Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73152
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊英杰(Ying-Jay Yang)
dc.contributor.authorHui-Ching Changen
dc.contributor.author張惠菁zh_TW
dc.date.accessioned2021-06-17T07:19:51Z-
dc.date.available2021-08-01
dc.date.copyright2019-07-30
dc.date.issued2019
dc.date.submitted2019-07-08
dc.identifier.citation1. Owens‐Baird, B., et al., Encyclopedia of Inorganic and Bioinorganic Chemistry, New Jersey: John Wiley & Sons, 2017, Thermoelectric Materials.
2. Ren, Z., et al., Advanced Thermoelectrics Materials, Contacts, Devices, and Systems. Florida: CRC Press, 2017, p.790
3. Li, J., et al., A high thermoelectric figure of merit ZT > 1 in Ba heavily doped BiCuSeO oxyselenides. Energy & Environmental Science, 2012. 5(9): p. 8543.
4. Tang, J., et al., Manipulation of Solubility and Interstitial Defects for Improving Thermoelectric SnTe Alloys. ACS Energy Letters, 2018. 3(8): p. 1969-1974.
5. Yang, L., et al., High Performance Thermoelectric Materials: Progress and Their Applications. Advanced Energy Materials, 2018. 8(6): p. 1701797.
6. Goldsmid, H.J., Introduction to Thermoelectricity, New york:Springer-Verlag, 2016.
7. Snyder, G.J., and Toberer, E.S., Complex thermoelectric materials. Nat. Mater., 2008. 7: p. 105.
8.Selvan, K.V., et al., State-of-the-Art Reviews and Analyses of Emerging Research Findings and Achievements of Thermoelectric Materials over the Past Years. Journal of Electronic Materials, 2019. 48(2): p. 745-777.
9. Owens‐Baird, et al., Thermoelectric materials. Encyclopedia of Inorganic and Bioinorganic Chemistry, 2011: p. 1-35.
10. Pineda, D.D., et al., Thermoelectric Energy Conversion Basic Concepts and Device Applications , New Jersey: John Wiley & Sons, 2017.
11. He, J. and T.M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward. Science, 2017. 357(6358).
12. Snyder, G.J. and E.S. Toberer, Complex thermoelectric materials. Nat Mater, 2008. 7(2): p. 105-114.
13. Chen, Z., et al., Manipulation of Phonon Transport in Thermoelectrics. Advanced Materials, 2018. 30(17): p. 1705617.
14. Li, J.F., et al., High-performance nanostructured thermoelectric materials. NPG Asia Mater, 2010. 2: p. 152-158.
15. Kim, H.S., et al., Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials, 2015, 3, 041506.
16. Biswas, K., et al., High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012. 489: p. 414.
17. Du, Y., et al., Facile Preparation and Thermoelectric Properties of Bi2Te3 Based Alloy Nanosheet/PEDOT:PSS Composite Films. ACS Applied Materials & Interfaces, 2014. 6(8): p. 5735-5743.
18. Hui, S., et al., Influence of substituting Sn for Sb on the thermoelectric transport properties of CoSb3-based skutterudites. Journal of Applied Physics, 2014. 115(10): p. 103704.
19. Kawamura, A., et al., Synthesis and Thermoelectric Properties of the YbTe-YbSb System. Journal of Electronic Materials, 2015. 45(1): p. 779-785.
20. Xie, W., et al., Recent Advances in Nanostructured Thermoelectric Half-Heusler Compounds. Nanomaterials, 2012. 2(4): p. 379.
21. Zhao, L.D., et al., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014. 508(7496): p. 373-377.
22. Hsiao, C.L. and X. Qi, The oxidation states of elements in pure and Ca-doped BiCuSeO thermoelectric oxides. Acta Materialia, 2016. 102: p. 88-96.
23. Shao, D.F., et al., Enhanced low temperature thermoelectric performance of Ag-doped BiCuSeO. Applied Physics Letters, 2014. 105(8): p. 082109.
24. Wang, D., et al., High-temperature thermoelectric properties of Ca3Co4O9+δ with Eu substitution. Solid State Communications, 2004. 129(9): p. 615-618.
25. Feng, Y., et al., Metal oxides for thermoelectric power generation and beyond. Advanced Composites and Hybrid Materials, 2018. 1(1): p. 114-126.
26. Ren, G., et al., High Performance Oxides-Based Thermoelectric Materials. JOM, 2015. 67(1): p. 211-221.
27. Ren, P., et al., Recent advances in inorganic material thermoelectrics. Inorganic Chemistry Frontiers, 2018. 5(10): p. 2380-2398.
28. Bérardan, D., et al., Enhancement of the thermoelectric performances of In2O3 by the coupled substitution of M2+/Sn4+ for In3+. Journal of Applied Physics, 2008. 104(6): p. 064918.
29. Yasukawa, M., et al., Thermoelectric properties of layered oxyselenides La1−xSrxCuOSe (x=0 to 0.2). Journal of Applied Physics, 2004. 95(7): p. 3594-3597.
30. Ryoji Funahashi, et al., An Oxide Single Crystal with High Thermoelectric Performance in Air. Japanese Journal of Applied Physics, 2000. 39: p. L 1127–L 1129.
31. Wang, H.C., et al., Doping Effect of La and Dy on the Thermoelectric Properties of SrTiO3. Journal of the American Ceramic Society, 2011. 94(3): p. 838-842.
32. Ohtaki, M., Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source. Journal of the Ceramic Society of Japan, 2011. 119(1395): p. 770-775.
33. Yong, L., et al., Synergistically Optimizing Electrical and Thermal Transport Properties of BiCuSeO via a Dual-Doping Approach. Advanced Energy Materials, 2016. 6(9): p. 1502423.
34. Zhu, H., et al., High pressure synthesis, structure and thermoelectric properties of BiCuChO (Ch = S, Se, Te). Journal of the European Ceramic Society, 2017. 37(4): p. 1541-1546.
35. Zou, D., et al., Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch = S, Se and Te): first-principles calculations. Journal of Materials Chemistry A, 2013. 1(31): p. 8888-8896.
36. Luu, S.D.N. and P. Vaqueiro, Layered oxychalcogenides: Structural chemistry and thermoelectric properties. Journal of Materiomics, 2016. 2(2): p. 131-140.
37. Li, F., et al., Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. Journal of Materials Chemistry A, 2013. 1(38): p. 11942.
38. Hiramatsu, H., et al., Crystal Structures, Optoelectronic Properties, and Electronic Structures of Layered Oxychalcogenides MCuOCh (M = Bi, La; Ch = S, Se, Te): Effects of Electronic Configurations of M3+ Ions. Chemistry of Materials, 2008. 20(1): p. 326-334.
39. Khan, W., et al., Optoelectronic structure and related transport properties of BiCuSeO-based oxychalcogenides: First principle calculations. Solid State Sciences, 2016. 58: p. 86-93.
40. Vaqueiro, P., et al., A copper-containing oxytelluride as a promising thermoelectric material for waste heat recovery. J. Mater. Chem. A, 2013. 1(3): p. 520-523.
41. Yang, J., et al., Low effective mass leading to an improved ZT value by 32% for n-type BiCuSeO: a first-principles study. Journal of Materials Chemistry A, 2014. 2(34): p. 13923-13931.
42. Ishizawa, M., et al., Oxidation states and thermoelectric properties of BiCuSeO bulks fabricated under Bi or Se deficiencies in the nominal composition. Journal of Applied Physics, 2018. 123(24): p. 245104.
43. Fu, C. , et al., Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering. Adv. Sci., 2016. 3: p. 1600035.
44. Macia, E., Thermoelectric Materials Advances and Applications, Florida: CRC Press, 2015.
45. West, A.R., Solid State Chemistry and its Applications - Student Editio,. New Jersey: John Wiley & Sons, 2014.
46. Ladd, M. and R. Palmer, Crystal Morphology and Crystal Symmetry, in Structure Determination by X-ray Crystallography: Analysis by X-rays and Neutrons, New york:Springer-Verlag, 2013, p. 1-50.
47. Chang, H., Magnetic Properties and Structure of Pulsed Laser Deposited Nickel Ferrite Films. Master thesis of Northeastern University, Boston, MA, US, 2008.
48. Lars, G.S., On the Crystal Structure of Monoclinic a-Bi2O3, Zeitschrift für Kristallographie - Crystalline Materials. 1941. p. 274.
49. Satyala, N. and D. Vashaee, The effect of crystallite size on thermoelectric properties of bulk nanostructured magnesium silicide (Mg2Si) compounds. Applied Physics Letters, 2012. 100(7): p. 073107.
50. Kishimoto, K., et al., Influences of potential barrier scattering on the thermoelectric properties of sintered n-type PbTe with a small grain size. Japanese journal of applied physics, 2003. 42(2R): p. 501.
51. Zhang, W., et al., Influence of the phase transformation in NaxCoO2 ceramics on thermoelectric properties. Ceramics International, 2018. 44(14): p. 17251-17257.
52. Pei, Y., et al., Low effective mass leading to high thermoelectric performance. Energy & Environmental Science, 2012. 5(7): p. 7963.
53. Han, X., et al., Pushing the optimal ZT values of p-type Bi2−xSbxTe3 alloys to a higher temperature by expanding band gaps and suppressing intrinsic excitation. Journal of Materials Science: Materials in Electronics, 2016. 27(9): p. 8923-8929.
54. Goldsmid, H.J., The Thermoelectric and Related Effects, in Introduction to Thermoelectricity. 2016, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 1-7.
55. Zhu, T., et al., Compromise and Synergy in High-Efficiency Thermoelectric Materials. Advanced Materials, 2017. 29(14): p. 1605884.
56. Gandhi, J.R., et al., Influence of GeP precipitates on the thermoelectric properties of P-type GeTe and Ge0.9−xPxSb0.1Te compounds. CrystEngComm, 2018. 20(41): p. 6449-6457.
57. Liu, Y., et al., Recent Advances of Layered Thermoelectric Materials. Advanced Sustainable Systems. 0(0): p. 1800046.
58. Liu, Y., et al., Crystallographically Textured Nanomaterials Produced from the Liquid Phase Sintering of BixSb2–xTe3 Nanocrystal Building Blocks. Nano Letters, 2018. 18(4): p. 2557-2563.
59. Colaitis, D., et al., High-resolution electron microscopic and electron diffraction study of non-stoichiometric phases in Cu3—xTe2. Physica Status Solidi (a), 1980. 58(1): p. 271-288.
60. Mansour, B.A., et al., Transport properties and band structure of non-stoichiometric Cu2−xTe. Thin Solid Films, 1994. 247(1): p. 112-119.
61. Zhao, L.D., et al., BiCuSeO oxyselenides: new promising thermoelectric materials. Energy & Environmental Science 2014. 7, 2900-2924.
62. He, Y., et al., High thermoelectric performance in copper telluride. NPG Asia Materials, 2015. 7(8): p. e210-e210.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73152-
dc.description.abstract隨著地球資源的過度消耗與可預見的能源短缺問題,發展新的能源是迫在眉梢的任務。熱電元件是具有發展潛力的綠色能源,因其能直接將熱能與電能相互轉換。但是,過低的能量轉換效率是目前阻礙熱電元件發展及普及化的原因之一。當前熱電研究的重點包括提升其熱電優值(ZT),與探討熱電材料的物理、化學機制。鉍碲銅氧(BiCuTeO)近年來的研究顯示該材料是具有潛力的熱電材料,適合被使用在中溫區(500~900 ºC)的應用中。在本論文中,利用調控鉍、碲、銅、氧四個元素的比例,並分別利用冷壓碇(Cold press)與熱壓碇(Hot press)技術,達到增進鉍碲銅氧塊材的熱電表現的目的。
材料的分析包含晶體結構,成份分析,以及熱電特性。由霍爾量測的結果顯示出鉍碲銅氧材料為P型半導體。X光晶體繞射顯示出該材料為多晶材料,而且,隨著元素的量調控,X光繞射圖譜中的雜項強度也跟著改變,表示雜項在樣品裡的比例有改變的趨勢。另外,不但主相裡的元素比例與所占樣品百分比跟著改變,樣品的顆粒大小也跟著變化。這些改變都會影響樣品的熱電表現。這些都會在這本論文裡有詳細的探討。
zh_TW
dc.description.abstractThermoelectric (TE) devices that are used to convert waste heat directly into electricity address some of the problems of the prevailing energy crisis and global climate-change issues. Of the various TE materials that are available, metal oxides exhibit high thermal and chemical stability in air, so they are suited to many TE applications. However, in the mid-temperature region (from 500~900 ºC), most feature a TE figure of merit (ZT) that is less than the required value of 2. BiCuTeO is a good thermoelectric material, because it features an intrinsically low thermal conductivity and higher carrier concentration than BiCuSeO. This study manipulates the elemental composition in BiCuTeO to improve the thermoelectric performance of BiCuTeO. XRD and EPMA are used to determine the characteristics of samples and the thermoelectric properties are determined using ZEM and LFA. It is concluded that the manipulation of the elemental composition affects the fractional ratio and the properties of the secondary phases of a sample, which alters the thermoelectric performance of the sample. This study gives a detailed characterization and a discussion of the effect of manipulating the nominal elemental composition of BiCuTeO. The findings of this study are relevant to the search for novel high-performance TE materials.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:19:51Z (GMT). No. of bitstreams: 1
ntu-108-D01943020-1.pdf: 8474652 bytes, checksum: 08d0cae51f6d8f8b8bf29b80d6b74eca (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書
誌謝…………………………………………………………………………………………………………………………………………………I
中文摘要………………………………………………………………………………………………………………………………………II
Abstract...…………………………………………………………………………………………………………………………III
Table of Contents……………………………………………………………………………………………………………IV
List of Figures………………………………………………………………………………………………………………VII
List of Tables………………………………………………………………………………………………………………XIII
Chapter 1 Background and Motivation………………………………………………………………1
Chapter 2 Overview of BiCuTeO………………………………………………………………………………7
2.1 Introduction of BiCuTeO……………………………………………………………………………………7
2.2 Strategies to Increase the Thermoelectric Performance……9
2.2.1 Increasing the Seebeck Coefficient……………………9
2.2.2 Maintaining the Carrier Mobility…………………………9
2.2.3 Decreasing the Lattice Thermal Conductivity………………………10
Chapter 3 Experimental and Analysis Techniques………………………………15
3.1 Synthesis………………………………………………………………………………………………………………………15
3.2 Pelletizing Samples……………………………………………………………………………………………15
3.2.1 Cold Pressing Technique……………………………………………………………………15
3.2.2 Hot Pressing Technique…………………………………………………………………………16
3.3 X-ray Powder Diffraction (XRD)………………………………………………………………17
3.4 ZEM-3…………………………………………………………………………………………………………………………………18
3.5 Laser Flash Analysis (LFA)…………………………………………………………………………19
3.6 Archimedes Method…………………………………………………………………………………………………20
3.7 Field Emission Electron Probe Microanalyzer (FE-EPMA)…21
3.8 Hall Measurement……………………………………………………………………………………………………21
Chapter 4 Study of the Effect of a Change in the Elemental Composition of BiCuTeO………………………………………………………………………………………………23
4.1 Preparation of BiCuxTeO, BixCuTeO, BiCuTexO, BiCuTeOx and (BiCu)xTeO (x=0.94-1.06)………………………………………………………………………………23
4.1.1 Flow Chart for the Synthesis………………………………………………………………23
4.1.2 Calculation of the Stoichiometric Ratio for the 5 batches: BiCuxTeO, BixCuTeO, BiCuTexO, BiCuTeOx and (BiCu)xTeO………………………………………………………………………………………………………………………………………………24
4.2 Characterization of theStructure……………………………………25
4.2.1 BiCuxTeO (x=0.94-1.06) ………………………………………………26
4.2.2 BixCuTeO (x=0.94-1.06) ………………………………………………30
4.2.3 BiCuTexO (x=0.94-1.06) ………………………………………………34
4.2.4 BiCuTeOx (x=0.94-1.06) ………………………………………………38
4.2.5 (BiCu)xTeO (x=0.94-1.06) …………………………………………42
4.3 Thermoelectric Properties………………………………………………………46
4.3.1 Electrical Conductivity (σ)……………………………………46
4.3.2 The Seebeck Coefficient (S) …………………………………50
4.3.3 Power Factor (PF) ……………………………………………………………52
4.3.4 Electronic Thermal Conductivity (κe)……………54
4.3.5 Lattice Thermal Conductivity (κL)……………………56
4.3.6 Thermal Conductivity (κ)……………………………………………58
4.3.7 Figure of Merit (ZT)………………………………………………………60
4.4 Summary……………………………………………………………………………………………………………………………62
Chapter 5 Study of the Bi and O Manipulations on BiCuTeO……63
5.1 Preparation of (BiO)xCuTe (x=0.94-1.06)………………………………………63
5.1.1 Flow Chart of the Synthesis Process……………………………………63
5.1.2 Calculation of the Stoichiometric Ratio of (BiO)xCuTe (x=0.94-1.06)………………………………………………………………………………………………………64
5.2 Results and Discussion………………………………………………………………………………………………………………………………65
5.3 Summary………………………………………………………………………………………………………………………………………75
Chapter 6 Increasing the Thermoelectric Performance of BiCuTeO by Addition of Excess Bi……………………………………………………………………76
6.1 Preparation of BixCuTeO (x=1.00-1.08)……………………………………………76
6.1.1 Flow Chart of the Synthesis Process……………………………………76
6.1.2 Calculation of the Stoichiometric Ratio of BixCuTeO (x=1.00-1.08)………………………………………………………………………………………………77
6.2 Results and Discussion……………………………………………………………………………………78
6.3 Summary……………………………………………………………………………………………………………………………86
Chapter 7 Significant Improvements in the Thermoelectric Performance of the BiCuTeO System by Oxygen Reduction……………87
7.1 Preparation of BiCuTeOx(x=0.84-1.00)………………………………………………87
7.1.1 Flow Chart of the Synthesis…………………………………………………………87
7.1.2 Calculation of the Stoichiometric Ratio of BiCuTeOx(x=0.84-1.00)………………………………………………………………………………………………………………………88
7.2 Results and Discussion……………………………………………………………………………………88
7.3 Summary……………………………………………………………………………………………………………………………95
Chapter 8 Conclusions…………………………………………………………………………………………………97
References……………………………………………………………………………………………………………………………98
dc.language.isoen
dc.subject冷壓碇zh_TW
dc.subject熱電優值zh_TW
dc.subject熱傳zh_TW
dc.subject鉍碲銅氧zh_TW
dc.subject熱電zh_TW
dc.subject熱壓碇zh_TW
dc.subjectThermoelectricen
dc.subjectBiCuTeOen
dc.subjectThermal conductivityen
dc.subjectCold pressen
dc.subjectHot pressen
dc.title元素成分調控於鉍銻銅氧之熱電特性探討zh_TW
dc.titleInfluence of Element Manipulation on the Thermoelectric Properties of BiCuTeOen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree博士
dc.contributor.coadvisor林麗瓊(Li-Chyong Chen),陳貴賢(Kuei-Hsien Chen)
dc.contributor.oralexamcommittee廖建能(Chien-Neng Liao),陳俊維(Chun-Wei Chen)
dc.subject.keyword熱電,鉍碲銅氧,熱傳,熱電優值,冷壓碇,熱壓碇,zh_TW
dc.subject.keywordThermoelectric,BiCuTeO,Thermal conductivity,Cold press,Hot press,en
dc.relation.page100
dc.identifier.doi10.6342/NTU201901177
dc.rights.note有償授權
dc.date.accepted2019-07-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
8.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved