. E Bio Medicine. 2017;25:154-164. [24] Hirsch H A, Iliopoulos D, and Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci U.S.A. 2013;110, 972–977. [25] Baud V, and Karin M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov. 2009;8, 33–40. [26] Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69, pp. 7507-7511. [27] Moiseeva O, et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell. 2013;12, 489–498. [28] Pearce EL, Walsh MC, Cejas PJ, et al. Enhancing CD8 T cell memory by modulating fatty acid metabolism. Nature. 2009;460(7251):103-107. [29] Diaz A, Romero M, Vazquez T, Lechner S, Blomberg BB, and Frasca D. Metformin improves in vivo and in vitro B cell function in individuals with obesity and type-2 diabetes. Vaccine. 2017;35(20): 2694–2700. [30] Ono T, Kurata S, Wakabayashi K, Sugawara Y, Saito M and Ogawa H. Inhibitory effect of a streptococcal preparation (OK- 432) on the nucleic acid synthesis in tumor cells in vitro. Gann. 1973;64:59-69. [31] Ryoma Y, Moriya Y, Okamoto M, I. Kanaya, Saito M, Sato M. Biological effect of OK-432 (picibanil) and possible application to dendritic cell therapy. Anticancer Res. 2004;24 , pp. 3295-3301. [32] Saito M. OK-432, a killed streptococcal preparation, in the treatment of animal and human cancer and its mechanisms of action. In: Forum on Immunomodulators (Guenounou M, eds). Paris, John Libbey Eurotest. 1995, pp 13-30. [33] Tamada K, Harada M, Abe K, Li T, Tada H, Onoe Y and Nomoto K. Antitumor vaccination effect of dendritic cells can be augmented by locally utilizing Th1-type cytokines from OK432-reactive CD4+ T cells. Cancer Immunol Immunother. 1998;46: 128-136. [34] Toyokawa H, Inaba M, Takai S, Satoi S, Beuth J, Ko H, Matsui Y, Kwon A, Kamiyama Y and Ikehara S. Enhancement of circulating dendritic cell activity by immunomodulators (OK- 432 and KP-40). Anticancer Res. 2002;22: 2137-2145. [35] Itoh T, Ueda Y, Okugawa K, Fujiwara H, Fuji N, Yamashita T, Fujiki H, Harada S, Yoshimura T and Yamagishi H. Streptococcal preparation OK432 promotes functional maturation of human monocyte-derived dendritic cells. Cancer Immunol Immunother. 2003;52: 207-214. [36] Nakahara S, Tsunoda T, Baba T, Asabe S and Tahara H. Dendritic cells stimulated with a bacterial product, OK-432, efficiently induce cytotoxic T lymphocytes specific to tomor rejection peptide. Cancer Res. 2003;63: 4112-4118. [37] Kuroki H, Morisaki T, Matsumoto K, Onishi H, Baba E, Tanaka M and Katano M. Streptococcal preparation OK-432: a new maturation factor of monocyte-derived dendritic cells for clinical use. Cancer Immunol Immunother. 2003;52: 561-568. [38] Nakagawa H, et al. In vivo immunological antitumor effect of OK-432-stimulated dendritic cell transfer after radiofrequency. Cancer Immunol Immunother. 2014;63(4):347-56. [39] Kageyama K, et al. Radiofrequency ablation of liver tumors in combination with local OK-42 injection prolongs survival and suppresses distant tumor growth in the rabbit model with intra- and extrahepatic VX2 tumors. Cardiovasc Intervent Radiol. 2013;36(5):1383-92. [40] Hamamoto S, et al. Radiofrequency ablation and immunostimulant OK-432: combination therapy enhances systemic antitumor immunity for treatment of VX2 lung tumors in rabbits. Radiology. 2013;267(2):405-13. [41] Monden T, Morimoto H, Shimano T, Yagyu T, Murotani M, Nagaoka H, Kawasaki Y, Kobayashi T and Mori T. Use of fibrinogen to enhance the antitumor effect of OK-432. Cancer. 1992;69: 636-642. [42] Wilcock C and Bailey CJ. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica. 1994;24(1):49-57. [43] Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell. 2013;23(5):573-81. [44] Valastyan S, Weinberg RA. Tumor metastasis: molecular insights and evolving paradigms. Cell. 2011;147(2):275-92. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73175 | - |
dc.description.abstract | 低強度脈衝波的超音波治療是一項具有前瞻性的研究,通過其所產生的熱效應與非熱效應的機制可達到抑制腫瘤生長的效果。脈衝式超音波在惡性腫瘤組織上加熱可直接殺死腫瘤細胞。然而,在原發性腫瘤消除後仍可能發生腫瘤復發與轉移的情形。為了獲得更良好的預後,我們將其他兩種藥物,即二甲雙胍和OK-432與脈衝式超音波治療做結合。根據先前的研究,二甲雙胍在調節免疫系統上有作用;另外,OK-432免疫刺激劑可以活化並且強化免疫系統。儘管如此,結合三者治療腫瘤的療效尚未被研究。在這項研究中,目的是探究由脈衝式超音波與二甲雙胍和OK-432所結合的治療效果。我們實驗結果顯示,三聯療法(脈衝式超音波結合二甲雙胍及OK-432治療組)相較於其他組別的結合療法,確實顯著地抑制腫瘤生長,這表示三聯療法具有顯著抗腫瘤效果。治療期後可能產生的腫瘤復發及轉移機率均受到顯著地抑制。熱療法與免疫療法的結合可能引發多方面的抗癌反應。我們的實驗結果呈現出,此方式的結合療法具有相當的潛力應用在腫瘤治療。 | zh_TW |
dc.description.abstract | Low intensity pulsed-wave ultrasound is a prospective way to inhibit tumor growth with its thermal and non-thermal effects. Tumor cells can be killed by heating directly on malignant tumor tissue. However, tumor recurrence and metastasis still may occur after the primary tumor is eliminated. Trying to obtain a better prognosis, we performed pulsed-wave ultrasound with other two medical treatments: Metformin and OK-432. Based on previous studies, Metformin performs a vital role in mediating immune response. Injection of OK-432, an immunostimulant, causes activation of robust immune system. Even though with perspective advantages, the efficacy of this combined therapy has not been reported. In this study, we aimed to examine the effect of mild heating generated by pulsed-wave ultrasound in combination with Metformin and OK-432. Our results showed that tumor growth was significantly suppressed by triple therapy in comparison with other treatment groups. This indicates that antitumor response has increased effectively. Meanwhile, the risk of both recurrence and metastasis were inhibited remarkably. Combining thermal therapy with immunotherapy strategies may elicit multifaceted anticancer immunity. Our experimental results displayed that the combination of ultrasound hyperthermia with Metformin and immunostimulant might be an alternative and promising strategy against recurrence and metastasis on colorectal carcinoma. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T07:20:56Z (GMT). No. of bitstreams: 1 ntu-108-R04548056-1.pdf: 2523101 bytes, checksum: 6244c8215d7e314590deb3b702388087 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | CONTENTS
前言(i) 中文摘要(ii) Abstract(iii) CONTENTS(iv) List of Figures(vi) Chapter 1 Introduction(1) 1.1 Therapeutic Ultrasound (1) 1.2 Hyperthermia(2) 1.3 Metformin(3) 1.4 Immunostimulant Picibanil (OK-432)(4) 1.5 The Purpose of the Study(5) Chapter 2 Materials and Methods (6) 2.1 Cell Culture(6) 2.2 Chemicals(6) 2.3 Experimental Animal (6) 2.4 Pulsed Ultrasound Setups (7) 2.5 Thermal Dose Measurement (7) 2.6 In vivo Subcutaneous Tumor Model (8) 2.7 Experimental Study Groups (8) 2.8 Quantifying Bioluminescent signals of Tumors by Non Invasion In vivo Imaging System (IVIS) (10) 2.9 Histological Section and Hematoxylin & Eosin Stain (H&E stain) (10) 2.10 Statistical Analysis (10) Chapter 3 Results (12) 3.1 Measurement of Thermocouple (12) 3.2 Efficacy of Tumor Growth Inhibition (12) 3.3 In vivo Imaging System (IVIS) Imaging (14) 3.4 Survival Rate(16) 3.5 Tumor Tissue Morphology(17) 3.6 Tumor Rechallenge Model(18) Chapter 4 Discussion (21) References (23) | |
dc.language.iso | en | |
dc.title | 超音波熱治療結合Metformin與免疫刺激劑增強全身性抗腫瘤免疫反應 | zh_TW |
dc.title | Elevated Systemic Antitumor Immune Response augmented by Ultrasonic Hyperthermia Combined with Metformin and Immunostimulant | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張富雄,繆希椿 | |
dc.subject.keyword | 脈衝式超音波,超音波熱治療,Metformin二甲雙胍,OK-432免疫刺激劑,抗癌免疫反應, | zh_TW |
dc.subject.keyword | Pulsed-wave ultrasound,Ultrasound Hyperthermia,Metformin,Picibanil OK?432,Antitumor immune response, | en |
dc.relation.page | 47 | |
dc.identifier.doi | 10.6342/NTU201901245 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2019-07-05 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-108-1.pdf 目前未授權公開取用 | 2.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。