請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7306完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許添本(Tian-Pen Hsu) | |
| dc.contributor.author | Ming-Wei Chang | en |
| dc.contributor.author | 張洺瑋 | zh_TW |
| dc.date.accessioned | 2021-05-19T17:41:16Z | - |
| dc.date.available | 2022-08-06 | |
| dc.date.available | 2021-05-19T17:41:16Z | - |
| dc.date.copyright | 2019-08-06 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-07-18 | |
| dc.identifier.citation | [1] Kaplan, E. L., & Meier, P. (1958). Nonparametric Estimation from Incomplete Observations, Journal of the American Statistical Association, 53(282).
[2] Cox, D. R. (1972). Regression Models and Life-Tables, Journal of the Royal Statistical Society, 34(2), 187-220. [3] Prentice, R. L., Williams, B. J., & Peterson, A. V. (1981). On the regression analysis of multivariate failure time data, Biometrika, 68(2), 373-379. [4] Andersen, P. K., & Gill, R. D. (1982). Cox's Regression Model for Counting Processes: A Large Sample Study, The Annals of Statistics, 10(4), 1100-1120. [5] Jovanis, P. P., & Chang, H.-l. (1986). Modeling the relationship of accidents to miles traveled, Transportation Research Record, 1068. [6] Wei, L. J., Lin, D. Y., & Weissfeld, L. (1987). Regression Analysis of Multivariate Incomplete Failure Time Data by Modeling Marginal Distributions, Journal of the American Statistical Association, 84(408), 1065-1073. [7] Jovanis, P. P., & Chang, H.-L. (1989). Disaggregate model of highway accident occurrence using survival theory, Accident Analysis & Prevention, 21(5), 445-458. [8] Chang, H.-L., & Jovanis, P. P. (1990). Formulating accident occurrence as a survival process, Accident Analysis & Prevention, 22(5), 407-419. [9] Jones, B., Janssen, L., & Mannering, F. (1991). Analysis of the frequency and duration of freeway accidents in Seattle, Accident Analysis & Prevention, 23(4), 239-255. [10] Mannering, F. L. (1993). Male/female driver characteristics and accident risk: Some new evidence, Accident Analysis & Prevention, 25(1), 77-84. [11] Hensher, D. A., & Mannering, F. L. (1994). Hazard‐based duration models and their application to transport analysis, Transport Reviews, 14(1), 63-82. [12] Gooley, T. A., Leisenring, W., Crowley, J., & Storer, B. E. (1999). Estimation of failure probabilities in the presence of competing risks: new representations of old estimators, Statistics in Medicine, 18(6), 695-706. [13] Abdel-Aty, M. A., & Radwan, A. E. (2000). Modeling traffic accident occurrence and involvement, Accident Analysis & Prevention, 32(5), 633-642. [14] Kelly, P. J., & Lim, L. L. Y. (2000). Survival analysis for recurrent event data: an application to childhood infectious diseases, Statistics in Medicine, 19(1), 13-33. [15] Nam, D., & Mannering, F. (2000). An exploratory hazard-based analysis of highway incident duration, Transportation Research Part A: Policy and Practice, 34(2), 85-102. [16] Akerstedt, T., Fredlund, P., Gillberg, M., & Jansson, B. (2002). A prospective study of fatal occupational accidents - relationship to sleeping difficulties and occupational factors, Journal of Sleep Research, 11(1), 69-71. [17] Al-Ghamdi, A. S. (2002). Using logistic regression to estimate the influence of accident factors on accident severity, Accident Analysis & Prevention, 34(6), 729-741. [18] Geurts, K., Wets, G., Brijs, T., & Vanhoof, K. (2002). Profiling high frequency accident locations using association rules. [19] Gebers, M. A., & Peck, R. C. (2003). Using traffic conviction correlates to identify high accident-risk drivers, Accident Analysis & Prevention, 35(6), 903-912. [20] Peden, M., Scurfield, R., Sleet, D., Mohan, D., Hyder, A. A., Jarawan, E., & Mathers, C. (2004). World report on road traffic injury prevention: World Health Organization. [21] Twisk, J. W., Smidt, N., & de Vente, W. (2005). Applied analysis of recurrent events: a practical overview, J Epidemiol Community Health, 59(8), 706-710. [22] Elliott, M. A., Baughan, C. J., & Sexton, B. F. (2007). Errors and violations in relation to motorcyclists' crash risk, Accident Analysis & Prevention, 39(3), 491-499. [23] Chiou, Y.-C., Lan, L. W., & Chen, W.-P. (2009). Contributory Factors to Crash Severity in Taiwan’s Freeways:Genetic Mining Rule Approach, Journal of the Eastern Asia Society for Transportation Studies, 8. [24] Chung, Y. (2010). Development of an accident duration prediction model on the Korean Freeway Systems, Accident Analysis & Prevention, 42(1), 282-289. [25] Classen, S., Shechtman, O., Awadzi, K. D., Joo, Y., & Lanford, D. N. (2010). Traffic Violations Versus Driving Errors of Older Adults: Informing Clinical Practice, The American Journal of Occupational Therapy, 64, 233-241. [26] Goel, M. K., Khanna, P., & Kishore, J. (2010). Understanding survival analysis: Kaplan-Meier estimate, Int J Ayurveda Res, 1(4), 274-278. [27] Lord, D., & Mannering, F. (2010). The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives, Transportation Research Part A: Policy and Practice, 44(5), 291-305. [28] Rich, J. T., Neely, J. G., Paniello, R. C., Voelker, C. C., Nussenbaum, B., & Wang, E. W. (2010). A practical guide to understanding Kaplan-Meier curves, Otolaryngol Head Neck Surg, 143(3), 331-336. [29] Savolainen, P. T., Mannering, F. L., Lord, D., & Quddus, M. A. (2011). The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives, Accident Analysis & Prevention, 43(5), 1666-1676. [30] Zhang, W., Gkritza, K., Keren, N., & Nambisan, S. (2011). Age and gender differences in conviction and crash occurrence subsequent to being directed to Iowa's driver improvement program, J Safety Res, 42(5), 359-365. [31] Ali, G., & Tayfour, A. (2012). Characteristics and Prediction of Traffic Accident Casualties in Sudan Using Statistical Modeling and Artificial Neural Networks, International Journal of Transportation Science and Technology, 1(4), 305-318. [32] Tavassoli Hojati, A., Ferreira, L., Washington, S., & Charles, P. (2013). Hazard based models for freeway traffic incident duration, Accid Anal Prev, 52, 171-181. [33] Zhang, G., Yau, K. K., & Chen, G. (2013). Risk factors associated with traffic violations and accident severity in China, Accid Anal Prev, 59, 18-25. [34] Ullah, S., Gabbett, T. J., & Finch, C. F. (2014). Statistical modelling for recurrent events: an application to sports injuries, Br J Sports Med, 48(17), 1287-1293. [35] Amorim, L. D., & Cai, J. (2015). Modelling recurrent events: a tutorial for analysis in epidemiology, Int J Epidemiol, 44(1), 324-333. [36] Cheng, A. S. K., Liu, K. P. Y., & Tulliani, N. (2015). Relationship Between Driving-violation Behaviours and Risk Perception in Motorcycle Accidents, Hong Kong Journal of Occupational Therapy, 25, 32-38. [37] Nishida, Y. (2015). Analyzing accidents and developing elderly driver-targeted measures based on accident and violation records, IATSS Research, 39(1), 26-35. [38] Susilo, Y. O., Joewono, T. B., & Vandebona, U. (2015). Reasons underlying behaviour of motorcyclists disregarding traffic regulations in urban areas of Indonesia, Accid Anal Prev, 75, 272-284. [39] Walter, S. J., & Studdert, D. M. (2015). Relationship between penalties for road traffic infringements and crash risk in Queensland, Australia: a case-crossover study, Int J Epidemiol, 44(5), 1722-1730. [40] Penmetsa, P., & Pulugurtha, S. S. (2016). Risk drivers pose to themselves and other drivers by violating traffic rules, Traffic Injury Prevention, 18(1), 63-69. [41] Jin, J., & Deng, Y. (2017). A comparative study on traffic violation level prediction using different models. Paper presented at the 2017 4th International Conference on Transportation Information and Safety (ICTIS). [42] KentoYoh, Okamoto, T., Inoi, H., & Doi, K. (2017). Comparative study on foreign drivers' characteristics using traffic violation and accident statistics in Japan, IATSS Research, 41(2), 94-105. [43] Penmetsa, P., & Pulugurtha, S. S. (2017). Methods to rank traffic rule violations resulting in crashes for allocation of funds, Accid Anal Prev, 99(Pt A), 192-201. [44] Factor, R. (2018). Reducing traffic violations in minority localities: Designing a traffic enforcement program through a public participation process, Accid Anal Prev, 121, 71-81. [45] Rezapour, M., Wulff, S. S., & Ksaibati, K. (2018). Predicting Truck At-Fault Crashes Using Crash and Traffic Offence Data, The Open Transportation Journal, 12, 128-138. [46] 內政部警政署,道路交通事故處理規範。 [47] 交通部,道路交通管理處罰條例。 [48] 交通部運輸研究所,”永續運輸資訊系統-交通事故資料分析研究’’,2003。 [49] 張新立, & 葉祖宏 (2005),存活分析法應用於機車持有年限之研究,運輸計劃季刊,第34卷第3期,頁 443-468。 [50] 丁崇德, & 陳怡君 (2008),應用存活分析法探討國內航線之營運,商管科技季刊,第9卷第3期,頁 301-314。 [51] 林建甫 (2008),存活分析,臺灣臺北:雙葉書廊。 [52] 艾嘉銘 (2010),重現型高速公路肇事路段與肇事因素之研究,逢甲大學土木暨水利工程博士學位學程博士論文。 [53] 林正祥, 劉士嘉, & 黃嫈瑜 (2010),影響臺灣老人存活相關因子探討-脆弱韋伯時間相依模型之應用,中國統計學報,第48卷,頁 271-291。 [54] 許添本, & 王華琪 (2010),台北市橋樑周邊自行車道及牽引道評估與規劃-以承德橋為例,九十九年道路交通安全與執法研討會 。 [55] 陳惠國, 邱裕鈞, & 朱致遠 (2010),交通工程:五南圖書出版股份有限公司。 [56] 吳健生, 蕭羽媛, & 蘇殷甲 (2011),應用存活分析法於機車紅燈怠速熄火行為之研究,運輸計劃季刊,第40卷第2期,頁 161-183。 [57] 戴誠蔚 (2011),台灣上市上櫃公司發行可轉換債券之存活分析研究,國立政治大學統計研究所碩士學位論文。 [58] 鍾易詩, 邱裕鈞, 謝志偉, 張開國, 葉祖宏, 田養民, & 陳凱斌 (2014),國道高速公路交通事故持續時間分析與推估:脆弱性存活模型之應用,運輸學刊,第26卷第4期,頁 556-577。 [59] 交通部運輸研究所,”道路安全大數據案例分析與應用’’,2017。 [60] 交通部道路交通安全督導委員會,”道路交通安全觀測指標研究’’,2017。 [61] 張紹勳 (2017),生物醫學統計 : 使用Stata分析,臺灣臺北:五南圖書。 [62] 莊其穆 (2018),臨床醫學常用存活分析研究法,臺灣醫界,第61卷第7期,頁 345-351。 [63] 許添本, & 趙士淵 (2018),以存活分析評估防撞警示系統績效,中華民國運輸學會107年學術論文研討會 。 [64] 溫晴 (2018),應用存活分析法於鐵路號誌系統故障之研究,國立中央大學土木工程學系碩士論文。 [65] 交通部,”道路交通安全資料整合與分析平台建置’’,2019。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7306 | - |
| dc.description.abstract | 交通違規舉發常被預期可以防止駕駛人未來發生交通事故的手段之一,故本研究旨在找出交通違規舉發與交通事故的發生之關聯性。結合2011-2017年警政署事故資料庫、公路總局第三代公路監理資訊系統駕駛人主檔、違規主檔、車籍異動檔等,以及衛生福利部死因資料庫,進行資料庫清洗和串聯。將交通違規種類分為31種,並根據違規和事故資料之車籍車種欄位,將駕駛人分為汽車駕駛人和機車駕駛人,以進行分析。先以敘述統計分析汽機車駕駛人曾經被舉發違規下,其駕駛人和未來發生事故數的比率關係,再以關聯規則,分析這些被舉發違規的汽機車駕駛人,和未來發生事故的關聯。為了再進一步了解曾經被舉發違規和其不同駕照狀態下的汽機車駕駛人,從第一次違規舉發到第一次發生事故,其發生事故率和時間的關係,先繪製Kaplan-Meier (K-M)存活曲線觀察不同駕照狀態和曾經被舉發違規的汽機車駕駛人之發生事故的存活率,也就是不發生事故的機率。再以Cox等比例風險模式分析影響駕駛人單一事件時間變數的相關變數,包括曾經被舉發的違規種類,以及汽機車駕駛人之駕照狀態。而Cox等比例風險模式卻只能分析駕駛人單一事件的存活時間,但駕駛人在研究期間內,可能不僅僅只有一件交通事故的發生,可能還會伴隨著多件交通事故,使得一個駕駛人會有多個事件的存活時間,無法以Cox等比例風險模式分析。因此,引入存活理論常使用的復發事件邊際模型,包括AG模型和PWP模型,以對擁有多個事件的駕駛人,進行曾經被舉發的違規種類和汽機車駕駛人駕照狀態之變數分析。
Kaplan-Meier存活曲線結果指出,在不同駕照狀態之汽機車駕駛人中,「僅有機車駕照之汽車駕駛人」發生事故存活曲線下降最快,且最終存活率僅有0.845。「有機車駕照之機車駕駛人」和「有汽車駕照之汽車駕駛人」中,機車駕駛人的發生事故存活曲線下降較快,但機車駕駛人之最終存活率為0.849,汽車駕駛人之最終存活率為0.848。在存活理論復發事件PWP模型的結果下,「僅有機車駕照之汽車駕駛人」未來發生事故的時間危險率為1.48。而在曾經被舉發「車輛設備和規格違規」、「抗拒稽查或肇逃」的機車駕駛人,相較於無違反此類違規的人,未來發生事故的時間危險率上升至1.10和1.23。曾經被舉發「酒駕和藥駕」的汽機車駕駛人,其舉發違規對於駕駛人未來發生事故的時間危險率分別下降至0.62和0.50。被舉發違規的駕駛人,未來發生事故的關聯和時間危險率,會因不同的違規種類之舉發,而有所不同。 | zh_TW |
| dc.description.abstract | Traffic enforcement is usually expected to add the effectiveness of accident prevention. Therefore, the relationship between traffic violation records and traffic accident needs to be investigated. In this study, the combination of Taiwan’s national traffic accident database, national traffic violation record database, and driver and car registration database is used, and drivers are divided into car drivers and motorcyclists for analysis. This study first analyzes the accident involvement rate of car drivers and motorcyclists with past violation records by the descriptive statistic analysis. Then, the relationship between accident and those drivers is discovered by association rule. Furthermore, it is desired to understand the change of survival time between the first violation records to the first accident of drivers with different driver’s licenses and past violation records, the Kaplan-Meier curve is applied. Then it uses Cox proportion hazard function for further discussion of the relating factors, such as the past violation records and driver’s licenses. However, the Cox proportion hazard function is only used to analyze the single event in each driver. The driver may involve multiple accidents in the research period. The survival time in multiple accidents cannot be analyzed in the Cox proportion hazard function. Therefore, the marginal model of the recurrent events in the survival theory is applied in the study, including the AG model and the PWP model. The survival time of multiple accidents in each driver can be modeled.
Based on the result of the Kaplan-Meier curve for analyzing the different driver’s licenses, the survival curve of car drivers only with motor driver’s license decline quickly than others, and the last survival rate is 0.845. The last survival rate of car drivers with car driver’s license and motorcyclists with motor driver’s license are 0.848 and 0.849 respectively. Based on the further result of the PWP model for analyzing the different driver’s licenses, the hazard ratio of car drivers only with motor driver’s license is increasing to 1.48. For analyzing the past violation records, the hazard ratio of motorcyclists cited by “Improper vehicle equipment” and “Resisting inspection or Hit-and-Run” is increasing to 1.10 and 1.23 respectively. However, the hazard ratio of car drivers and motorcyclists cited by “Drunk and drug driving” is declined to 0.62 and 0.50 respectively. Besides, car drivers and motorcyclists with other violation records can be shown in the different hazard ratio. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-19T17:41:16Z (GMT). No. of bitstreams: 1 ntu-108-R06521526-1.pdf: 9184646 bytes, checksum: 1b17f50f8422a2b7800ed4aa24e02623 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 摘要 III ABSTRACT IV 目錄 V 圖目錄 VIII 表目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究問題 1 1.3 研究目的 2 1.4 研究流程 2 第二章 文獻回顧 3 2.1 違規分類 3 2.2 事故嚴重度之分級和定義 5 2.3 評估變數對交通違規及事故之影響 6 2.3.1 交通事故嚴重度分析 6 2.3.2 總體事故頻率分析 10 2.3.3 國內相關研究 13 2.3.4 小結 13 2.4 存活理論 13 2.5 小結 24 第三章 研究方法 26 3.1 關聯規則 26 3.2 存活理論函數定義 28 3.3 資料設限形式 29 3.4 KAPLAN-MEIER存活曲線 30 3.5 COX等比例風險模式 32 3.6 復發事件邊際模型 34 第四章 資料蒐集與處理 37 4.1 違規和事故資料庫之處理 37 4.2 違規種類整理和分類 41 4.3 車籍及駕籍整理和分類 45 4.4 違規、事故及駕籍資料整理和串聯 47 第五章 分析結果 54 5.1 分析流程和模式求解工具 54 5.2 曾經違規記錄和未來發生事故之資料統計 55 5.3 違規到事故發生之KAPLAN-MEIER存活曲線 68 5.3.1 不同駕照狀態之汽機車駕駛人 68 5.3.2 不同違規種類次數之汽機車駕駛人 69 5.4 存活模型參數校估結果 77 5.4.1 單一事件之Cox模型 77 5.4.2 復發事件邊際模型 81 5.4.3 模型選擇 90 5.5 結果比較和討論 91 第六章 結論與建議 97 6.1 結論 97 6.2 後續建議 102 參考文獻 103 附錄一 違規種類次數和交通事故之關聯圖 108 附錄二 違規種類次數和交通事故發生時間之存活曲線 121 違規汽車駕駛人第一次違規到第一次發生事故之存活曲線 121 違規機車駕駛人第一次違規到第一次發生事故之存活曲線 134 | |
| dc.language.iso | zh-TW | |
| dc.title | 以存活理論分析臺灣汽機車駕駛人交通違規舉發記錄對未來事故發生時間之影響 | zh_TW |
| dc.title | Using Survival Theory to Analyze the Influence of Traffic Violation Records to Accidents Occurrence on Car Drivers and Motorcyclists in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡守任,葉名山 | |
| dc.subject.keyword | 交通事故,交通違規,存活理論,Cox等比例風險模式,復發事件模型, | zh_TW |
| dc.subject.keyword | Traffic Accident,Traffic Violation,Survival Theory,Cox Proportion Hazard Function,Recurrent Event Model, | en |
| dc.relation.page | 146 | |
| dc.identifier.doi | 10.6342/NTU201901472 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2019-07-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-1.pdf | 8.97 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
