Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73094
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐丞志
dc.contributor.authorHsin-Yuan Changen
dc.contributor.author張心媛zh_TW
dc.date.accessioned2021-06-17T07:17:14Z-
dc.date.available2024-07-25
dc.date.copyright2019-07-25
dc.date.issued2019
dc.date.submitted2019-07-12
dc.identifier.citation1. Tyagi, S.; Raghvendra, S. U.; Kalra, T.; Munjal, K., Applications of metabolomics-a systematic study of the unique chemical fingerprints: an overview. Int. J. Pharm. Sci. Rev. Res 2010, 3 (1), 83-86.
2. Pearson, H., Meet the human metabolome. Nature Publishing Group: 2007.
3. Samuelsson, L. M.; Larsson, D. J., Contributions from metabolomics to fish research. Molecular BioSystems 2008, 4 (10), 974-979.
4. Bentley, R., Secondary metabolite biosynthesis: the first century. Critical reviews in biotechnology 1999, 19 (1), 1-40.
5. Roberts, L. D.; Souza, A. L.; Gerszten, R. E.; Clish, C. B., Targeted metabolomics. Current protocols in molecular biology 2012, 98 (1), 30.2. 1-30.2. 24.
6. Targeted Metabolomics. http://www.fgcz.ch/omics_areas/met/applications/lcms-dda-of-metabolites---lipids1.html.
7. Vinayavekhin, N.; Saghatelian, A., Untargeted metabolomics. Current protocols in molecular biology 2010, 90 (1), 30.1. 1-30.1. 24.
8. Taleuzzaman, M.; Ali, S.; Gilani, S.; Imam, S.; Hafeez, A., Ultra performance liquid chromatography (UPLC)–a review. Austin J Anal Pharm Chem 2015, 2 (6), 1056.
9. Sparkman, O. D.; Price, P., Mass spectrometry desk reference. 2006.
10. Yamashita, M.; Fenn, J. B., Electrospray ion source. Another variation on the free-jet theme. The Journal of Physical Chemistry 1984, 88 (20), 4451-4459.
11. Ho, C. S.; Lam, C.; Chan, M.; Cheung, R.; Law, L.; Lit, L.; Ng, K.; Suen, M.; Tai, H., Electrospray ionisation mass spectrometry: principles and clinical applications. The Clinical Biochemist Reviews 2003, 24 (1), 3.
12. Hu, Q.; Noll, R. J.; Li, H.; Makarov, A.; Hardman, M.; Graham Cooks, R., The Orbitrap: a new mass spectrometer. Journal of mass spectrometry 2005, 40 (4), 430-443.
13. Dass, C. Tandem Mass Spectrometry.
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470118498.ch4.
14. de Hoffmann, E., Tandem mass spectrometry: a primer. Journal of mass spectrometry 1996, 31 (2), 129-137.
15. Anderson, L.; Hunter, C. L., Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Molecular & Cellular Proteomics 2006, 5 (4), 573-588.
16. Faktor, J.; Dvorakova, M.; Maryas, J.; Struharova, I.; Bouchal, P., Identification and characterisation of pro-metastatic targets, pathways and molecular complexes using a toolbox of proteomic technologies. Klin onkol 2012, 25 (Suppl 2), 2S70-2S77.
17. Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto-Knaan, T., Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature biotechnology 2016, 34 (8), 828.
18. Horai, H.; Arita, M.; Kanaya, S.; Nihei, Y.; Ikeda, T.; Suwa, K.; Ojima, Y.; Tanaka, K.; Tanaka, S.; Aoshima, K., MassBank: a public repository for sharing mass spectral data for life sciences. Journal of mass spectrometry 2010, 45 (7), 703-714.
19. Sawada, Y.; Nakabayashi, R.; Yamada, Y.; Suzuki, M.; Sato, M.; Sakata, A.; Akiyama, K.; Sakurai, T.; Matsuda, F.; Aoki, T., RIKEN tandem mass spectral database (ReSpect) for phytochemicals: a plant-specific MS/MS-based data resource and database. Phytochemistry 2012, 82, 38-45.
20. Martell, A.; Smith, R., The National Institute of Standards and Technology (NIST) Standard Reference Database 46, Version 6.0, Critically Selected Stability Constants of Metal Complexes. NIST: Gaithersburg, MD: 2001.
21. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003, 13 (11), 2498-504.
22. Duddington, C. L., Fungi that attack microscopic animals. The Botanical Review 1955, 21 (7), 377-439.
23. Pramer, D., Nematode-trapping fungi. Science 1964, 144 (3617), 382-388.
24. Clegg, C. J. M., D. G., Advanced Biology: Principles and Applications. 2006.
25. Fungi in Extreme Environments. In Environmental and Microbial Relationships, Kubicek, C. P.; Druzhinina, I. S., Eds. Springer Berlin Heidelberg: Berlin, Heidelberg, 2007; pp 85-103.
26. McSorley, R., ADAPTATIONS OF NEMATODES TO ENVIRONMENTAL EXTREMES. SPIE: 2003; Vol. 86, p 5.
27. Boddy, L., Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments. Mycologia 1999, 13-32.
28. Hsueh, Y.-P.; Gronquist, M. R.; Schwarz, E. M.; Nath, R. D.; Lee, C.-H.; Gharib, S.; Schroeder, F. C.; Sternberg, P. W., Nematophagous fungus Arthrobotrys oligospora mimics olfactory cues of sex and food to lure its nematode prey. Elife 2017, 6, e20023.
29. Nordbring‐Hertz, B., Jansson, H. and Tunlid, A. , Nematophagous Fungi. In eLS, 2011.
30. Butcher, R. A.; Fujita, M.; Schroeder, F. C.; Clardy, J., Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nature Chemical Biology 2007, 3, 420.
31. Srinivasan, J.; Kaplan, F.; Ajredini, R.; Zachariah, C.; Alborn, H. T.; Teal, P. E. A.; Malik, R. U.; Edison, A. S.; Sternberg, P. W.; Schroeder, F. C., A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 2008, 454, 1115.
32. Hsueh, Y. P.; Mahanti, P.; Schroeder, F. C.; Sternberg, P. W., Nematode-trapping fungi eavesdrop on nematode pheromones. Curr Biol 2013, 23 (1), 83-6.
33. Yang, J.; Wang, L.; Ji, X.; Feng, Y.; Li, X.; Zou, C.; Xu, J.; Ren, Y.; Mi, Q.; Wu, J.; Liu, S.; Liu, Y.; Huang, X.; Wang, H.; Niu, X.; Li, J.; Liang, L.; Luo, Y.; Ji, K.; Zhou, W.; Yu, Z.; Li, G.; Liu, Y.; Li, L.; Qiao, M.; Feng, L.; Zhang, K.-Q., Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation. PLOS Pathogens 2011, 7 (9), e1002179.
34. Wang, B.-L.; Chen, Y.-H.; He, J.-N.; Xue, H.-X.; Yan, N.; Zeng, Z.-J.; Bennett, J. W.; Zhang, K.-Q.; Niu, X.-M., Integrated Metabolomics and Morphogenesis Reveal Volatile Signaling of the Nematode-Trapping Fungus <span class='named-content genus-species' id='named-content-1'>Arthrobotrys oligospora</span>. Applied and Environmental Microbiology 2018, 84 (9), e02749-17.
35. Su, H.; Zhao, Y.; Zhou, J.; Feng, H.; Jiang, D.; Zhang, K. Q.; Yang, J., Trapping devices of nematode-trapping fungi: formation, evolution, and genomic perspectives. Biol Rev Camb Philos Soc 2017, 92 (1), 357-368.
36. Hauser, J., Nematode-Trapping Fungi. Carniverous Plant Newsletter 1985, 14, 8-11.
37. Drechsler, C., Some Hyphomycetes that Prey on Free-Living Terricolous Nematodes. Mycologia 1937, 29 (4), 447-552.
38. David Moore, G. D. R., Anthony P. J. Trinci, 21st Century Guidebook to Fungi with CD. 2011.
39. Ahren, D.; Tholander, M.; Fekete, C.; Rajashekar, B.; Friman, E.; Johansson, T.; Tunlid, A., Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiology 2005, 151 (3), 789-803.
40. Yang, Y.; Yang, E.; An, Z.; Liu, X., Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proceedings of the National Academy of sciences 2007, 104 (20), 8379-8384.
41. Dijksterhuis, J.; Harder, W.; Wyss, U.; Veenhuis, M., Colonization and digestion of nematodes by the endoparasitic nematophagous fungus Drechmeria coniospora. Mycological Research 1991, 95 (7), 873-878.
42. Biocontrol Agents of Phytonematodes. 2015.
43. ChunYan Wang, M. M., Xuan Li, BaoYu Tian , KeQin Zhang, Morphological characteristics and infection processes of nematophagous Harposporium with reference to two new species Fungal Diversity 2007, 26, 287-304.
44. E., Y. Worm-Eating Fungi Eavesdrop on the Chemicals of Their Prey.
45. Anderson, R. C., Nematode parasites of vertebrates: their development and transmission. Cabi: 2000.
46. Girard, L. R.; Fiedler, T. J.; Harris, T. W.; Carvalho, F.; Antoshechkin, I.; Han, M.; Sternberg, P. W.; Stein, L. D.; Chalfie, M., WormBook: the online review of Caenorhabditis elegans biology. Nucleic acids research 2006, 35 (suppl_1), D472-D475.
47. Dawkins, R.; Krebs, J. R., Arms races between and within species. Proceedings of the Royal Society of London. Series B. Biological Sciences 1979, 205 (1161), 489-511.
48. Niu, Q.; Huang, X.; Zhang, L.; Xu, J.; Yang, D.; Wei, K.; Niu, X.; An, Z.; Bennett, J. W.; Zou, C., A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proceedings of the National Academy of Sciences 2010, 107 (38), 16631-16636.
49. Meisel, J.; Panda, O.; Mahanti, P.; Schroeder, F.; Kim, D., Chemosensation of Bacterial Secondary Metabolites Modulates Neuroendocrine Signaling and Behavior of C. áelegans. Cell 2014, 159 (2), 267-280.
50. Von Reuss, S. H.; Bose, N.; Srinivasan, J.; Yim, J. J.; Judkins, J. C.; Sternberg, P. W.; Schroeder, F. C., Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. Journal of the American Chemical Society 2012, 134 (3), 1817-1824.
51. Kwok, O.; Plattner, R.; Weisleder, D.; Wicklow, D., A nematicidal toxin fromPleurotus ostreatus NRRL 3526. Journal of Chemical Ecology 1992, 18 (2), 127-136.
52. Stadler, M.; Mayer, A.; Anke, H.; Sterner, O., Fatty acids and other compounds with nematicidal activity from cultures of Basidiomycetes. Planta medica 1994, 60 (02), 128-132.
53. Li, G.; Wang, X.; Zheng, L.; Li, L.; Huang, R.; Zhang, K., Nematicidal metabolites from the fungusPleurotus ferulae Lenzi. Annals of microbiology 2007, 57 (4), 527.
54. Luo, H.; Liu, Y.; Fang, L.; Li, X.; Tang, N.; Zhang, K., Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes. Appl. Environ. Microbiol. 2007, 73 (12), 3916-3923.
55. Nordbring-Hertz, B., Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora-an extensive plasticity of infection structures. Mycologist 2004, 18 (3), 125-133.
56. Noga, E. J., Fish disease: diagnosis and treatment. John Wiley & Sons: 2010.
57. Campbell, W.; Fisher, M.; Stapley, E.; Albers-Schonberg, G.; Jacob, T., Ivermectin: a potent new antiparasitic agent. Science 1983, 221 (4613), 823-828.
58. Greene, B. M.; Taylor, H. R.; Cupp, E. W.; Murphy, R. P.; White, A. T.; Aziz, M. A.; Schulz-Key, H.; D'Anna, S. A.; Newland, H. S.; Goldschmidt, L. P., Comparison of ivermectin and diethylcarbamazine in the treatment of onchocerciasis. New England journal of medicine 1985, 313 (3), 133-138.
59. Larsen, M., Prospects for controlling animal parasitic nematodes by predacious micro fungi. Parasitology 2000, 120 (7), 121-131.
60. Gray, N., Ecology of nematophagous fungi: comparison of the soil sprinkling method with the Baermann funnel technique in the isolation of endoparasites. Soil Biology and Biochemistry 1984, 16 (1), 81-83.
61. Barrière, A.; Félix, M., Isolation of C. elegans and related nematodes (July 17, 2006), WormBook, ed. The C. elegansResearch Community, WormBook,/10.1895/wormbook. 1.115. 1. 2014.
62. Fay, D.; Bender, A., Genetic mapping and manipulation: Chapter 4-SNPs: Introduction and two-point mapping. WormBook 2006, 1-7.
63. Kiontke, K.; Gavin, N. P.; Raynes, Y.; Roehrig, C.; Piano, F.; Fitch, D. H., Caenorhabditis phylogeny predicts convergence of hermaphroditism and extensive intron loss. Proceedings of the National Academy of Sciences 2004, 101 (24), 9003-9008.
64. Martin, K. J.; Rygiewicz, P. T., Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC microbiology 2005, 5 (1), 28.
65. Nguyen, D. D.; Melnik, A. V.; Koyama, N.; Lu, X.; Schorn, M.; Fang, J.; Aguinaldo, K.; Lincecum Jr, T. L.; Ghequire, M. G.; Carrion, V. J., Indexing the Pseudomonas specialized metabolome enabled the discovery of poaeamide B and the bananamides. Nature microbiology 2017, 2 (1), 16197.
66. Kerk, G. v. d., Chemical and Biochemical Aspects of Systemic Fungicides. EPPO Bulletin 1973, 2 (10), 5-21.
67. Kerkenaar, A.; Uchiyama, M.; Versluis, G., Specific effects of tridemorph on sterol biosynthesis in Ustilago maydis. Pesticide Biochemistry and Physiology 1981, 16 (2), 97-104.
68. Berg, L. R.; Patterson, G. W.; Lusby, W. R., Effects of triarimol and tridemorph on sterol biosynthesis inSaprolegnia ferax. Lipids 1983, 18 (7), 448.
69. Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A. A.; Melnik, A. V.; Meusel, M.; Dorrestein, P. C.; Rousu, J.; Böcker, S., SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature methods 2019, 1.
70. Gill, S. R.; Pop, M.; DeBoy, R. T.; Eckburg, P. B.; Turnbaugh, P. J.; Samuel, B. S.; Gordon, J. I.; Relman, D. A.; Fraser-Liggett, C. M.; Nelson, K. E., Metagenomic analysis of the human distal gut microbiome. science 2006, 312 (5778), 1355-1359.
71. Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K. S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T., A human gut microbial gene catalogue established by metagenomic sequencing. nature 2010, 464 (7285), 59.
72. Power, S. E.; O'Toole, P. W.; Stanton, C.; Ross, R. P.; Fitzgerald, G. F., Intestinal microbiota, diet and health. British Journal of Nutrition 2014, 111 (3), 387-402.
73. Hold, G. L.; Pryde, S. E.; Russell, V. J.; Furrie, E.; Flint, H. J., Assessment of microbial diversity in human colonic samples by 16S rDNA sequence analysis. FEMS microbiology ecology 2002, 39 (1), 33-39.
74. Goldstein, A.; Hofstra, R.; Burns, A., Building a brain in the gut: development of the enteric nervous system. Clinical genetics 2013, 83 (4), 307-316.
75. Gershon, M. D., The enteric nervous system: a second brain. Hospital Practice 1999, 34 (7), 31-52.
76. Mayer, E. A.; Tillisch, K.; Gupta, A., Gut/brain axis and the microbiota. The Journal of clinical investigation 2015, 125 (3), 926-938.
77. Rhee, S. H.; Pothoulakis, C.; Mayer, E. A., Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009, 6 (5), 306-14.
78. Mayer, E. A., Gut feelings: the emerging biology of gut–brain communication. Nature Reviews Neuroscience 2011, 12 (8), 453.
79. Cryan, J. F.; Dinan, T. G., Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews neuroscience 2012, 13 (10), 701.
80. de Vos, W. M.; de Vos, E. A., Role of the intestinal microbiome in health and disease: from correlation to causation. Nutrition reviews 2012, 70 (suppl_1), S45-S56.
81. Scheperjans, F.; Aho, V.; Pereira, P. A.; Koskinen, K.; Paulin, L.; Pekkonen, E.; Haapaniemi, E.; Kaakkola, S.; Eerola-Rautio, J.; Pohja, M.; Kinnunen, E.; Murros, K.; Auvinen, P., Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord 2015, 30 (3), 350-8.
82. Minter, M. R.; Zhang, C.; Leone, V.; Ringus, D. L.; Zhang, X.; Oyler-Castrillo, P.; Musch, M. W.; Liao, F.; Ward, J. F.; Holtzman, D. M.; Chang, E. B.; Tanzi, R. E.; Sisodia, S. S., Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer's disease. Sci Rep 2016, 6, 30028.
83. Simrén, M.; Barbara, G.; Flint, H. J.; Spiegel, B. M.; Spiller, R. C.; Vanner, S.; Verdu, E. F.; Whorwell, P. J.; Zoetendal, E. G., Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 2013, 62 (1), 159-176.
84. Camilleri, M.; Lasch, K.; Zhou, W., Irritable Bowel Syndrome: Methods, Mechanisms, and. Am J Physiol Gastrointest Liver Physiol 2012, 303, G775-G785.
85. Matricon, J.; Meleine, M.; Gelot, A.; Piche, T.; Dapoigny, M.; Muller, E.; Ardid, D., Associations between immune activation, intestinal permeability and the irritable bowel syndrome. Alimentary pharmacology & therapeutics 2012, 36 (11-12), 1009-1031.
86. Round, J. L.; Mazmanian, S. K., The gut microbiota shapes intestinal immune responses during health and disease. Nature reviews immunology 2009, 9 (5), 313.
87. Forsythe, P.; Kunze, W. A., Voices from within: gut microbes and the CNS. Cellular and molecular life sciences 2013, 70 (1), 55-69.
88. Kaser, A.; Lee, A.-H.; Franke, A.; Glickman, J. N.; Zeissig, S.; Tilg, H.; Nieuwenhuis, E. E.; Higgins, D. E.; Schreiber, S.; Glimcher, L. H., XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008, 134 (5), 743-756.
89. Sokol, H.; Pigneur, B.; Watterlot, L.; Lakhdari, O.; Bermúdez-Humarán, L. G.; Gratadoux, J.-J.; Blugeon, S.; Bridonneau, C.; Furet, J.-P.; Corthier, G., Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences 2008, 105 (43), 16731-16736.
90. Png, C. W.; Lindén, S. K.; Gilshenan, K. S.; Zoetendal, E. G.; McSweeney, C. S.; Sly, L. I.; McGuckin, M. A.; Florin, T. H., Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. The American journal of gastroenterology 2010, 105 (11), 2420.
91. Sobhani, I.; Tap, J.; Roudot-Thoraval, F.; Roperch, J. P.; Letulle, S.; Langella, P.; Corthier, G.; Tran Van Nhieu, J.; Furet, J. P., Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 2011, 6 (1), e16393.
92. Wang, T.; Cai, G.; Qiu, Y.; Fei, N.; Zhang, M.; Pang, X.; Jia, W.; Cai, S.; Zhao, L., Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J 2012, 6 (2), 320-9.
93. Salonen, A.; de Vos, W. M.; Palva, A., Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 2010, 156 (Pt 11), 3205-15.
94. Grehan, M. J.; Borody, T. J.; Leis, S. M.; Campbell, J.; Mitchell, H.; Wettstein, A., Durable alteration of the colonic microbiota by the administration of donor fecal flora. J Clin Gastroenterol 2010, 44 (8), 551-61.
95. Lozupone, C. A.; Stombaugh, J. I.; Gordon, J. I.; Jansson, J. K.; Knight, R., Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489 (7415), 220.
96. Conlon, M. A.; Bird, A. R., The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014, 7 (1), 17-44.
97. Wu, G. D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S. A.; Bewtra, M.; Knights, D.; Walters, W. A.; Knight, R., Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334 (6052), 105-108.
98. Sullivan, Å.; Edlund, C.; Nord, C. E., Effect of antimicrobial agents on the ecological balance of human microflora. The Lancet infectious diseases 2001, 1 (2), 101-114.
99. Kohanski, M. A.; Dwyer, D. J.; Collins, J. J., How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology 2010, 8 (6), 423.
100. Jakobsson, H. E.; Jernberg, C.; Andersson, A. F.; Sjölund-Karlsson, M.; Jansson, J. K.; Engstrand, L., Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PloS one 2010, 5 (3), e9836.
101. Claesson, M. J.; Cusack, S.; O'Sullivan, O.; Greene-Diniz, R.; de Weerd, H.; Flannery, E.; Marchesi, J. R.; Falush, D.; Dinan, T.; Fitzgerald, G.; Stanton, C.; van Sinderen, D.; O'Connor, M.; Harnedy, N.; O'Connor, K.; Henry, C.; O'Mahony, D.; Fitzgerald, A. P.; Shanahan, F.; Twomey, C.; Hill, C.; Ross, R. P.; O'Toole, P. W., Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A 2011, 108 Suppl 1, 4586-91.
102. Claesson, M. J.; Jeffery, I. B.; Conde, S.; Power, S. E.; O'Connor, E. M.; Cusack, S.; Harris, H. M.; Coakley, M.; Lakshminarayanan, B.; O'Sullivan, O.; Fitzgerald, G. F.; Deane, J.; O'Connor, M.; Harnedy, N.; O'Connor, K.; O'Mahony, D.; van Sinderen, D.; Wallace, M.; Brennan, L.; Stanton, C.; Marchesi, J. R.; Fitzgerald, A. P.; Shanahan, F.; Hill, C.; Ross, R. P.; O'Toole, P. W., Gut microbiota composition correlates with diet and health in the elderly. Nature 2012, 488 (7410), 178-84.
103. Lyu, Q.; Hsu, C.-C., Can Diet Influence Our Health by Altering Intestinal Microbiota-Derived Fecal Metabolites? MSystems 2018, 3 (2), e00187-17.
104. David, L. A.; Maurice, C. F.; Carmody, R. N.; Gootenberg, D. B.; Button, J. E.; Wolfe, B. E.; Ling, A. V.; Devlin, A. S.; Varma, Y.; Fischbach, M. A.; Biddinger, S. B.; Dutton, R. J.; Turnbaugh, P. J., Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505 (7484), 559-63.
105. Wu, G. D.; Chen, J.; Hoffmann, C.; Bittinger, K.; Chen, Y. Y.; Keilbaugh, S. A.; Bewtra, M.; Knights, D.; Walters, W. A.; Knight, R.; Sinha, R.; Gilroy, E.; Gupta, K.; Baldassano, R.; Nessel, L.; Li, H.; Bushman, F. D.; Lewis, J. D., Linking long-term dietary patterns with gut microbial enterotypes. Science 2011, 334 (6052), 105-8.
106. Duncan, S. H.; Belenguer, A.; Holtrop, G.; Johnstone, A. M.; Flint, H. J.; Lobley, G. E., Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 2007, 73 (4), 1073-1078.
107. Brinkworth, G. D.; Noakes, M.; Clifton, P. M.; Bird, A. R., Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. British journal of nutrition 2009, 101 (10), 1493-1502.
108. Ley, R. E.; Backhed, F.; Turnbaugh, P.; Lozupone, C. A.; Knight, R. D.; Gordon, J. I., Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 2005, 102 (31), 11070-5.
109. Zhang, C.; Zhang, M.; Wang, S.; Han, R.; Cao, Y.; Hua, W.; Mao, Y.; Zhang, X.; Pang, X.; Wei, C., Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. The ISME journal 2010, 4 (2), 232.
110. Waldram, A.; Holmes, E.; Wang, Y.; Rantalainen, M.; Wilson, I. D.; Tuohy, K. M.; McCartney, A. L.; Gibson, G. R.; Nicholson, J. K., Top-down systems biology modeling of host metabotype− microbiome associations in obese rodents. Journal of proteome research 2009, 8 (5), 2361-2375.
111. Ley, R. E.; Turnbaugh, P. J.; Klein, S.; Gordon, J. I., Microbial ecology: human gut microbes associated with obesity. Nature 2006, 444 (7122), 1022-3.
112. Turnbaugh, P. J.; Ley, R. E.; Mahowald, M. A.; Magrini, V.; Mardis, E. R.; Gordon, J. I., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444 (7122), 1027-31.
113. Santacruz, A.; Collado, M. C.; Garcia-Valdes, L.; Segura, M.; Martin-Lagos, J.; Anjos, T.; Marti-Romero, M.; Lopez, R.; Florido, J.; Campoy, C., Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. British Journal of Nutrition 2010, 104 (1), 83-92.
114. Mitra, S. N.; Dey, S.; Bhatia, S.; Singh, T. P., Design of peptides: synthesis, crystal structure and molecular conformation of N-Boc-L-Val-delta Phe-L-Val-OC H3. Int J Biol Macromol 1996, 19 (2), 103-12.
115. Kalliomaki, M.; Collado, M. C.; Salminen, S.; Isolauri, E., Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 2008, 87 (3), 534-8.
116. Larsen, N.; Vogensen, F. K.; Van Den Berg, F. W.; Nielsen, D. S.; Andreasen, A. S.; Pedersen, B. K.; Al-Soud, W. A.; Sørensen, S. J.; Hansen, L. H.; Jakobsen, M., Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PloS one 2010, 5 (2), e9085.
117. Ridaura, V. K.; Faith, J. J.; Rey, F. E.; Cheng, J.; Duncan, A. E.; Kau, A. L.; Griffin, N. W.; Lombard, V.; Henrissat, B.; Bain, J. R.; Muehlbauer, M. J.; Ilkayeva, O.; Semenkovich, C. F.; Funai, K.; Hayashi, D. K.; Lyle, B. J.; Martini, M. C.; Ursell, L. K.; Clemente, J. C.; Van Treuren, W.; Walters, W. A.; Knight, R.; Newgard, C. B.; Heath, A. C.; Gordon, J. I., Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341 (6150), 1241214.
118. Abu-Shanab, A.; Quigley, E. M., The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2010, 7 (12), 691-701.
119. Mouzaki, M.; Comelli, E. M.; Arendt, B. M.; Bonengel, J.; Fung, S. K.; Fischer, S. E.; McGilvray, I. D.; Allard, J. P., Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013, 58 (1), 120-127.
120. Kaiko, G. E.; Ryu, S. H.; Koues, O. I.; Collins, P. L.; Solnica-Krezel, L.; Pearce, E. J.; Pearce, E. L.; Oltz, E. M.; Stappenbeck, T. S., The colonic crypt protects stem cells from microbiota-derived metabolites. Cell 2016, 165 (7), 1708-1720.
121. Schroeder, B. O.; Bäckhed, F., Signals from the gut microbiota to distant organs in physiology and disease. Nature medicine 2016, 22 (10), 1079.
122. Medzhitov, R., Recognition of microorganisms and activation of the immune response. Nature 2007, 449 (7164), 819.
123. Wang, Z.; Klipfell, E.; Bennett, B. J.; Koeth, R.; Levison, B. S.; DuGar, B.; Feldstein, A. E.; Britt, E. B.; Fu, X.; Chung, Y.-M., Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472 (7341), 57.
124. Dumas, M.-E.; Barton, R. H.; Toye, A.; Cloarec, O.; Blancher, C.; Rothwell, A.; Fearnside, J.; Tatoud, R.; Blanc, V.; Lindon, J. C., Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the national academy of sciences 2006, 103 (33), 12511-12516.
125. Perry, R. J.; Peng, L.; Barry, N. A.; Cline, G. W.; Zhang, D.; Cardone, R. L.; Petersen, K. F.; Kibbey, R. G.; Goodman, A. L.; Shulman, G. I., Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 2016, 534 (7606), 213.
126. Samuel, B. S.; Shaito, A.; Motoike, T.; Rey, F. E.; Backhed, F.; Manchester, J. K.; Hammer, R. E.; Williams, S. C.; Crowley, J.; Yanagisawa, M., Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proceedings of the National Academy of Sciences 2008, 105 (43), 16767-16772.
127. Swann, J. R.; Want, E. J.; Geier, F. M.; Spagou, K.; Wilson, I. D.; Sidaway, J. E.; Nicholson, J. K.; Holmes, E., Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. Proceedings of the National Academy of Sciences 2011, 108 (Supplement 1), 4523-4530.
128. Chimerel, C.; Emery, E.; Summers, D. K.; Keyser, U.; Gribble, F. M.; Reimann, F., Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell reports 2014, 9 (4), 1202-1208.
129. Shimada, Y.; Kinoshita, M.; Harada, K.; Mizutani, M.; Masahata, K.; Kayama, H.; Takeda, K., Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PloS one 2013, 8 (11), e80604.
130. Beaumont, M.; Neyrinck, A. M.; Olivares, M.; Rodriguez, J.; de Rocca Serra, A.; Roumain, M.; Bindels, L. B.; Cani, P. D.; Evenepoel, P.; Muccioli, G. G., The gut microbiota metabolite indole alleviates liver inflammation in mice. The FASEB Journal 2018, 32 (12), 6681-6693.
131. Zhao, X.; Higashikawa, F.; Noda, M.; Kawamura, Y.; Matoba, Y.; Kumagai, T.; Sugiyama, M., The obesity and fatty liver are reduced by plant-derived Pediococcus pentosaceus LP28 in high fat diet-induced obese mice. PLoS One 2012, 7 (2), e30696.
132. Higashikawa, F.; Noda, M.; Awaya, T.; Danshiitsoodol, N.; Matoba, Y.; Kumagai, T.; Sugiyama, M., Antiobesity effect of Pediococcus pentosaceus LP28 on overweight subjects: a randomized, double-blind, placebo-controlled clinical trial. European journal of clinical nutrition 2016, 70 (5), 582.
133. Mack, D. R., Probiotics-mixed messages. Can Fam Physician 2005, 51, 1455-7, 1462-4.
134. Anhê, F. F.; Roy, D.; Pilon, G.; Dudonné, S.; Matamoros, S.; Varin, T. V.; Garofalo, C.; Moine, Q.; Desjardins, Y.; Levy, E., A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 2015, 64 (6), 872-883.
135. Lyu, Q.; Kuo, T.-H.; Sun, C.; Chen, K.; Hsu, C.-C.; Li, X., Comprehensive structural characterization of phenolics in litchi pulp using tandem mass spectral molecular networking. Food chemistry 2019, 282, 9-17.
136. Seng, P.; Drancourt, M.; Gouriet, F.; La Scola, B.; Fournier, P. E.; Rolain, J. M.; Raoult, D., Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 2009, 49 (4), 543-51.
137. Choi, Y. J.; Shin, H. S.; Choi, H. S.; Park, J. W.; Jo, I.; Oh, E. S.; Lee, K. Y.; Lee, B. H.; Johnson, R. J.; Kang, D. H., Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Invest 2014, 94 (10), 1114-25.
138. Orellana, E. A.; Kasinski, A. L., Sulforhodamine B (SRB) Assay in Cell Culture to Investigate Cell Proliferation. Bio Protoc 2016, 6 (21).
139. Choi, Y.-J.; Shin, H.-S.; Choi, H. S.; Park, J.-W.; Jo, I.; Oh, E.-S.; Lee, K.-Y.; Lee, B.-H.; Johnson, R. J.; Kang, D.-H., Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Laboratory investigation 2014, 94 (10), 1114.
140. Kepert, I.; Fonseca, J.; Müller, C.; Milger, K.; Hochwind, K.; Kostric, M.; Fedoseeva, M.; Ohnmacht, C.; Dehmel, S.; Nathan, P., D-tryptophan from probiotic bacteria influences the gut microbiome and allergic airway disease. Journal of Allergy and Clinical Immunology 2017, 139 (5), 1525-1535.
141. Dai, X.; Zhou, E.; Yang, W.; Zhang, X.; Zhang, W.; Rao, Y., D-Serine made by serine racemase in Drosophila intestine plays a physiological role in sleep. Nature communications 2019, 10 (1), 1986.
142. Sasabe, J.; Miyoshi, Y.; Rakoff-Nahoum, S.; Zhang, T.; Mita, M.; Davis, B. M.; Hamase, K.; Waldor, M. K., Interplay between microbial d-amino acids and host d-amino acid oxidase modifies murine mucosal defence and gut microbiota. Nature microbiology 2016, 1 (10), 16125.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73094-
dc.description.abstract代謝組學是涉及代謝物、小分子中間體和新陳代謝產物於化學過程的研究。而代謝組學所提供的訊息與表型較有直接相關。其分類和量化生物體中發現的無數小分子,以研究複雜生物系統中的代謝特徵變化。為了理解未知代謝物與生物體之間的相互作用,我們使用液相層析結合串聯質譜(LC-MS / MS)方法為基礎以利用MS/MS圖譜結果與數據庫進行比較,通過非靶向代謝組學分析鑑定調節變化的代謝物。
在我的研究論文中的其中一個主題是與中研院分子生物所薛雁冰博士合作的項目:探索線蟲捕獲真菌(NTF)的代謝產物。我們發現捕獲線蟲的真菌可以感知線蟲的存在並發展出一套專門的菌絲體捕獲裝置,其可通過形成粘附性網絡來捕獲並消耗線蟲。然而,該粘附性網絡的化學成分以及對線蟲的致病機制仍然未知,因此我們探討所分離的100株野生型線蟲捕獲真菌其由線蟲所誘導的粘附網絡,其中包括64株Arthrobotrys oligospora,18株 Arthrobotrys thaumasia和18株Arthrobotrys musiformis。將NTF與秀麗隱桿線蟲(C. elegans)共培養後所形成的粘附網絡以探測捕食者-獵物關係中代謝特徵的變化,從而表徵由NTF產生負責殺死線蟲的次級代謝物。我們發現了一些顯著改變的代謝物,未來可能是寄生線蟲感染的治療方法。
另一個主題是與本實驗室呂強博士合作的項目:研究腸道微生物群衍生的代謝物對宿主脂肪積累的抑製作用。眾所周知,人體腸道具有多種共生的微生物菌群,可以產生無數的特殊代謝物。這些代謝物可能參與宿主的生理代謝過程。此外,飲食可以調節與人類健康有關的腸道微生物群,故飲食習慣可能導致肥胖,並可能對疾病產生間接或直接影響。為了解腸道微生物衍生的特殊代謝物與人類健康的相關性,我們採用了C57BL/6小鼠建立的酚類-抗肥胖模型,並利用gnotobiotic小鼠評估特殊的腸道微生物群對糞便中代謝物組成的影響。在體外同時培養腸道微生物,透過其代謝物來確定糞便代謝物的組成是由微生物本身所衍生的。進一步利用HepG2肝細胞建立肝臟脂肪積累模型,以驗證腸道微生物群衍生的代謝物具有脂質積累抑制活性。並且發現一系列腸道微生物群衍生的代謝物能夠介導肝細胞對脂質積累的抗性。
在我的研究論文中,我們在不同的生物系統上應用了非靶向代謝組學來探究生物活性代謝物:線蟲誘捕真菌的殺線蟲毒素和腸道微生物群衍生的代謝物對肝細胞的脂質積累具有抑制作用。
zh_TW
dc.description.abstractMetabolomics is the study of chemical processes involving metabolites, the small molecule intermediates, and products of metabolism. And the information metabolomics provides is related to phenotype. That catalog and quantify the countless small molecules found in the organism to study how the metabolic features change of a complex biological system. In order to understand the interaction between unknown metabolites and organism, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) based method to utilize MS/MS results comparison with databases to identify regulated metabolites by untargeted metabolomics analysis.
One of the projects in my research thesis was exploring the metabolites from nematode-trapping fungi, that was a collaboration with Dr. Yen-Ping Hsueh at Institute of Molecular Biology, Academia Sinica. We found that the nematode-trapping fungi can sense the presence of nematodes and develop specialized mycelial trap devices to catch and consume nematodes by forming an adhesion network. However, chemical compositions of the adhesion networks as well as the pathogenic mechanism to nematodes remain unknown, so that we explore the metabolomics features of nematode-induced adhesion networks in 100 isolated NTF strains of the genus Arthrobotrys, including 64 Arthrobotrys oligospora strains, 18 Arthrobotrys thaumasia strains, and 18 Arthrobotrys musiformis strains. NTF cultures were co-cultured with Caenorhabditis elegans overnight to form adhesive networks to probe changes of metabolomic features in a predator-prey (NTF-nematode) relationship so as to characterize NTF secondary metabolites responsible for killing nematodes. And we’ve found some metabolites which were significantly changed and could be the treatment of parasitic nematode infections.
Another one of the projects was investigating the inhibition effect of gut microbiota-derived metabolites on fat accumulation in the host, that was a collaboration with Dr. Qiang Lyu. Well known that the human intestinal tract has a diverse of mutualistic microbial flora which could produce countless of specialized metabolites. These metabolites may be involved in the physiological metabolic processes in the host. In addition, the diet can modulate the gut microbiome that is related to human health, that dietary habits may cause obesity and may have an indirect or direct impact with the disease. In order to understand which and how the gut microbe-derived specialized metabolites affect human health, that we used phenolic anti-obesity model established by C57BL/6 mice, and gnotobiotic mice were used to evaluate the effect of special gut microbiota on metabolite composition of feces. The simultaneous culture of intestinal microbes in vitro, we can determine the composition of fecal metabolites by derived metabolites from gut microbiota themselves. The HepG2 hepatocytes were used to establish a model of liver fat accumulation, to verify the gut microbiota-derived metabolites have the lipid accumulation inhibitory activity. And that a series of gut microbiota-derived metabolites were found to be able to mediate hepatocytes resistance to lipid accumulation.
In my research thesis, we applied untargeted metabolomics on different biological systems to discover bioactivity metabolites: a nematicidal toxin from nematode-trapping fungi and the gut microbiota-derived metabolites which inhibit lipid accumulation on hepatocytes.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:17:14Z (GMT). No. of bitstreams: 1
ntu-108-R06223211-1.pdf: 14042157 bytes, checksum: 5300cf39f8e3daa2e0e0b8be1813bb31 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
謝誌 i
摘要 iii
Abstract v
圖目錄 xi
表目錄 xv
Chapter 1. Introduction 1
1-1 Metabolomics Analysis 1
1-1-1 Definition 1
1-1-2 Targeted / Untargeted Metabolomics 2
1-2 Analytical technologies 3
1-2-1 Separation method-ultra performance liquid chromatography (UPLC) 3
1-2-2 Detection method- Mass spectrometry (MS) 3
1-3 The analysis platform of data process 7
1-3-1 Global Natural Product Social Molecular Networking, GNPS 7
1-3-2 Compound-Discoverer, CD 9
1-4 Summary 10
Chapter 2. Exploring Nematicidal Activity Metabolites of Nematode-trapping Fungi with LC-MS/MS-based Strategy 12
2-1 Background 12
2-1-1 Predator-prey interaction: nematode-trapping fungi and nematodes 12
2-1-2 Biological information: nematode-trapping fungi (NTF) 14
2-1-3 Biological information: nematodes 16
2-1-4 Metabolites analysis for molecular basis of nematode-trapping fungi and nematodes 17
2-2 Materials and Methods 23
2-2-1 Materials and Reagents 23
2-2-2 Sample Preparation 23
2-2-2-1 Samples Collection and Culture 23
2-2-2-2 Samples Extraction 25
2-2-3 Parameters of Untargeted Metabolites Analysis (UPLC-MS/MS) 27
2-2-4 Data Processing and Statistical Analysis 28
2-2-5 Nematodes Growth Activity Test 29
2-3 Results and Discussion 30
2-4 Conclusion 85
2-5 Discussion 87
Chapter 3. Inhibition Effect of Intestinal Microbiota-Derived Metabolites on Lipid Accumulation in HepG2 Cells 88
3-1 Background 88
3-1-1 The effect of intestinal microbiota on human health and disease 88
3-1-2 Correlation of diet, obesity and intestinal microbial flora 91
3-1-3 Influences of intestinal microbiota-derived metabolites 95
3-1-4 Investigating inhibition effect of obesity by microbial specialized metabolites 97
3-2 Materials and Methods 106
3-2-1 Materials and Reagents 106
3-2-2 MALDI Biotyper for Bacterial Identification 108
3-2-2-1 Samples preparations 108
3-2-2-2 MALDI-TOF Analysis 108
3-2-3 Samples Preparations 109
3-2-4 Fractionation of the metabolites extract from gut bacteria 111
3-2-5 Untargeted Metabolites Analysis 112
3-2-6 Cell Fat Accumulation Model/ Experiments Method 113
3-2-7 Oil Red O (ORO) Staining 114
3-2-8 Sulforhodamine B (SRB) Assay 115
3-3 Results and Discussion 116
3-4 Conclusion 143
Supplementary Information 146
Appendix A: Table of Abbreviation 153
References 156
dc.language.isoen
dc.subjectHepG2肝細胞zh_TW
dc.subject非靶向代謝組學zh_TW
dc.subject線蟲捕捉真菌zh_TW
dc.subject殺線蟲毒素zh_TW
dc.subject肝臟脂肪積累zh_TW
dc.subject腸道微生物群zh_TW
dc.subjectnematode-trapping fungien
dc.subjectuntargeted metabolomicsen
dc.subjectnematicidal toxinen
dc.subjectgut microbiotaen
dc.subjectHepG2 hepatocytesen
dc.subjectliver fat accumulationen
dc.title(一)利用LC-MS/MS探索線蟲捕捉真菌具殺線蟲活性代謝物
(二)腸道微生物衍生代謝物對肝細胞脂肪積累的抑制作用
zh_TW
dc.title(I)Exploring Nematicidal Activity Metabolites of Nematode-Trapping Fungi with LC-MS/MS-based Strategy
(II)Inhibition Effect of Gut Microbiota-Derived Metabolites on Lipid Accumulation in Hepatocytes
en
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee薛雁冰,楊玉良,何佳安
dc.subject.keyword非靶向代謝組學,線蟲捕捉真菌,殺線蟲毒素,腸道微生物群,HepG2肝細胞,肝臟脂肪積累,zh_TW
dc.subject.keyworduntargeted metabolomics,nematode-trapping fungi,nematicidal toxin,gut microbiota,HepG2 hepatocytes,liver fat accumulation,en
dc.relation.page166
dc.identifier.doi10.6342/NTU201901434
dc.rights.note有償授權
dc.date.accepted2019-07-12
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
13.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved