請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7313完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧奕璋 | zh_TW |
| dc.contributor.advisor | Yi-Chang Lu | en |
| dc.contributor.author | 蕭芳宗 | zh_TW |
| dc.contributor.author | Fang-Tsung Hsiao | en |
| dc.date.accessioned | 2021-05-19T17:41:23Z | - |
| dc.date.available | 2024-07-01 | - |
| dc.date.copyright | 2019-07-17 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] S. Avidan and A. Shamir. Seam carving for content-aware image resizing. In ACM Transactions on graphics (TOG), volume 26, page 10. ACM, 2007.
[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: A randomized correspondence algorithm for structural image editing. In ACM Transactions on Graphics (ToG), volume 28, page 24. ACM, 2009. [3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. In Proceedings of the Seventh IEEE International Conference on Computer Vision, volume 1, pages 377–384. IEEE, 1999. [4] J. Canny. A computational approach to edge detection. In Readings in computer vision, pages 184–203. Elsevier, 1987. [5] K. Chaudhury, S. DiVerdi, and S. Ioffe. Auto-rectification of user photos. In 2014 IEEE International Conference on Image Processing (ICIP), pages 3479–3483. IEEE, 2014. [6] R. Chen, D. Freedman, Z. Karni, C. Gotsman, and L. Liu. Content-aware image resizing by quadratic programming. In 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pages 1–8. IEEE, 2010. [7] D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis & Machine Intelligence, (5):603–619, 2002. [8] W. Dong, N. Zhou, T.-Y. Lee, F. Wu, Y. Kong, and X. Zhang. Summarization-based image resizing by intelligent object carving. IEEE transactions on visualization and computer graphics, 20(1):1–1, 2014. [9] W. Dong, N. Zhou, J.-C. Paul, and X. Zhang. Optimized image resizing using seam carving and scaling. In ACM Transactions on Graphics (TOG), volume 28, page 125. ACM, 2009. [10] W.-M. Dong, G.-B. Bao, X.-P. Zhang, and J.-C. Paul. Fast multi-operator image resizing and evaluation. Journal of Computer Science and Technology, 27(1):121–134, 2012. [11] R. O. Duda and P. E. Hart. Use of the hough transformation to detect lines and curves in pictures. Technical report, SRI International Menlo Park CA Artificial Intelligence Center, 1971. [12] K. He and J. Sun. Statistics of patch offsets for image completion. In European Conference on Computer Vision, pages 16–29. Springer, 2012. [13] J.-B. Huang, S. B. Kang, N. Ahuja, and J. Kopf. Image completion using planar structure guidance. ACM Transactions on graphics (TOG), 33(4):129, 2014. [14] Z. Karni, D. Freedman, and C. Gotsman. Energy-based image deformation. In Computer Graphics Forum, volume 28, pages 1257–1268. Wiley Online Library, 2009. [15] P. Krähenbühl, M. Lang, A. Hornung, and M. Gross. A system for retargeting of streaming video. In ACM Transactions on Graphics (TOG), volume 28, page 126. ACM, 2009. [16] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick. Graphcut textures: image and video synthesis using graph cuts. ACM Transactions on Graphics (ToG), 22(3):277–286, 2003. [17] D.G.Lowe.Distinctiveimagefeaturesfromscale-invariantkeypoints.International journal of computer vision, 60(2):91–110, 2004. [18] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from maximally stable extremal regions. Image and vision computing, 22(10):761–767, 2004. [19] D. Panozzo, O. Weber, and O. Sorkine. Robust image retargeting via axis-aligned deformation. In Computer Graphics Forum, volume 31, pages 229–236. Wiley On- line Library, 2012. [20] Y. Pritch, E. Kav-Venaki, and S. Peleg. Shift-map image editing. In 2009 IEEE 12th International Conference on Computer Vision, pages 151–158. IEEE, 2009. [21] M. Rubinstein, D. Gutierrez, O. Sorkine, and A. Shamir. A comparative study of image retargeting. In ACM transactions on graphics (TOG), volume 29, page 160. ACM, 2010. [22] M. Rubinstein, A. Shamir, and S. Avidan. Improved seam carving for video retar- geting. In ACM transactions on graphics (TOG), volume 27, page 16. ACM, 2008. [23] M. Rubinstein, A. Shamir, and S. Avidan. Multi-operator media retargeting. ACM Transactions on graphics (TOG), 28(3):23, 2009. [24] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Summarizing visual data using bidirectional similarity. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008. [25] Y.-S. Wang, C.-L. Tai, O. Sorkine, and T.-Y. Lee. Optimized scale-and-stretch for image resizing. In ACM Transactions on Graphics (TOG), volume 27, page 118. ACM, 2008. [26] Y. Wexler, E. Shechtman, and M. Irani. Space-time completion of video. IEEE Transactions on Pattern Analysis & Machine Intelligence, (3):463–476, 2007. [27] L. Wolf, M. Guttmann, and D. Cohen-Or. Non-homogeneous content-driven video- retargeting. In 2007 IEEE 11th International Conference on Computer Vision, pages 1–6. IEEE, 2007. [28] H. Wu, Y.-S. Wang, K.-C. Feng, T.-T. Wong, T.-Y. Lee, and P.-A. Heng. Resizing by symmetry-summarization. In ACM Transactions on Graphics (TOG), volume 29, page 159. ACM, 2010. [29] G.-X. Zhang, M.-M. Cheng, S.-M. Hu, and R. R. Martin. A shape-preserving ap- proach to image resizing. In Computer Graphics Forum, volume 28, pages 1897– 1906. Wiley Online Library, 2009. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7313 | - |
| dc.description.abstract | 影像縮放技術在數位影像處理上被廣泛的使用。除了傳統利用內插對影像均勻縮放或是手動裁切,許多基於內容感知影像縮放演算法陸續出現,裁切演算法可自動偵測重要區域,保留重要程度較高的區域作為裁切視窗,接縫剪裁演算法則找尋重要程度較少的接縫逐步刪除或複製以達到影像縮放,連續演算法利用扭曲的方式,允許較不重要的區域可以有較大的變形以保留重要區域的大小或比例,多運算子演算法結合不同種運算子,並建立評分機制得到分數最高的輸出影像。以上大多使用低層次資訊為重要程度,例如顏色對比、梯度和熵。
然而上述理論容易因為忽略高層次資訊而導致影像失真,因此就有學者提出了基於高層次資訊的影像縮放演算法,其中之一為重複圖案,重複圖案在真實世界比比皆是,如窗戶或鐵絲網,相關演算法偵測重複圖案,並利用移除重複圖案來縮放影像,但偵測重複圖案時,不論亮度影響或是透視失真都容易造成偵測錯誤。基於此問題,本篇論文提出嶄新的演算法,主要特點有二,第一,一般來說移除重複圖案需要偵測出重複單元的位置或是輪廓,這是個非常容易偵測錯誤的問題,本篇論文不需要偵測出其位置或輪廓,只需計算出重複單元之間的規律性單位即可移除重複圖案。另外,本篇論文提出規律性單位偵測演算法,利用統計的方式偵測出重複單元在矯正仿射空間中的規律間隔,即規律性單位。總結來說,本篇論文提出更加穩定的藉由移除重複圖案縮放影像之演算法,對於大部分具有重複圖案之影像都能得到很好的結果。 | zh_TW |
| dc.description.abstract | Image resizing has been widely used in digital image processing. Besides uniform scaling via interpolation or cropping manually by user, many content-aware based image resizing algorithms have been proposed. Cropping methods detect important regions automatically, and retain the most important region as the cropping window. Seam carving (SC) methods find the least important seam, and remove or duplicate it step by step to resize the image. Continuous methods resize image through warping, preserving the sizes or aspect ratios of important objects by allowing less important regions to be squeezed or stretched. Multi-operator (Multi-Op) methods combine with different operators and use assessment of the targeted image to find the optimal path for the best result. Above methods use low-level-information-based important maps, such as color contrast, gradient, and entropy.
However, these methods may result in obvious distortion because of the absence of high-level information. To avoid this problem, some studies take high-level semantics into account. One of them is the regular structure. It exists everywhere in the world, such as windows or barbed wire. These methods detect repeat patterns, and resize images by removing them. However, it is difficult and unstable to detect repeat patterns which are illuminated by different lighting conditions and viewed from different perspectives. To mitigate this problem, we propose a novel algorithm to resize image through removing repeated patterns. In the past, it is necessary to detect certain locations or contours of repeated patterns before removing the repeated pattern. In this thesis, instead of obtaining certain information which is difficult to detect, we just need to find the regularity unit which is easier and more stable to find on the repeated patterns. In addition, we propose a robust and effective algorithm to detect regularity unit in 3D structure by statistics. In summary, we propose a robust algorithm to detect regularity unit and use it to resize an image by removing repeated patterns. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:41:23Z (GMT). No. of bitstreams: 1 ntu-108-R06943121-1.pdf: 39516655 bytes, checksum: 478c6b84540eba8fb72a52e4231a3281 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 iii
摘要 v Abstract vii 1 緒論1 1.1 背景 1 1.2 相關研究 4 1.2.1 影像縮放(Image Resizing) 4 1.2.2 影像總結(Image Summarization) 4 1.3 本篇論文之演算法 5 1.4 論文架構 6 2 平面與規律性偵測 7 2.1 演算法概述 7 2.2 平面偵測 8 2.3 規律性偵測 12 3 規律性單位計算 15 3.1 建立計數圖 18 3.2 區域極大值偵測 18 3.3 藉由十字線偵測尋找平面結構規律位移向量 20 3.4 近似最大公因數偵測 24 3.5 加權近似最大公因數偵測 26 3.6 規律性單位優化 32 4 影像合成 37 5 實驗結果 49 5.1 與其它論文結果之比較 49 5.1.1 與[25] 和[15] 之比較 49 5.1.2 與[23] 之比較 49 5.1.3 與[20] 之比較 53 5.1.4 與[24] 之比較 53 5.1.5 與[28] 之比較 53 5.1.6 與[8] 之比較 53 5.2 本篇論文之其它結果 54 6 結論57 6.1 結論 57 6.2 未來展望 57 Bibliography 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 重複圖案移除 | zh_TW |
| dc.subject | 影像總結 | zh_TW |
| dc.subject | 影像縮放 | zh_TW |
| dc.subject | repeated pattern removal | en |
| dc.subject | Image resizing | en |
| dc.subject | image summarization | en |
| dc.title | 利用平面結構引導方法移除重複圖案之總結式影像縮放演算法 | zh_TW |
| dc.title | Summarization-Based Image Resizing with Planar Structure Guidance for Repeated Pattern Removal | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王鈺強;丁建均 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Chiang Wang;Jian-Jiun Ding | en |
| dc.subject.keyword | 影像縮放,影像總結,重複圖案移除, | zh_TW |
| dc.subject.keyword | Image resizing,image summarization,repeated pattern removal, | en |
| dc.relation.page | 62 | - |
| dc.identifier.doi | 10.6342/NTU201901442 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-07-15 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| dc.date.embargo-lift | 2024-07-01 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 38.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
