Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73035
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾添東(Tien-Tung Chung)
dc.contributor.authorYen-Tso Kuoen
dc.contributor.author郭彥佐zh_TW
dc.date.accessioned2021-06-17T07:14:46Z-
dc.date.available2019-07-17
dc.date.copyright2019-07-17
dc.date.issued2019
dc.date.submitted2019-07-16
dc.identifier.citation[1] Semiconductor Applications, Aerotech Corporation, 2017,
https://www.aerotech.com/industries-and-applications/semiconductor.aspx.
[2] W. L. Wang, Y. T. Fei, and K. C. Fan, 'Investigation of Nanometer XY Positioning Stage, ' Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, pp.18-21, Jan 2006.
[3] T. H. Tseng, “Design and Analysis of a Large Scale Abbe Error Free 3D Wafer
Measurement Stage,” M. S. thesis, National Taiwan University, Taiwan, 2017.
[4] Osita D. I. Nwokah, and Yildirim Hurmuzlu, The Mechanical Systems Design Handbook: Modeling, Measurement, and Control, CRC press LLC, pp.160-162, 2001.
[5] J. B. Bryan, 'The Abbe principle revisited: An updated interpretation,' Precision Engineering, vol. 1, no. 3, pp. 129-132, 1979.
[6] K. C. Fan, C. L. Liu, P. T. Wu, Y. C. Chen and W. L. Wang, 'The Structure Design of a Micro-Precision CMM with Abbe Principle,' Proceedings of the 35th International MATADOR Conference, Vol.12, pp.297-300, 2007.
[7] Chih-Hsiang Chu, 'Structural Design and Analysis of a Precision Positioning Planar Motion Stage, ' Master Thesis, Department of Mechanical Engineering, National Taiwan University, 2010.
[8] Tien-Tung Chung, Teng-Hui Tseng and Ching-Siong Lim Chan, 'Design and Analysis of an Abbe Free Coplanar Stage,' ICMSET 2016, Tokyo, Japan, 2016.
[9] Chen, X., Chen, H., Luo, X. et al. Tribol Lett (2011) 42: 179.
https://doi.org/10.1007/s11249-011-9761-2
[10] Taylor-Hobson, 2019,
https://www.taylor-hobson.com/products/non-contact-3d-optical-profilers/luphos/luphoscan
[11] HIWIN Mikrosystem , 2019,
https://www.hiwinmikro.tw/zh/product/linear-motor-system/34d040dd-4ca0-45ff-92d4-3da8c501f491
[12] T. J. Hughes, 'The finite element method: Linear static and dynamic finite element analysis,' 2012.
[13] S. S.RAO, Mechanical vibrations. Singapore: Pearson, 2011.
[14] Schwarz, Brian J., and Mark H. Richardson. 'Experimental modal analysis.' CSI Reliability week 35.1 (1999): 1-12.
[15] Carne, Thomas G., and Clark R. Dohrmann. A modal test design strategy for model correlation. No. SAND-94-2702C; CONF-950240-4. Sandia National Labs., Albuquerque, NM (United States), 1994.
[16] Cugnoni, Joel, Thomas Gmür, and Alain Schorderet. 'Inverse method based on modal analysis for characterizing the constitutive properties of thick composite plates.' Computers & Structures 85.17-18 (2007): 1310-1320.
[17] ABL8000 Linear Air-Bearing Stage, Aerotech Corporation, 2017. https://www.aerotech.com/product-catalog/stages/linear-stage/abl8000.aspx?p=%2fproduct-catalog%2fstages.aspx.
[18] ABL1500 Linear Air-Bearing Stage, Aerotech Corporation, 2017. https://www.aerotech.com/product-catalog/stages/linear-stage/abl1500-air-bearing.aspx?p=%2fproduct-catalog%2fstages.aspx.
[19] WaferMax Z Direct-Drive Lift Stage, Aerotech Corporation, 2017, https://www.aerotech.com/product-catalog/stages/lift-and-z-axis-stages/wafermaxz.aspx
[20] Ultra Low Expansion Glass-Ceramics, OHARA Corporation,
https://www.oharacorp.com/ccz.html
[21] Spring Plungers PJXW Series, Misumi,
https://tw.misumi-ec.com/vona2/detail/110300142830/?HissuCode=PJXW&PNSearch=PJXW&KWSearch=PJXW&searchFlow=results2type
[22] Tilt Stage CP03A, ONSET,
https://www.onset-eo.com/product/tilt-stage/
[23] Yoder, Paul R, Opto-mechanical Systems Design, Second edition, Marcel Dekker, New York, pg. 443, 1992.
[24] N. W. A. Bearings, 'Air Bearing Application and Design Guide – Revision E,' New Way Air Bearings, pp.9-24, 2006.
[25] ANSYS, Inc., ANSYS Mechanical APDL Element Reference, pp. 959~990, 2013
[26] PDV-100 Portable Digital Vibrometer, Polytec, https://www.polytec.com/int/vibrometry/products/single-point-vibrometers/pdv-100-portable-digital-vibrometer/
[27] NI-9234, National Instruments,
https://www.ni.com/zh-tw/support/model.ni-9234.html
[28] PW 800 series, Prowave
http://www.prowavegroup.com/showProduct_51.html
[29] Motor Sizer Software Downloads, Aerotech Corporation, 2017, https://www.aerotech.com/product-catalog/motors/motor-sizer/motor-sizer.aspx
[30] Thermo GEAR G100, InfReC,
http://www.infrared.avio.co.jp/en/products/ir-thermo/lineup/g120-g100/index.html
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/73035-
dc.description.abstract本論文研究一台自行研發三軸零阿貝誤差晶圓檢測平台之機構細部設計,熱分析和結構動態靜態反應分析。晶圓檢測平台之主結構包括花崗岩基座,龍門結構,X軸載台,Y軸載台,Z軸載台及量測探頭載台。量測子系統包括多功能量測探頭系統,X載台空氣軸承系統,以及量測三軸位移之雷射干涉儀系統。Y軸載台的整體設計為了更好的剛性進行了結構上的強化。三軸參考鏡系統的架設方式為了應對熱變形和偏角調整需求而重新設計。為量測探頭載台設計了可調式裝設架以調整Z方向量測探頭之俯仰角和偏擺角。為X軸載台下方之空氣軸承系統優化了穩定性和拆卸的方便性。於龍門旁建立了能提供高度穩定性的平台供架設雷射干涉儀系統之精密光學零件。所有的零件皆在AutoCAD及Inventor環境中參數化設計並組合,接著使用ANSYS和Inventor進行自重變形,震動模態,溫度分佈,熱變形等分析。另外,為了驗證結構分析結果,使用雷射都普勒震動量測儀和熱影像儀進行震動模態和溫度場的量測實驗。最後,建置了擁有以上優化設計之原型機台並測試其性能。結果證實此晶圓檢測平台之總體性能得到提升。zh_TW
dc.description.abstractThis thesis studies the detailed design, thermal analysis, and structural analysis of a self-built 3D Abbe-error free 12” wafer inspection stage. The structural components of the stage include base, gantry, X-stage, Y-stage, Z-stage, and vertical inspection probe stage. The measuring sub-systems includes an inspection probe system for multi-purpose measurement, an air bearing system for X-stage, and a laser interferometer system for measuring 3-axis motions. The overall design of Y-plate of the Y-stage has been modified for extra stiffness. The three reference mirror adaptors have been redesigned for inevitable thermal deformation and precise calibration requirement. The vertical inspection probe stage has an adjustable adaptor to control the pitch and yaw angle of Z-direction inspection probe. The two air bearings under X-plate have been modified for more mobility and stability. A platform beside gantry is designed to mount laser interferometer and optical components with good stability. All the stage components are assembled in AutoCAD and Inventor through customized parametric design programs. Then ANSYS and Inventor were used to analyze structural behaviors such as self-weight deformation, modal shapes, temperature distribution, and thermal deformation of the components. In addition, experiments using Laser Doppler vibrometer (LDV) and thermographic camera were performed to justify the results from structural analysis. Finally, prototype with these improved designs is manufactured and performances of the stage are measured. The results show that the overall performance of the wafer inspection stage is improved.en
dc.description.provenanceMade available in DSpace on 2021-06-17T07:14:46Z (GMT). No. of bitstreams: 1
ntu-108-R06522626-1.pdf: 10360922 bytes, checksum: 182450b1c7c0a30d5566bc271a20c6bc (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書..........................i
誌謝.............................................ii
中文摘要....................................iii
ABSTRACT....................................iv
CONTENTS...................................v
LIST OF FIGURES........................viii
LIST OF TABLES...........................xv
Chapter 1 Introduction.................1
1.1 Background and motivation....1
1.2 Paper review.............................3
1.3 Research objective...................8
1.4 Thesis outline..........................9
Chapter 2 Working principle of wafer stage and analysis method....11
2.1 Abbe Theorem.......................11
2.2 Abbe error-free design...........12
2.2.1 Coplanar design..............12
2.2.2 3D Abbe error-free design...13
2.2.3 Commercial Abbe error-free systems....15
2.3 Finite element method (FEM) in structural analysis.......17
2.3.1 Static analysis using FEM.......18
2.3.2 Natural frequency and mode shape analysis using FEM.....19
2.3.3 Thermal analysis using FEM......19
2.4 Modal testing strategy and model correlation........21
Chapter 3 Detail structure design of wafer stage components......23
3.1 Components in wafer inspection stage..........................23
3.2 Detail structural design in maim system.........................24
3.2.1 Structure of modified Y-plate........................................24
3.2.2 Structure of reference mirror system...........................27
3.3 Detail structural design of sub-systems.......................34
3.3.1 Structure of inspection probe adaptor....................34
3.3.2 Structure of air bearing adaptor............................37
3.3.3 Structure of laser system plate.................................40
Chapter 4 Structural and thermal analysis of wafer stage components....45
4.1 Static structural analysis of components............................45
4.1.1 Stiffness analysis of inspection probe adaptor..............45
4.1.2 Self-weight analysis of modified Y-plate........................50
4.1.3 Self-weight analysis of Z-mirror adaptor set..................52
4.1.4 Self-weight analysis of laser system plate......................54
4.2 Modal analysis of components...........................................56
4.2.1 Modal analysis of granite gantry...................................56
4.2.2 Modal testing of granite gantry.....................................58
4.2.3 Modal analysis of Z-mirror adaptor set.........................62
4.2.4 Modal analysis of inspection probe adaptor..................63
4.2.5 Modal analysis of air bearing adaptor...........................64
4.2.6 Modal analysis of laser system plate.............................66
4.3 Thermal analysis and experiment of XYZ-stage..................69
4.3.1 Temperature distribution analysis of XYZ-stage............70
4.3.2 Thermal stress and strain analysis of XYZ-stage............74
4.3.3 Thermal experiment of XYZ-stage..................................80
Chapter 5 Conclusions and suggestions..............87
5.1 Conclusions.......................87
5.2 Future work and suggestions..................88
REFERENCES...........................89
Appendix A. Parametric analysis program of temperature distribution analysis on XYZ-stage.............................92
Appendix B. Parametric analysis program of thermal stress/strain analysis on XYZ-stage............................103
dc.language.isoen
dc.subject熱應力分析zh_TW
dc.subject溫場分析zh_TW
dc.subject模態分析zh_TW
dc.subject自重變形zh_TW
dc.subject阿貝誤差zh_TW
dc.subject晶圓檢測平台zh_TW
dc.subjectSelf-weight deformationen
dc.subjectAbbe erroren
dc.subjectThermal stress analysisen
dc.subjectTemperature distribution analysisen
dc.subjectWafer inspection stageen
dc.subjectModal analysisen
dc.title三軸零阿貝誤差晶圓檢測平台之設計最佳化與結構分析zh_TW
dc.titleDesign optimization and structural analysis of a 3D Abbe error-free wafer inspection stageen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳亮嘉(Liang-Chia Chen),劉正良
dc.subject.keyword晶圓檢測平台,阿貝誤差,自重變形,模態分析,溫場分析,熱應力分析,zh_TW
dc.subject.keywordWafer inspection stage,Abbe error,Self-weight deformation,Modal analysis,Temperature distribution analysis,Thermal stress analysis,en
dc.relation.page107
dc.identifier.doi10.6342/NTU201901365
dc.rights.note有償授權
dc.date.accepted2019-07-16
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf
  未授權公開取用
10.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved