請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73079完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃升龍(Sheng-Lung Huang) | |
| dc.contributor.author | Yu-Wei Hsu | en |
| dc.contributor.author | 許祐維 | zh_TW |
| dc.date.accessioned | 2021-06-17T07:16:36Z | - |
| dc.date.available | 2020-08-05 | |
| dc.date.copyright | 2019-08-05 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-11 | |
| dc.identifier.citation | 1. Huber, R., Wojtkowski, M., and Fujimoto, J., Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. Optics Express, 2006. 14(8): pp. 3225–3237.
2. Angert, N., et al., Lasing due to impurity color centers in yttrium aluminum garnet crystals at wavelengths in the range 1.35–1.45 μm. Soviet Journal of Quantum Electronics, 1988. 18(1): p. 73. 3. Eilers, H., et al., Performance of a Cr4+:YAG laser. IEEE Journal of Quantum Electronics, 1993. 29(9): pp. 2508–2512. 4. Sennaroglu, A., Pollock, C.R., and Nathel, H., Efficient continuous-wave chromium-doped YAG laser. OSA Journal of the Optical Society of America B, 1995. 12(5): pp. 930–937. 5. Sorokina, I., et al., Directly diode-pumped tunable continuous-wave room-temperature Cr4+:YAG laser. Optics Letters, 1999. 24(22): pp. 1578–1580. 6. Shestakov, A., et al., Tunable Cr4+:YAG Lasers. Conference on Lasers and Electro-Optics, 1991. 7. French, P., et al., Continuous-wave mode-locked Cr4+:YAG laser. Optics Letters, 1993. 18(1): pp. 39–41. 8. Sennaroglu, A., Pollock, C.R., and Nathel, H., Continuous-wave self-mode-locked operation of a femtosecond Cr4+:YAG laser. Optics Letters, 1994. 19(6): pp. 390–392. 9. Jheng, D.Y., et al., Broadly tunable and low-threshold Cr4+:YAG crystal fiber laser. IEEE Journal of Selected Topics in Quantum Electronics, 2015. 21(1): pp. 16–23. 10. Petrova-Mayor, A., Wulfmeyer, V., and Weibring, P., Development of an eye-safe solid-state tunable laser transmitter in the 1.4–1.5 μm wavelength region based on Cr4+:YAG crystal for lidar applications. Applied Optics, 2008. 47(10): pp. 1522–1534. 11. Abell, J., et al., An investigation of phase stability in the Y2O3-Al2O3 system. Journal of Materials Science, 1974. 9(4): pp. 527–537. 12. Caslavsky, J.L. and Viechnicki, D.J., Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis. Journal of Materials Science, 1980. 15(7): pp. 1709–1718. 13. Lai, C.C., The Study and Fabrication of Cr4+:YAG Crystal Fiber Laser and its Microstructure Analysis, in Department of Photonics. 2004, National Sun Yat-sen University. 14. Winkler, G., Magnetic Garnets, Friedr. Vieweg & Sohn, Braunschweig, 1981. 15. Tissue, B.M., et al., Coloration of chromium‐doped yttrium aluminum garnet single‐crystal fibers using a divalent codopant. Journal of Applied Physics, 1991. 70(7): pp. 3775–3777. 16. Markgraf, S.A., Pangborn, M.F., and Dieckmann, R., Influence of different divalent co-dopants on the Cr4+ content of Cr-doped Y3Al5O12. Journal of Crystal Growth, 1997. 180(1): pp. 81–84. 17. Eilers, H., et al., Spectroscopy and dynamics of Cr4+:Y3Al5O12. Physical Review B, 1994. 49(22): pp. 15505–15514. 18. Okhrimchuk, A. and Shestakov, A., Absorption saturation mechanism for YAG:Cr4+ crystals. Physical Review B, 2000. 61(2): p. 988. 19. Kartazaev, V. and Alfano, R., Polarization influence of excited state absorption on the performance of Cr4+:YAG laser. Optics Communications, 2004. 242(4-6): pp. 605–611. 20. Jheng, D.Y., Glass-Clad Crystal Fiber Based Broadband Photonic Devices, in Graduate Institute of Photonics and Optoelectronics. 2015, National Taiwan University. 21. Tanabe, Y. and Sugano, S., On the absorption spectra of complex ions II. Journal of the Physical Society of Japan, 1954. 9(5): pp. 766–779. 22. Huang, K., et al., Low-loss propagation in Cr4+:YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique. Optics Express, 2008. 16(16): pp. 12264–12271. 23. Lai, C.C., Active Crystal Fiber Based Photonic Devices, in Graduate Institute of Photonics and Optoelectronics. 2010, National Taiwan University. 24. Sugimoto, A., Nobe, Y., and Yamagishi, K., Crystal growth and optical characterization of Cr,Ca:Y3Al5O12. Journal of Crystal Growth, 1994. 140(3-4): pp. 349–354. 25. Jia, W., et al., Origin of the NIR emission in Cr-doped forsterite, Y3Al5O12 and Y2SiO5. Journal of Luminescence, 1994. 60: pp. 158–161. 26. Kück, S., Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers. Applied Physics B, 2001. 72(5): pp. 515–562. 27. McCumber, D.E., Theory of phonon-terminated optical masers. Physical review, 1964. 134(2A): p. A299. 28. Liu, J.M., Photonic devices. 2009: Cambridge University Press. 29. Sennaroglu, A., Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible. Progress in Quantum Electronics, 2002. 26(6): pp. 287–352. 30. Eilers, H., et al., Saturation of 1.064 μm absorption in Cr,Ca:Y3Al5O12 crystals. Applied Physics Letters, 1992. 61(25): pp. 2958–2960. 31. Burshtein, Z., et al., Excited-state absorption studies of Cr4+ ions in several garnet host crystals. IEEE Journal of Quantum Electronics, 1998. 34(2): pp. 292–299. 32. Fejer, M., et al., Laser‐heated miniature pedestal growth apparatus for single‐crystal optical fibers. Review of Scientific Instruments, 1984. 55(11): pp. 1791–1796. 33. 李正中, 薄膜光學與鍍膜技術. 2002: 藝軒圖書. 34. JEOL日本電子株式会社. Available from: https://www.jeol.co.jp. 35. Systems, S.R. QCM100- Quartz Crystal Microbalance Theory and Calibration. Available from: https://www.thinksrs.com. 36. Manifacier, Gasiot, and Fillard, A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film. Journal of Physics E: Scientific Instruments, 1976. 9(11): p. 1002. 37. Thorlab. Introduce to diffraction grating. Available from: https://www.thorlabs.com/catalogpages/802.pdf. 38. Hard, T., Laser wavelength selection and output coupling by a grating. Applied Optics, 1970. 9(8): pp. 1825–1830. 39. Arnold, A., Wilson, J., and Boshier, M., A simple extended-cavity diode laser. Review of Scientific Instruments, 1998. 69(3): pp. 1236–1239. 40. Shoshan, I., Danon, N., and Oppenheim, U., Narrowband operation of a pulsed dye laser without intracavity beam expansion. Journal of Applied Physics, 1977. 48(11): pp. 4495–4497. 41. Moeller, G. and Rigden, J.D., Observation of laser action in the R-branch of CO2 and N2O vibraional spectra. Applied Physics Letters, 1966. 8(3): pp. 69–70. 42. Littman, M.G. and Metcalf, H.J., Spectrally narrow pulsed dye laser without beam expander. Applied Optics, 1978. 17(14): pp. 2224–2227. 43. Hawthorn, C., Weber, K., and Scholten, R., Littrow configuration tunable external cavity diode laser with fixed direction output beam. Review of Scientific Instruments, 2001. 72(12): pp. 4477–4479. 44. Jameson, A., Schmidt, W., and Turkel, E., Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes. 14th fluid and plasma dynamics conference, 1981. 45. Cucinotta, A., et al., Numerical and experimental analysis of erbium-doped fiber linear cavity lasers. Optics Communications, 1998. 156(4-6): pp. 264–270. 46. Lai, C.C., et al., Cr4+:YAG double-clad crystal fiber laser. Optics Letters, 2008. 33(24): pp. 2919–2921. 47. Lai, C.C., et al., Efficient and low-threshold Cr4+:YAG double-clad crystal fiber laser. Optics Letters, 2011. 36(6): pp. 784–786. 48. Hecht, E., Optics. 2002: Addison-Wesley. 49. Zhu, X., Multimode interference in optical fibers and its applications in fiber lasers and amplifiers. 2008, The University of Arizona. 50. Yang, T.T., The study of laser-diode-pumped tunable Ti:sapphire. 2016, National Taiwan University. pp. 79–85. 51. Tsai, C.N., et al., Enhancement of Cr4+ concentration in Y3Al5O12 crystal fiber by pregrowth perimeter deposition. Japanese Journal of Applied Physics, 2008. 47(8R): p. 6369. 52. Chen, J.C., et al., Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers. Journal of Crystal Growth, 2005. 274(3–4): pp. 522–529. 53. Huber, R., et al., Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Optics Express, 2005. 13(9): pp. 3513–3528. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73079 | - |
| dc.description.abstract | 摻鉻釔鋁石榴石具有寬頻放射頻譜,中心波長落在1.4 μm附近,其3 dB增益頻寬可達250 nm,涵蓋常用光通訊、眼球安全波段以及水吸收波段。對於頻域式光學同調斷層掃描(Fourier domain OCT)而言,例如掃頻式同調斷層掃描術(SS-OCT),其寬頻特性可提供良好的縱向解析度。
在本論文中我們利用雷射加熱基座長晶法製成玻璃雙纖衣摻鉻釔鋁石榴石晶體光纖,並以其作為雷射增益介質利用反射式光柵將波長從1384 nm調變至1479 nm共95 nm的調變範圍。在晶體光纖的兩端使用電子槍蒸鍍方式,將TiO2和SiO2做為原料沉積高品質的介電質膜層做為共振腔元件。為求雷射斜線效率最佳化,幫浦光源的偏振方向調整到與晶軸方向一致,在3 W幫浦功率下能達到200 mW的雷射輸出,而在以1064-nm LD做為幫浦激發下達到12.9%的斜線效率和51.6 mW的低閥值,其產生的雷射偏振消光比最高可達12:1。 為了達到更高的增益,我們嘗試減少長晶過程中加熱的步驟,以保留更高的四價鉻離子濃度。實驗量測結果顯示,減少單次加熱步驟使單位離子濃度從3.4×10^17 〖cm〗^(-3)增加至5.6×10^17 〖cm〗^(-3)。我們藉由模擬結果顯示在越高濃度下,晶體光纖所能產生的淨增益更能隨輸入幫浦功率大小成線性提升,相較於一般製程下的正常濃度的晶體光纖,其增益大小更不易因幫浦功率上升而飽和。我們也在模擬中除去加熱帶來的離子擴散影響,當晶體光纖在原始晶棒的濃度下配合雙向幫浦,其所產生之淨增益有望達到25 dB以上。 | zh_TW |
| dc.description.abstract | Cr4+:YAG crystal is a material for broadband light source. The central wavelength is around 1.4 μm and its 3dB gain spectrum can reach 250 nm. The emission spectrum covered the E, S, C band of optical communication, eyes safe wavelength range and water absorption window. It’s also a ideal candidate for Fourier domain OCT light source since the axial resolution depends on the bandwidth, the widely wavelength tuning range can supply better axial resolution for OCT image.
In this thesis, we use laser-heated pedestal growth (LHPG) to growth Cr4+:YAG crystal fiber, and then cladded with glass using co-drawing LHPG process to make double cladding crystal fiber (DCF). The Cr4+:YAG crystal fiber is used as the laser gain media, the wavelength tuning bandwidth is 95 nm, tuning range from 1384.8 nm to 1479.4 nm by using reflective grating as wavelength selector. The both endface of crystal fiber are coated with high quality dielectric coating. The collimated external cavity Cr4+:YAG fiber laser can reach 200 mW output under 3 W pumping. The 12.9% laser efficiency and 51.6 mW low threshold are reach by hemispherical external cavity Cr4+:YAG fiber laser cavity structure. To increase the gross gain in the cavity, a higher Cr4+ ion concentration crystal fiber was made by reducing the heated step of LHPG process. The higher ASE power and less residual pump power implies that more Cr4+ ion remain in crystal fiber than the DCF under usual LHPG process. The measurement result also shows that the concentration of Cr4+ ion remain 40% more in crystal fiber through this process. The gain simulation also shows that if the Cr4+ ion in crystal fiber can recover to original concentration, the gross gain in cavity can reach over 25 dB under double pumping system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T07:16:36Z (GMT). No. of bitstreams: 1 ntu-108-R05941032-1.pdf: 4159196 bytes, checksum: c838949897e60355e41b7d661007c2e1 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 誌謝 0
中文摘要 2 Abstract 3 圖目錄 5 表目錄 8 第1章 緒論與研究動機 9 第2章 摻鉻釔鋁石榴石晶體光纖主動元件 11 2.1 摻鉻釔鋁石榴石晶體特性與電子能階系統 11 2.2 摻鉻釔鋁石榴石晶體光纖雷射理論模型 17 2.3 雷射加熱基座長晶法 19 2.4 玻璃雙纖衣晶體光纖製備 22 2.5 晶體光纖樣本製備 24 第3章 晶體光纖雷射共振腔之光學元件 27 3.1 光學鍍膜原理 27 3.2 晶體光纖鍍膜設計 31 3.3 電子槍蒸鍍系統架構 35 3.4 反射式繞射光柵之原理 47 第4章 外腔式摻鉻釔鋁石榴石晶體光纖雷射 51 4.1 晶體光纖雷射數值模擬 51 4.2 外腔式晶體光纖雷射量測與分析 56 第5章 可調波長之摻鉻釔鋁石榴石晶體光纖雷射 64 5.1 高功率線偏振幫浦源 64 5.2 實驗架構與量測結果 68 5.3 高濃度玻璃雙纖衣晶體光纖量測 75 第6章 結論與未來展望 78 Reference 83 | |
| dc.language.iso | zh-TW | |
| dc.subject | 摻鉻釔鋁石榴石 | zh_TW |
| dc.subject | 晶體光纖 | zh_TW |
| dc.subject | 可調波長式雷射 | zh_TW |
| dc.subject | 反射式光柵 | zh_TW |
| dc.subject | 介電質鍍膜 | zh_TW |
| dc.subject | refractive grating | en |
| dc.subject | crystal fiber | en |
| dc.subject | tunable laser | en |
| dc.subject | Cr4+:YAG | en |
| dc.subject | dielectric coating | en |
| dc.title | 可調波長摻鉻釔鋁石榴石晶體光纖雷射之研究 | zh_TW |
| dc.title | The study of Cr4+:YAG crystal fiber tunable laser | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林恭如(Gong-Ru Lin),李穎玟(Ying-Wen Lee) | |
| dc.subject.keyword | 摻鉻釔鋁石榴石,晶體光纖,可調波長式雷射,反射式光柵,介電質鍍膜, | zh_TW |
| dc.subject.keyword | Cr4+:YAG,crystal fiber,tunable laser,refractive grating,dielectric coating, | en |
| dc.relation.page | 96 | |
| dc.identifier.doi | 10.6342/NTU201901410 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2019-07-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf 未授權公開取用 | 4.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
