Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73040
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志軒(Chih-Hsuan Chen)
dc.contributor.authorJia-Jyun Shenen
dc.contributor.author沈佳駿zh_TW
dc.date.accessioned2021-06-17T07:14:58Z-
dc.date.available2024-07-31
dc.date.copyright2019-07-31
dc.date.issued2019
dc.date.submitted2019-07-15
dc.identifier.citation[1] W. Goetzler, R. Zogg, J. Young, C. Johnson, Energy savings potential and RD&D opportunities for non-vapor-compression HVAC technologies, Navigant Consulting Inc., prepared for US Department of Energy (2014).
[2] L.C. Chang, T.A. Read, Plastic Deformation and Diffusionless Phase Changes in Metals - the Gold-Cadmium Beta-Phase, T Am I Min Met Eng 191(1) (1951) 47-52.
[3] G.B. KAUFFMAN, I. MAYO, The Story of Nitinol: The Serendipitous Discovery of the Memory Metal and Its Applications, The Chemical Educator 2(2) (1997) 1-21.
[4] H. Kessler, W. Pitsch, On Nature of Martensite to Austenite Reverse Transformation, Acta Metall Mater 15(2) (1967) 401.
[5] 李芝媛、吳錫侃, 淺談形狀記憶合金, 科儀新知第十六卷 6 (1995) 6.
[6] K. Enami, A. Nagasawa, S. Nenno, Reversible Shape Memory Effect in Fe-Base Alloys, Scripta Metall Mater 9(9) (1975) 941-948.
[7] A. Nagasawa, K. Enami, Y. Ishino, Y. Abe, S. Nenno, Reversible Shape Memory Effect, Scripta Metall Mater 8(9) (1974) 1055-1060.
[8] T. Saburi, S. Nenno, Reversible Shape Memory in Cu-Zn-Ga, Scripta Metall Mater 8(12) (1974) 1363-1367.
[9] T.A. Schroeder, C.M. Wayman, 2-Way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals, Scripta Metall Mater 11(3) (1977) 225-230.
[10] M. Nishida, T. Honma, All-Round Shape Memory Effect in Ni-Rich Tini Alloys Generated by Constrained Aging, Scripta Metall Mater 18(11) (1984) 1293-1298.
[11] T.A. Schroeder, C.M. Wayman, Formation of Martensite and Mechanism of Shape Memory Effect in Single-Crystals of Cu-Zn Alloys, Acta Metall Mater 25(12) (1977) 1375-1391.
[12] M. Nishida, T. Honma, Effect of Heat-Treatment on the All-Round Shape Memory Effect in Ti-51at Percent Ni, Scripta Metall Mater 18(11) (1984) 1299-1302.
[13] M. Nishida, C.M. Wayman, T. Honma, Electron-Microscopy Studies of the All-Round Shape Memory Effect in a Ti-51.0 Atmospheric-Percent Ni-Alloy, Scripta Metall Mater 18(12) (1984) 1389-1394.
[14] T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka, Crystal-Structure, Composition and Morphology of a Precipitate in an Aged Ti-51 at Percent-Ni Shape Memory Alloy, T Jpn I Met 27(10) (1986) 731-740.
[15] T.Honma, Proc,Guklin Symp. of Shape Memory Alloys, SMA 86 Guilin,China (1986) 709.
[16] T. Honma, The Effect of Aging on the Spontaneous Shape Change and the All-Round Shape Memory Effect in Ni--Rich TiNi Alloy, Proceedings of the International Conference on Martensitic Transformations. ICOMAT-86, 1986, pp. 709-716.
[17] K. Otsuka, K. Shimizu, Pseudoelasticity, Met Forum 4(3) (1981) 142-152.
[18] K. Otsuka, C.M. Wayman, Reviews on the Deformation Behavior of Materials, (1977).
[19] K.Otsuka, C.M. Wayman, Proc. Int. Conf. On Solid to Solid Phase Transformations,, TMS-AIME Pittsburgh,Pa.(USA) (1981).
[20] T.W.D. G.R. Zadno, Linear and Non‐Linear Superelasticity in NiTi, MRS Shape Memory Materials Vol. 9 (1989) 201‐209.
[21] K. Otsuka, X.B. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528.
[22] H.O. T.B. Massalski, P.R. Subramanian, L. Kacprzak. Editors. , Binary Alloys Phase Diagrams, ASM International 3 (1990) 2875.
[23] C.M. Wayman, W. Jackson, H. M.; Wasilewski, R. J., 55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110, (1972).
[24] K. Otsuka, T. Sawamura, K. Shimizu, Crystal Structure and Internal Defects of Equiatomic Tini Martensite, Phys Status Solidi A 5(2) (1971) 457-470.
[25] K.M. Knowles, D.A. Smith, The Crystallography of the Martensitic-Transformation in Equiatomic Nickel-Titanium, Acta Metall Mater 29(1) (1981) 101-110.
[26] O. Matsumoto, S. Miyazaki, K. Otsuka, H. Tamura, Crystallography of Martensitic-Transformation in Ti-Ni Single-Crystals, Acta Metall Mater 35(8) (1987) 2137-2144.
[27] M. Nishida, N. Ohgi, I. I, A. Chiba, K. Yamauchi, Electron-Microscopy Studies of Twin Morphologies in B19' Martensite in the Ti-Ni Shape-Memory Alloy, Acta Metallurgica Et Materialia 43(3) (1995) 1219-1227.
[28] T. Onda, Y. Bando, T. Ohba, K. Otsuka, Electron-Microscopy Study of Twins in Martensite in a Ti-50.0 at Percent Ni-Alloy, Mater T Jim 33(4) (1992) 354-359.
[29] H.C. Ling, R. Kaplow, Phase-Transitions and Shape Memory in Niti, Metall Trans A 11(1) (1980) 77-83.
[30] C.M. Wayman, K. Shimizu, I. Cornelis, Transformation Behavior and Shape Memory in Thermally Cycled Tini, Scripta Metall Mater 6(2) (1972) 115-122.
[31] F.E. Wang, B.F. Desavage, W.J. Buehler, W.R. Hosler, Irreversible Critical Range in Tini Transition, J Appl Phys 39(5) (1968) 2166.
[32] G.D. Sandrock, A.J. Perkins, R.F. Hehemann, Premartensitic Instability in near-Equiatomic Tini, Metall Trans 2(10) (1971) 2769-2781.
[33] O. Mercier, K.N. Melton, Y. Depreville, Low-Frequency Internal-Friction Peaks Associated with the Martensitic Phase-Transformation of Niti, Acta Metall Mater 27(9) (1979) 1467-1475.
[34] H.C. Ling, R. Kaplow, Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic Niti, Metall Trans A 12(12) (1981) 2101-2111.
[35] E. Goo, R. Sinclair, The B2 to R Transformation in Ti50ni47fe3 and Ti49.5ni50.5 Alloys, Acta Metall Mater 33(9) (1985) 1717-1723.
[36] C.M. Hwang, M. Meichle, M.B. Salamon, C.M. Wayman, Transformation Behavior of a Ti50ni47fe3 Alloy .2. Subsequent Premartensitic Behavior and the Commensurate Phase, Philos Mag A 47(1) (1983) 31-62.
[37] H.C. Lin, S.K. Wu, T.S. Chou, H.P. Kao, The Effects of Cold-Rolling on the Martensitic-Transformation of an Equiatomic Tini Alloy, Acta Metallurgica Et Materialia 39(9) (1991) 2069-2080.
[38] Y. Yamabe-Mitarai, R. Arockiakumar, A. Wadood, K.S. Suresh, T. Kitashima, T. Hara, M. Shimojo, W. Tasaki, M. Takahashi, S. Takahashi, H. Hosoda, Ti(Pt, Pd, Au) based High Temperature Shape Memory Alloys, Materials Today: Proceedings 2 (2015) S517-S522.
[39] H. Donkersloot, J. Van Vucht, Martensitic transformations in gold-titanium, palladium-titanium and platinum-titanium alloys near the equiatomic composition, Journal of the Less Common Metals 20(2) (1970) 83-91.
[40] C. Declairieux, A. Denquin, P. Ochin, R. Portier, P. Vermaut, On the potential of Ti50Au50 compound as a high temperature shape memory alloy, Intermetallics 19(10) (2011) 1461-1465.
[41] Y.C. Lo, S.K. Wu, Compositional dependence of martensitic transformation sequence in Ti50Ni50 − xPdx alloys with X ≤ 15at%, Scripta Metallurgica et Materialia 27(8) (1992) 1097-1102.
[42] Y.C. Lo, S.K. Wu, C.M. Wayman, Transformation heat as a function of ternary Pd additions in Ti50Ni50−zPdz alloys with x:20∼50 at.%, Scripta Metallurgica et Materialia 24(8) (1990) 1571-1576.
[43] S. Zuo, M. Jin, Y. Song, X. Jin, B19-phase transition and related tensile properties of Ti50Ni30Cu20 shape memory alloy doped with hydrogen, Journal of Intelligent Material Systems and Structures 27(18) (2016) 2517-2523.
[44] 林鎮川, 國立台灣大學材料科學與工程研究所碩士論文 (1991).
[45] G. Eggeler, E. Hornbogen, A. Yawny, A. Heckmann, M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mat Sci Eng a-Struct 378(1-2) (2004) 24-33.
[46] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of Cyclic Deformation on the Pseudoelasticity Characteristics of Ti-Ni Alloys, Metall Trans A 17(1) (1986) 115-120.
[47] Y. Nakata, T. Tadaki, K. Shimizu, Thermal Cycling Effects in a Cu-Al-Ni Shape Memory Alloy, Trans. JIM. 26(9) (1985) 646-652.
[48] S. Miyazaki, Y. Igo, K. Otsuka, Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys, Acta Metall Mater 34(10) (1986) 2045-2051.
[49] T. Tadaki, Y. Nakata, K. Shimizu, Thermal Cycling Effects in an Aged Ni-Rich Ti-Ni Shape Memory Alloy, Trans. JIM. 28(11) (1987) 883-890.
[50] T.H. Nam, T. Saburi, Y. Nakata, K. Shimizu, Shape Memory Characteristics and Lattice Deformation in Ti-Ni-Cu Alloys, Trans. JIM. 31(12) (1990) 1050-1056.
[51] J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, J. Hattrick-Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z.Y. Zhang, I. Takeuchi, Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width, Nat Mater 5(4) (2006) 286-290.
[52] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv Eng Mater 10(6) (2008) 534-538.
[53] T. Tadaki, C.M. Wayman, Electron-Microscopy Studies of Martensitic Transformations in Ti50ni50-Xcux Alloys .2. Morphology and Crystal-Structure of Martensites, Metallography 15(3) (1982) 247-258.
[54] S. Guo, Phase selection rules for cast high entropy alloys: an overview, Mater Sci Tech-Lond 31(10) (2015) 1223-1230.
[55] B. Strnadel, S. Ohashi, H. Ohtsuka, T. Ishihara, S. Miyazaki, Cyclic stress-strain characteristics of TiNi and TiNiCu shape memory alloys, Materials Science and Engineering: A 202(1) (1995) 148-156.
[56] B. Strnadel, S. Ohashi, H. Ohtsuka, S. Miyazaki, T. Ishihara, Effect of mechanical cycling on the pseudoelasticity characteristics of TiNi and TiNiCu alloys, Materials Science and Engineering: A 203(1) (1995) 187-196.
[57] H. Sehitoglu, R. Anderson, I. Karaman, K. Gall, Y. Chumlyakov, Cyclic deformation behavior of single crystal NiTi, Materials Science and Engineering: A 314(1) (2001) 67-74.
[58] E.A. Pieczyska, H. Tobushi, K. Kulasinski, Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera, Smart Materials and Structures 22(3) (2013) 035007.
[59] T. Kusama, T. Omori, T. Saito, S. Kise, T. Tanaka, Y. Araki, R. Kainuma, Ultra-large single crystals by abnormal grain growth, Nat Commun 8(1) (2017) 354.
[60] T. Omori, T. Kusama, S. Kawata, I. Ohnuma, Y. Sutou, Y. Araki, K. Ishida, R. Kainuma, Abnormal grain growth induced by cyclic heat treatment, Science 341(6153) (2013) 1500-2.
[61] L. Manosa, A. Planes, Materials with Giant Mechanocaloric Effects: Cooling by Strength, Adv Mater 29(11) (2017) 1603607.
[62] Y. Wu, E. Ertekin, H. Sehitoglu, Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation, Acta Materialia 135 (2017) 158-176.
[63] X. Xie, Q. Kan, G. Kang, F. Lu, K. Chen, Observation on rate-dependent cyclic transformation domain of super-elastic NiTi shape memory alloy, Materials Science and Engineering: A 671 (2016) 32-47.
[64] Y. Li, D. Zhao, J. Liu, Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy, Sci Rep 6 (2016) 25500.
[65] J. Tušek, K. Engelbrecht, L.P. Mikkelsen, N. Pryds, Elastocaloric effect of Ni-Ti wire for application in a cooling device, J Appl Phys 117(12) (2015).
[66] L. Mañosa, S. Jarque-Farnos, E. Vives, A. Planes, Large temperature span and giant refrigerant capacity in elastocaloric Cu-Zn-Al shape memory alloys, Applied Physics Letters 103(21) (2013).
[67] L. Zheng, Y. He, Z. Moumni, Lüders-like band front motion and fatigue life of pseudoelastic polycrystalline NiTi shape memory alloy, Scripta Materialia 123 (2016) 46-50.
[68] H. Yin, Y. He, Z. Moumni, Q. Sun, Effects of grain size on tensile fatigue life of nanostructured NiTi shape memory alloy, International Journal of Fatigue 88 (2016) 166-177.
[69] C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, A. Tuissi, Fatigue properties of a pseudoelastic NiTi alloy: Strain ratcheting and hysteresis under cyclic tensile loading, International Journal of Fatigue 66 (2014) 78-85.
[70] K. Zhang, G. Kang, Q. Sun, High fatigue life and cooling efficiency of NiTi shape memory alloy under cyclic compression, Scripta Materialia 159 (2019) 62-67.
[71] Y. Zhang, Z. Moumni, J. Zhu, W. Zhang, Effect of the amplitude of the training stress on the fatigue lifetime of NiTi shape memory alloys, Scripta Materialia 149 (2018) 66-69.
[72] E. Pieczyska, S. Gadaj, W. Nowacki, H. Tobushi, Phase-transformation fronts evolution for stress-and strain-controlled tension tests in TiNi shape memory alloy, Experimental Mechanics 46(4) (2006) 531-542.
[73] J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, I. Takeuchi, Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires, Applied Physics Letters 101(7) (2012) 073904.
[74] V.K. Pecharsky, K.A. Gschneidner Jr, Giant magnetocaloric effect in Gd 5 (Si 2 Ge 2), Physical review letters 78(23) (1997) 4494.
[75] A. Mischenko, Q. Zhang, J. Scott, R. Whatmore, N. Mathur, Giant electrocaloric effect in thin-film PbZr0. 95Ti0. 05O3, Science 311(5765) (2006) 1270-1271.
[76] M. Schmidt, J. Ullrich, A. Wieczorek, J. Frenzel, A. Schütze, G. Eggeler, S. Seelecke, Thermal stabilization of NiTiCuV shape memory alloys: Observations during elastocaloric training, Shape Memory and Superelasticity 1(2) (2015) 132-141.
[77] C. Chluba, H. Ossmer, C. Zamponi, M. Kohl, E. Quandt, Ultra-low fatigue quaternary TiNi-based films for elastocaloric cooling, Shape Memory and Superelasticity 2(1) (2016) 95-103.
[78] C. Rodriguez, L. Brown, The thermal effect due to stress-induced martensite formation in β-CuAlNi single crystals, Metallurgical and Materials Transactions A 11(1) (1980) 147-150.
[79] W. Sun, J. Liu, B. Lu, Y. Li, A. Yan, Large elastocaloric effect at small transformation strain in Ni 45 Mn 44 Sn 11 metamagnetic shape memory alloys, Scripta Materialia 114 (2016) 1-4.
[80] R. Millán-Solsona, E. Stern-Taulats, E. Vives, A. Planes, J. Sharma, A.K. Nayak, K. Suresh, L. Mañosa, Large entropy change associated with the elastocaloric effect in polycrystalline Ni-Mn-Sb-Co magnetic shape memory alloys, Applied Physics Letters 105(24) (2014) 241901.
[81] J. Nei, K.-H. Young, Gaseous phase and electrochemical hydrogen storage properties of Ti50Zr1Ni44X5 (X= Ni, Cr, Mn, Fe, Co, or Cu) for nickel metal hydride battery applications, Batteries 2(3) (2016) 24.
[82] L. Gou, Y. Liu, T.Y. Ng, Effect of Cu Content on Atomic Positions of Ti50Ni50− xCux Shape Memory Alloys Based on Density Functional Theory Calculations, Metals 5(4) (2015) 2222-2235.
[83] J. Frenzel, A. Wieczorek, I. Opahle, B. Maass, R. Drautz, G. Eggeler, On the effect of alloy composition on martensite start temperatures and latent heats in Ni-Ti-based shape memory alloys, Acta Materialia 90 (2015) 213-231.
[84] L. Bataillard, J.-E. Bidaux, R. Gotthardt, Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations, Philosophical magazine A 78(2) (1998) 327-344.
[85] C.-H. Kuang, C. Chien, S.-K. Wu, Multistage martensitic transformation in high temperature aged Ti 48 Ni 52 shape memory alloy, Intermetallics 67 (2015) 12-18.
[86] P.C. Chang, M.L. Ko, B. Ramachandran, Y.K. Kuo, C. Chien, S.K. Wu, Comparative study of R-phase martensitic transformations in TiNi-based shape memory alloys induced by point defects and precipitates, Intermetallics 84 (2017) 130-135.
[87] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Prog Mater Sci 50(5) (2005) 511-678.
[88] O. Karakoc, C. Hayrettin, D. Canadinc, I. Karaman, Role of applied stress level on the actuation fatigue behavior of NiTiHf high temperature shape memory alloys, Acta Materialia 153 (2018) 156-168.
[89] T. Fukuda, T. Saburi, K. Doi, S. Nenno, Nucleation and self-accommodation of the R-phase in Ti–Ni alloys, Materials Transactions, JIM 33(3) (1992) 271-277.
[90] S. Miyazaki, C. Wayman, The R-phase transition and associated shape memory mechanism in Ti-Ni single crystals, Acta Metall Mater 36(1) (1988) 181-192.
[91] R. DeHoff, Thermodynamics in materials science, CRC Press, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73040-
dc.description.abstract本研究針對Ti49.6Ni50.4 棒材、Ti48.9Ni51.1 及 Ti50Ni48Fe2 形狀記憶合金塊材進行研究,探討熱循環及應力循環對於形狀記憶合金之變態溫度與彈熱效應的影響,以及不同操作溫度下之彈熱效應。經過時效處理之Ti49.6Ni50.4_275℃×125 hr與TiNi51.1_400 ℃×50 hr試片具有最良好的熱循環、應力循環穩定性以及彈熱效應性能,是因為在時效處理時產生之Ti3Ni4析出物,具有析出強化的效果,能夠有效阻擋循環時所產生之差排,提高材料之循環穩定性。並使Ti49.6Ni50.4_275℃×125 hr與TiNi51.1_400 ℃×50 hr試片於應力循環的過程中保持較高之溫度變化量,不易因循環次數增加而下降,顯示經析出硬化後,可擁有較佳之超彈性性能,並提供較高之溫度變化量。然而,由熱循環與應力循環之結果中可以發現,TiNi基形狀記憶合金經時效處理產生Ti3Ni4析出物後,雖然可有效提高其熱循環穩定性,並於超彈性加壓時減少差排生成,提高應力循環之穩定性,但於應力循環的過程中仍能觀察到相變態溫度有大幅度的改變,顯示析出硬化雖可使材料於單純熱循環下有良好的穩定效果,但對於應力循環之抵抗力較不足夠,表示應力對於形狀記憶合金變態行為的劣化影響,大於單純之熱循環之影響。不同溫度下之彈熱效應性能同樣以經時效處理之Ti49.6Ni50.4_275℃×125 hr與TiNi51.1_400 ℃×50 hr試片最佳,於 -40 ℃至150 ℃之溫度範圍內具有良好之彈熱效應表現,最高可達10 ℃~12 ℃。此外可以利用中間相R相之變態,擴展可產生彈熱效應之溫度範圍,即使溫度低於Rf變態溫度,仍可利用R↔B19’之間之相變態提供溫度變化,顯示導入B2↔R↔B19’之二階相變態可有效擴展彈熱效應之使用溫度範圍。透過數位影像關係法與紅外線之影像分析,可以有效地觀察出TiNi基形狀記憶合金於超彈性變態時之相變態趨勢、應力場分布以及溫度變化量分布,可以發現所有試片皆為均勻之麻田散體相變態。zh_TW
dc.description.abstractIn this study, the effects of thermal/stress cycles on transformation temperature, the effect of stress cycles on elastocaloric effect and the elastocaloric effect at different operating temperatures in Ti49.6Ni50.4 bar, Ti48.9Ni51.1, and Ti50Ni48Fe2 shape memory alloy blocks were investigated. The Ti49.6Ni50.4_275℃×125 hr and TiNi51.1_400 ℃×50 hr aged specimens exhibited the best thermal/stress cycles stability and elastocaloric effect performance, because of the strengthing effect of Ti3Ni4 precipitations formed during aging treatment. The precipitates could effectively hinder the dislocation movement during thermal/stress cycles and improved the functional stability of the material. The Ti49.6Ni50.4_275℃×125 hr and TiNi51.1_400 ℃×50 hr aged specimens maintained a high-temperature change during the stress cycles, indicating that they could contribute better superelasticity after precipitation hardening. However, it is noted from the results of thermal cycles and stress cycles that, although precipitation hardening could effectively improve the thermal cycles stability of TiNi-base shape memory alloys, the phase transition temperatures obviously shifted during the stress cycles. This features indicated that the precipitation hardening could improve the functional stability during thermal cycling but was less effective to resist dislocation motion during stress cycling. As a consequence, the effect of stress on the deterioration of the transformation behavior of shape memory alloy was found greater than the effect of thermal cycling. The Ti49.6Ni50.4_275℃×125 hr and TiNi51.1_400 ℃×50 hr aged specimens also showed better elastocaloric performance. At the temperature range of -40 °C to 150 °C, these two samples showed higher temperature change of cooling during unloading than the other specimens, the temperature change up to 10 ℃~12 ℃. In addition, it was found that the operating temperature range could be expanded by introducing R phase transformation, even if the operating temperature was lower than the Rf, the phase transformation between R↔B19' could be utilized to provide a temperature change, indicating that the two-stage phase transition of B2↔R↔B19' can effectively extend the operating temperature range of the elastocaloric effect. In this study, by utilizing digital image correlation(DIC) and infrared image analyses, the strain field distribution and temperature distribution of TiNi-based shape memory alloy superelastic can be directly observed and measured, and all specimens ware found to undergo uniform phase transformation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:14:58Z (GMT). No. of bitstreams: 1
ntu-108-R06522732-1.pdf: 19612562 bytes, checksum: 4b054a5097171fb1d9586c25281b513f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents摘要...i
Abstract...iii
目錄...v
第一章 前言...1
第二章 文獻探討...3
2-1形狀記憶合金簡介...3
2-2形狀記憶特性...4
2-2-1熱彈型麻田散體相變態...4
2-2-2形狀記憶效應(Shape memory effect, SME)之機制...6
2-2-3超/擬彈性(Superelasticity, PE)...8
2-3 TiNi基形狀記憶合金...10
2-4熱循環與應力應變循環...11
2-4-1熱循環對形狀記憶效應之影響...11
2-4-2應力應變循環對超彈性之影響...12
2-4-3熱機處理對應力應變循環的影響...13
2-5彈熱效應簡介...14
2-5-1理論溫度變化量...15
2-5-2應變速率及應變量之影響...16
2-5-3溫度對彈熱效應之影響...17
2-5-4疲勞強度之於彈熱效應材料...17
第三章 實驗方法...39
3-1合金配置與熔煉...39
3-2 DSC量測...40
3-3熱循環...41
3-4時效處理...45
3-5 EBSD晶體方位分析...45
3-6 EPMA成分分析...45
3-7壓縮超彈性實驗...45
3-8應力循環測試...46
3-9溫度變化量量測...46
3-10不同溫度下之彈熱效應...47
第四章 合金之熱循環與應力循環...55
4-1 DSC量測結果...55
4-1-1 TiNi51.1塊材時效之DSC結果...55
4-1-2 Ti49.6Ni50.4棒材時效之DSC結果...57
4-1-3 Ti50Ni48Fe2塊材時效之DSC結果...58
4-2 EBSD晶體方位分析結果...58
4-3熱循環穩定性結果...59
4-3-1 TiNi51.1塊材之熱循環結果...59
4-3-2 Ti49.6Ni50.4棒材之熱循環結果...61
4-3-3 Ti50Ni48Fe2塊材之熱循環結果...62
4-4應力循環對變態溫度之影響...63
4-4-1 Ti49.6Ni50.4棒材之應力循環結果...63
4-4-2 TiNi51.1_400℃×50 hr塊材之應力循環結果...65
4-4-3 Ti50Ni48Fe2塊材之應力循環結果...65
4-5熱循環與應力循環...65
4-6應力循環對彈熱效應之影響...66
4-6-1 Ti49.6Ni50.4_as recevied之應力循環對彈熱效應之影響...67
4-6-2 Ti49.6Ni50.4_275℃×125 hr之應力循環對彈熱效應之影響...69
4-6-3 Ti49.6Ni50.4_300℃×1 hr之應力循環對彈熱效應之影響...69
4-6-4 TiNi51.1_400℃×50 hr之應力循環對彈熱效應之影響...70
4-6-5 Ti50Ni48Fe2_900℃×1 hr之應力循環對彈熱效應之影響...71
4-6-6應力循環對彈熱效應之影響結果討論...72
第五章 各合金於不同溫度下之彈熱效應...111
5-1 Ti49.6Ni50.4_as recevied試片於不同溫度下之彈熱效應...111
5-2 Ti49.6Ni50.4_275℃×125 hr試片於不同溫度下之彈熱效應...113
5-3 Ti49.6Ni50.4_300℃×1 hr試片於不同溫度下之彈熱效應...113
5-4 TiNi51.1_400℃×50 hr試片於不同溫度下之彈熱效應...114
5-5 Ti50Ni48Fe2_900℃×1 hr試片於不同溫度下之彈熱效應...115
5-6各個試片於不同溫度下之彈熱效應比較...116
5-7不同溫度下固定應變之彈熱效應...118
5-7-1 DIC與紅外線影像分析...120
5-8各個試片之紅外線影像分析...121
第六章 結論...149
參考文獻...151
dc.language.isozh-TW
dc.subject熱循環zh_TW
dc.subject時效析出zh_TW
dc.subject彈熱效應zh_TW
dc.subject應力循環zh_TW
dc.subjectTiNi基形狀記憶合金zh_TW
dc.subjectthermal cycleen
dc.subjectstress cycleen
dc.subjectelastocaloric effecten
dc.subjectTiNi-based shape memory alloyen
dc.subjectaging treatmenten
dc.title"Ti49.6Ni50.4棒材,Ti48.9Ni51.1及Ti50Ni48Fe2形狀記憶合金塊材之彈熱效應研究"zh_TW
dc.titleResearch on The Elastocaloric Effect of Ti49.6Ni50.4 Bar, Ti48.9Ni51.1 And Ti50Ni48Fe2 Shape Memory Alloysen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳錫侃,林新智
dc.subject.keywordTiNi基形狀記憶合金,熱循環,應力循環,彈熱效應,時效析出,zh_TW
dc.subject.keywordTiNi-based shape memory alloy,thermal cycle,stress cycle,elastocaloric effect,aging treatment,en
dc.relation.page157
dc.identifier.doi10.6342/NTU201901505
dc.rights.note有償授權
dc.date.accepted2019-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
19.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved