Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73044
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱時宜(Shih-I Chu)
dc.contributor.authorTse-Min Chiangen
dc.contributor.author江則旻zh_TW
dc.date.accessioned2021-06-17T07:15:08Z-
dc.date.available2019-07-23
dc.date.copyright2019-07-23
dc.date.issued2019
dc.date.submitted2019-07-15
dc.identifier.citationC Joachim, J K Gimzewski, and A Aviram. Electronics using hybrid-molecular and mono-molecular devices. Nature, 408(6812):541–548, nov 2000.
Abraham Nitzan. Electron Transmission through Molecules and Molecular Inter- faces. Annu. Rev. Phys. Chem., 52(1):681–750, oct 2001.
A Nitzan. Electron Transport in Molecular Wire Junctions. Science (80-. )., 300(5624):1384–1389, may 2003.
C Joachim and M A Ratner. Molecular electronics: Some views on transport junc- tions and beyond. Proc. Natl. Acad. Sci., 102(25):8801–8808, jun 2005.
Dvira Segal and Bijay Kumar Agarwalla. Vibrational Heat Transport in Molecular Junctions. Annu. Rev. Phys. Chem., 67(1):185–209, may 2016.
Michael Thoss and Ferdinand Evers. Perspective: Theory of quantum transport in molecular junctions. J. Chem. Phys., 148(3):030901, jan 2018.
B. Gohler, V Hamelbeck, T Z Markus, M Kettner, G F Hanne, Z Vager, R Naaman, and H Zacharias. Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA. Science (80-. )., 331(6019):894–897, feb 2011.
Lior Sepunaru, Sivan Refaely-Abramson, Robert Lovrinčić, Yulian Gavrilov, Piyush Agrawal, Yaakov Levy, Leeor Kronik, Israel Pecht, Mordechai Sheves, and David Cahen. Electronic Transport via Homopeptides: The Role of Side Chains and Sec- ondary Structure. J. Am. Chem. Soc., 137(30):9617–9626, aug 2015.
Seong Ho Choi, BongSoo Kim, and C Daniel Frisbie. Electrical Resistance of Long Conjugated Molecular Wires. Science (80-. )., 320(5882):1482–1486, jun 2008.
Mickael L Perrin, Christopher J. O. Verzijl, Christian A Martin, Ahson J Shaikh, Rienk Eelkema, Jan H. van Esch, Jan M. van Ruitenbeek, Joseph M Thijssen, Herre S. J. van der Zant, and Diana Dulić. Large tunable image-charge effects in single- molecule junctions. Nat. Nanotechnol., 8(4):282–287, apr 2013.
Ta-Cheng Ting, Liang-Yan Hsu, Min-Jie Huang, Er-Chien Horng, Hao-Cheng Lu, Chan-Hsiang Hsu, Ching-Hong Jiang, Bih-Yaw Jin, Shie-Ming Peng, and Chun- hsien Chen. Energy-Level Alignment for Single-Molecule Conductance of Extended Metal-Atom Chains. Angew. Chemie, 127(52):15960–15964, dec 2015.
M Di Ventra,S T Pantelides, and N D Lang. First-Principles Calculation of Transport Properties of a Molecular Device. Phys. Rev. Lett., 84(5):979–982, jan 2000.
Jeremy Taylor, Hong Guo, and Jian Wang. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B, 63(24):245407, jun 2001.
Mads Brandbyge, José-Luis Mozos, Pablo Ordejón, Jeremy Taylor, and Kurt Stok- bro. Density-functional method for nonequilibrium electron transport. Phys. Rev. B, 65(16):165401, mar 2002.
Su Ying Quek, Latha Venkataraman, Hyoung Joon Choi, Steven G Louie, Mark S Hybertsen, and J B Neaton. Amine−Gold Linked Single-Molecule Circuits: Exper- iment and Theory. Nano Lett., 7(11):3477–3482, nov 2007.
Massimiliano Di Ventra. Electrical Transport in Nanoscale Systems. Cambridge University Press, Cambridge, 2008.
Dvira Segal, Abraham Nitzan, William B Davis, Michael R Wasielewski, and Mark A Ratner. Electron Transfer Rates in Bridged Molecular Systems 2. A Steady- State Analysis of Coherent Tunneling and Thermal Transitions. J. Phys. Chem. B, 104(16):3817–3829, 2000.
Alexander Tikhonov, Rob D Coalson, and Yuri Dahnovsky. Calculating electron transport in a tight binding model of a field-driven molecular wire: Floquet theory approach. J. Chem. Phys., 116(24):10909–10920, jun 2002.
S KOHLER, J LEHMANN, and P HANGGI. Driven quantum transport on the nanoscale. Phys. Rep., 406(6):379–443, feb 2005.
Liang-Yan Hsu and Herschel Rabitz. Single-Molecule Phenyl-Acetylene- Macrocycle-Based Optoelectronic Switch Functioning as a Quantum-Interference- Effect Transistor. Phys. Rev. Lett., 109(18):186801, oct 2012.
Liang-Yan Hsu, Dan Xie, and Herschel Rabitz. Light-Driven Electron Transport through a Molecular Junction based on Cross-Conjugated Systems. J. Chem. Phys., 141(12):124703, 2014.
S Kurth,G Stefanucci, C.-O.Almbladh, A Rubio, and E K U Gross. Time-dependent quantum transport: A practical scheme using density functional theory. Phys. Rev. B, 72(3):035308, jul 2005.
Joseph Maciejko, Jian Wang, and Hong Guo. Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory. Phys. Rev. B, 74(8):085324, aug 2006.
Michael Galperin and Sergei Tretiak. Linear optical response of current-carrying molecular junction: A nonequilibrium Green’s function–time-dependent density functional theory approach. J. Chem. Phys., 128(12):124705, mar 2008.
San-Huang Ke, Rui Liu, Weitao Yang, and Harold U Baranger. Time-dependent transport through molecular junctions. J. Chem. Phys., 132(23):234105, jun 2010.
Xiao Zheng, GuanHua Chen, Yan Mo, SiuKong Koo, Heng Tian, ChiYung Yam, and YiJing Yan. Time-dependent density functional theory for quantum transport. J. Chem. Phys., 133(11):114101, sep 2010.
Rulin Wang, Dong Hou, and Xiao Zheng. Time-dependent density-functional theory for real-time electronic dynamics on material surfaces. Phys. Rev. B, 88(20):205126, nov 2013.
G Stefanucci and C.-O. Almbladh. Time-dependent quantum transport: An exact formulation based on TDDFT. Europhys. Lett., 67(1):14–20, jul 2004.
LotharMühlbacherandEranRabani.Real-TimePathIntegralApproachtoNonequi- librium Many-Body Quantum Systems. Phys. Rev. Lett., 100(17):176403, may 2008.
Haobin Wang and Michael Thoss. Numerically exact, time-dependent study of correlated electron transport in model molecular junctions. J. Chem. Phys., 138(13):134704, apr 2013.
Haobin Wang and Michael Thoss. Multilayer Multiconfiguration Time-Dependent Hartree Study of Vibrationally Coupled Electron Transport Using the Scattering- State Representation. J. Phys. Chem. A, 117(32):7431–7441, aug 2013.
Chiao-Lun Cheng, Jeremy S Evans, and Troy Van Voorhis. Simulating molecular conductance using real-time density functional theory. Phys. Rev. B, 74(15):155112, oct 2006.
Jeremy S Evans, Chiao-Lun Cheng, and Troy Van Voorhis. Spin-charge separation in molecular wire conductance simulations. Phys. Rev. B, 78(16):165108, oct 2008.
Jeremy S Evans and Troy Van Voorhis. Dynamic Current Suppression and Gate Voltage Response in Metal−Molecule−Metal Junctions. Nano Lett., 9(7):2671–2675, jul 2009.
Roi Baer and Daniel Neuhauser. Ab initio electrical conductance of a molecular wire. Int. J. Quantum Chem., 91(3):524–532, 2003.
Roi Baer, Tamar Seideman, Shahal Ilani, and Daniel Neuhauser. Ab initio study of the alternating current impedance of a molecular junction. J. Chem. Phys., 120(7):3387–3396, feb 2004.
Kieron Burke, Roberto Car, and Ralph Gebauer. Density Functional Theory of the Electrical Conductivity of Molecular Devices. Phys. Rev. Lett., 94(14):146803, apr 2005.
Ralph Gebauer and Roberto Car. Electron transport with dissipation: A quantum kinetic approach. Int. J. Quantum Chem., 101(5):564–571, 2005.
Cristián G Sánchez, Maria Stamenova, Stefano Sanvito, D R Bowler, Andrew P Horsfield, and Tchavdar N Todorov. Molecular conduction: Do time-dependent sim- ulations tell you more than the Landauer approach? J. Chem. Phys., 124(21):214708, jun 2006.
Joseph E Subotnik, Thorsten Hansen, Mark A Ratner, and Abraham Nitzan. Nonequilibrium steady state transport via the reduced density matrix operator. J. Chem. Phys., 130(14):144105, apr 2009.
Tamar Zelovich, Leeor Kronik, and Oded Hod. State Representation Approach for Atomistic Time-Dependent Transport Calculations in Molecular Junctions. J. Chem. Theory Comput., 10(8):2927–2941, aug 2014.
Liping Chen, Thorsten Hansen, and Ignacio Franco. Simple and Accurate Method for Time-Dependent Transport along Nanoscale Junctions. J. Phys. Chem. C, 118(34):20009–20017, aug 2014.
Tamar Zelovich, Leeor Kronik, and Oded Hod. Molecule–Lead Coupling at Molec- ular Junctions: Relation between the Real- and State-Space Perspectives. J. Chem. Theory Comput., 11(10):4861–4869, oct 2015.
Tamar Zelovich, Leeor Kronik, and Oded Hod. Driven Liouville von Neumann Ap- proach for Time-Dependent Electronic Transport Calculations in a Nonorthogonal Basis-Set Representation. J. Phys. Chem. C, 120(28):15052–15062, jul 2016.
Oded Hod, César A Rodríguez-Rosario, Tamar Zelovich, and Thomas Frauenheim. Driven Liouville von Neumann Equation in Lindblad Form. J. Phys. Chem. A, 120(19):3278–3285, may 2016.
Tamar Zelovich, Thorsten Hansen, Zhen-Fei Liu, Jeffrey B Neaton, Leeor Kronik, and Oded Hod. Parameter-Free Driven Liouville-von Neumann Approach for Time- Dependent Electronic Transport Simulations in Open Quantum Systems. J. Chem. Phys., 146(9):92331, 2017.
J Lambe and R C Jaklevic. Molecular Vibration Spectra by Inelastic Electron Tun- neling. Phys. Rev., 165(3):821–832, jan 1968.
B C Stipe, M A Rezaei, and W Ho. Coupling of Vibrational Excitation to the Ro- tational Motion of a Single Adsorbed Molecule. Phys. Rev. Lett., 81(6):1263–1266, aug 1998.
Wenyong Wang, Takhee Lee, Ilona Kretzschmar, and Mark A Reed. Inelastic Elec- tron Tunneling Spectroscopy of an Alkanedithiol Self-Assembled Monolayer. Nano Lett., 4(4):643–646, apr 2004.
Michael Galperin, Mark A Ratner, and Abraham Nitzan. Inelastic electron tun- neling spectroscopy in molecular junctions: Peaks and dips. J. Chem. Phys., 121(23):11965–11979, dec 2004.
Michael Galperin, Mark A Ratner, and Abraham Nitzan. Molecular transport junc- tions: vibrational effects. J. Phys. Condens. Matter, 19(10):103201, mar 2007.
Gemma C Solomon, Alessio Gagliardi, Alessandro Pecchia, Thomas Frauenheim, Aldo Di Carlo, Jeffrey R Reimers, and Noel S Hush. Understanding the inelastic electron-tunneling spectra of alkanedithiols on gold. J. Chem. Phys., 124(9):094704, mar 2006.
Jacob Lykkebo, Alessio Gagliardi, Alessandro Pecchia, and Gemma C Solomon. Strong Overtones Modes in Inelastic Electron Tunneling Spectroscopy with Cross- Conjugated Molecules: A Prediction from Theory. ACS Nano, 7(10):9183–9194, oct 2013.
Chao-Cheng Kaun and Tamar Seideman. Current-Driven Oscillations and Time- Dependent Transport in Nanojunctions. Phys. Rev. Lett., 94(22):226801, jun 2005.
David Q Andrews, Richard P Van Duyne, and Mark A Ratner.Stochastic Modulation in Molecular Electronic Transport Junctions: Molecular Dynamics Coupled with Charge Transport Calculations. Nano Lett., 8(4):1120–1126, apr 2008.
Magnus Paulsson, Casper Krag, Thomas Frederiksen, and Mads Brandbyge. Con- ductance of Alkanedithiol Single-Molecule Junctions: A Molecular Dynamics Study. Nano Lett., 9(1):117–121, jan 2009.
Yonatan Dubi and Massimiliano Di Ventra. Thermoelectric Effects in Nanoscale Junctions. Nano Lett., 9(1):97–101, jan 2009.
P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev., 136(3B):B864–B871, nov 1964.
W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange and Corre- lation Effects. Phys. Rev., 140(4A):A1133–A1138, nov 1965.
W. Matthew C. Foulkes and Roger Haydock. Tight-binding models and density- functional theory. Phys. Rev. B, 39(17):12520–12536, jun 1989.
B Aradi, B Hourahine, and Th. Frauenheim. DFTB+, a Sparse Matrix-Based Im- plementation of the DFTB Method. J. Phys. Chem. A, 111(26):5678–5684, jul 2007.
Martin Thomas, Martin Brehm, Reinhold Fligg, Peter Vöhringer, and Barbara Kirchner. Computing vibrational spectra from ab initio molecular dynamics. Phys. Chem. Chem. Phys., 15(18):6608, 2013.
Andrew R Leach and A R Leach.Molecular Modelling: Principles and Applications. Pearson education, 2001.
M Elstner, D Porezag, G Jungnickel, J Elsner, M Haugk, Th. Frauenheim, S Suhai, and G Seifert. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B, 58(11):7260–7268, sep 1998.
Michael Gaus, Qiang Cui, and Marcus Elstner. DFTB3: Extension of the Self- Consistent-Charge Density-Functional Tight-Binding Method (SCC-DFTB). J. Chem. Theory Comput., 7(4):931–948, apr 2011.
Weidong Tian, Supriyo Datta, Seunghun Hong, Ronald Reifenberger, Jason I Hen- derson, and Clifford P Kubiak. Conductance spectra of molecular wires. J. Chem. Phys., 109(7):2874–2882, aug 1998.
Daniel Gruss, Alex Smolyanitsky, and Michael Zwolak. Communication: Relaxation-limited electronic currents in extended reservoir simulations. J. Chem. Phys., 147(14):141102, oct 2017.
Daniel Gruss, Kirill A. Velizhanin, and Michael Zwolak. Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport. Sci. Rep., 6(1):24514, jul 2016.
Justin E. Elenewski, Daniel Gruss, and Michael Zwolak. Communication: Master equations for electron transport: The limits of the Markovian limit. J. Chem. Phys., 147(15):151101, oct 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73044-
dc.description.abstract在本論文中,我們探討在單分子電子學中,分子振動對電子傳輸的 影響。為此,我們提出一個新的方法來計算複雜分子中,在受到分子 振動下,電子的量子輸送現象,這個方法是將分子動力學 (Molecular Dynamics) 與 Driven Liouville von Neumann approach 結合,因此我們將 之命名為 molecular dynamics-driven Liouville von Neumann method。
此研究中,我們發現,在有限溫度 (70 K),當電子傳輸受到分子振 動的影響下,即使是非常短的分子 (trans-fumaronitrile) 也不能達到穩 態電流。此外,為了了解電流擾動與分子振動之間的關聯性,我們分 析了電流雜訊的譜密度和分子動力學的譜密度,兩者的相似與相異之 處。數值模擬的結果顯示並不是所有分子振動的簡正模 (Normal mode) 都會造成電流的擾動,而且當簡正模符合某種對稱性時,會造成二倍 頻的電流雜訊。
zh_TW
dc.description.abstractIn this thesis, we propose a new computational method to simulate elec- tronic dynamics coupled to a number of normal modes in complicated molec- ular systems. The method incorporates molecular dynamics into the driven Liouville von Neumann (DLvN) approach, and we refer to our method as the molecular dynamics-driven Liouville von Neumann (MD-DLvN) method.
We also investigate time-dependent electron transport through a molecu- lar junction in the adiabatic limit at the density-functional tight-binding level using the MD-DLvN method. When electron transport involves nuclear dy- namics at finite temperature ( 70 K) within the NVE ensemble, we find that the steady-state current cannot be achieved even for a very short molecule (trans-fumaronitrile). Furthermore, to establish a relationship between elec- tric current fluctuations and molecular vibrations, we analyze the similarities and differences between the current noise spectra and the MD power spectra. Our simulations show that not all normal modes can result in current fluctu- ations. Moreover, when a normal mode satisfies a particular symmetry, the normal mode can lead to frequency doubling of current fluctuations. This study provides new directions for studying electronic dynamics in a nonequi- librium open quantum system.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:15:08Z (GMT). No. of bitstreams: 1
ntu-108-R06222085-1.pdf: 10265097 bytes, checksum: de9ceee1ca32cfaa01b78882ae089489 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 iii
摘要 v
Abstract vii
1 Introduction 1
2 Driven Liouville von Neumann Approach 5
2.1 Derivation of Driven Liouville von Neumann Approach from Lindblad Master Equation 5
2.2 Evaluation of Electric Current 11
2.3 Numerical Result 12
3 Density Functional Tight-Binding Method 17
3.1 Density Functional Theory 17
3.1.1 Hohenberg-Kohn Theorem 17
3.1.2 Kohn-Sham Equation 19
3.2 Density Functional Tight-Binding Method 20
3.2.1 Zeroth-Order 21
3.2.2 Second-Order 22
4 Effect of Molecular Vibrations on Time-Dependent Electron Transport 27
4.1 Method 27
4.1.1 Model Hamiltonian 27
4.1.2 Electronic Dynamics 29
4.1.3 Nuclear Dynamics 31
4.1.4 Computational Details 31
4.2 Results and Discussions 33
4.2.1 Benchmark Evaluations 33
4.2.2 Transient Current Influenced by Nuclear Dynamics 35
4.2.3 Current Fluctuation Influenced by Nuclear Dynamics 36
4.3 Conclusion 41
A Choice of Parameters 43
B Convergence Test 45
C Sylvester Equation 49
D Cartesian Coordinate and Vibrational Analysis 51
D.1 Cartesian Coordinate of the Fumaronitrile Molecule 51
D.2 Vibrational Analysis 51
Bibliography 55
dc.language.isoen
dc.subject量子輸送zh_TW
dc.subject分子電子學zh_TW
dc.subjectOpen Quantum Systemen
dc.subjectQuantum Transporten
dc.subjectMolecular Electronicsen
dc.subjectDriven Liouville von Neumann Approachen
dc.title分子振動對電流雜訊影響之研究zh_TW
dc.titleTheoretical Studies on Electric Current Fluctuations Induced by Molecular Vibrationsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.coadvisor許良彥(Liang-Yan Hsu)
dc.contributor.oralexamcommittee關肇正(Chao-Cheng Kaun),陳煜璋(Yu-Chang Chen)
dc.subject.keyword分子電子學,量子輸送,zh_TW
dc.subject.keywordOpen Quantum System,Quantum Transport,Molecular Electronics,Driven Liouville von Neumann Approach,en
dc.relation.page62
dc.identifier.doi10.6342/NTU201901403
dc.rights.note有償授權
dc.date.accepted2019-07-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
10.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved